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Abstract: Asynchronous loads (AL), because of their low negative-sequence resistance, produce the
effect of reduced unbalance at their connection points. Therefore, proper modeling of unbalanced
load flows in power supply systems requires properly accounting for AL. Adequate models of the
induction motor can be realized in the phase frame of reference. The effective use of such models is
possible only if accurate data on the parameters of induction motor equivalent circuits for positive
and negative sequences are available. Our analysis shows that the techniques used to determine
these parameters on the basis of reference data can yield markedly disparate results. It is possible
to overcome this difficulty by applying parameter identification methods that use the phase frame
of reference. The paper proposes a technique for parameter identification of models of individual
induction motors and asynchronous load nodes. The results of computer-aided simulation allow
us to conclude that by using parameter identification, we can obtain an equivalent model of an
asynchronous load node, and such a model provides high accuracy for both balanced and unbalanced
load flow analysis. By varying load flow parameters, we demonstrate that the model proves valid over
a wide range of their values. We have proposed a technique for the identification of asynchronous
load nodes with such asynchronous loads, including electrical drives equipped with static frequency
converters. With the aid of the AL identification models proposed in this paper, it is possible to solve
the following practical tasks of management of electric power systems: increasing the accuracy of
modeling their operating conditions; making informed decisions when taking measures to reduce
unbalance in power grids while accounting for the balancing adjustment effect of AL.

Keywords: power supply systems; unbalanced load flows; unbalanced load; parameter identification

1. Introduction

The electric power system (EPS) is a set of complex devices that generate, transmit,
distribute, and consume electric power. Improving the reliability of operation and effi-
ciency of power system use is impossible without solving a set of problems relating to
load dispatching in ordinary and emergency states. Due to the introduction of transient
monitoring tools, it became possible to determine the parameters of power system elements
in real-time.

Solving the problems of load dispatching in EPSs is based on the use of mathematical
models. They are used for steady-state load flow analysis, optimization, state estimation,
transient analysis, etc. The basis of the mathematical model of an EPS is an equivalent
circuit, which is formed from the circuits of individual components, namely: power trans-
mission lines, power transformers, generating equipment, load nodes, etc. The parameters
of the equivalent circuit of each component are usually determined by reference data or
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nameplate data and are considered immutable, although they depend on wear and tear
of components, weather conditions, and other factors. The errors in determining these
parameters on the basis of reference data are quite significant. For example, the error of
the active resistance of a line can be in the range of +16–−20%, and the representation of
corona discharge losses by a constant value of active conductivity can lead to an error of
1.5–3 times the actual value when determining the losses. The most significant errors can
occur in the process of building the models of load nodes. This is due to the considerable
uncertainty in the mix of consumers served and their operating conditions. The problem of
adequate modeling of load nodes can be solved on the basis of identification methods.

Issues of parameter identification of induction machines and nodes with predomi-
nantly unbalanced loads have been addressed in a sizeable number of studies. For example,
article [1] proposed a technique for identifying the parameters of a three-phase induction
motor in the case when the initial values of the estimates change in a wide range. Study [2]
presented the results of an experimental study of the efficacy of the technique of adaptive
identification of electrical parameters of the induction machine under steady-state condi-
tions on the basis of the power balance. Article [3] dealt with the issues of the identification
of load nodes and their stability control. In [4–6], the results of the modeling and identi-
fication of an induction machine were presented. Article [7] discussed the identification
of the parameters of an induction motor in its operational mode. Study [8] described an
algorithm proposed by its authors for the identification of induction machine parameters
by a recursive least-squares method. Article [9] studied mathematical methods of identifi-
cation of lumped parameters of electrical machines. It discussed the basic principles and
mathematical foundations of lumped parameter identification methods for various types
of electrical machines, including induction machines. Article [10] proposed an approach to
parameter identification of induction machines. The excitation input signal was determined
by optimization methods. Instrumental variable estimation was introduced to improve the
quality of identification by least-squares estimation. A method for magnetizing curve iden-
tification of induction machines was described in [11]. The study proposed an experimental
method for determining the magnetization curve specifically designed for vector-controlled
drives. The method employed an indirect vector controller and a PWM inverter, which
were used during normal operation of the drive. The method was verified by extensive
experimentation. A novel parameter identification method for the induction motor (IM)
was proposed in [12]. The study pointed out that the effect of vector control depends
largely on the accuracy of setting its parameters, which change with temperature varia-
tion. Based on the relationship between motor winding resistance and temperature, the
authors presented a method for calculating dynamic resistance by on-line detection of the
winding temperature. The experiment results attested to the high identification accuracy
of the approach. Article [13] considers real-time parameter identification algorithms for
effective control of electrical machines. Study [14] proposed a technique of flux estimation
of induction machines with the linear parameter-varying system identification method.
The identification algorithm was tested on data obtained from a nonlinear simulation
model with continuous time. Paper [15] described a method for parameter identification of
nine-phase induction machines with concentrated windings. Studies [16,17] considered a
method of induction machine parameter identification suitable for self-commissioning. An
algorithm for parameter identification of electrical machines using numerical simulations
was proposed in articles [18,19]. The problem of reducing the electrical energy consumption
of fans through parameter identification of the drive was solved in [20]. A method for
identification of induction machine parameters, including core loss resistance, using a
recursive least mean square algorithm was proposed in [21].

An analysis of the research contributions reviewed above allows us to conclude that
the relevance of problems with parameter identification of IMs and asynchronous load
nodes has been well established. However, most of the reviewed works dealt with the
determination of parameters of individual IMs, whereas load nodes were considered
only in [3]. The study relied on a single-line representation of the power system, which
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significantly hindered the modeling of unbalanced load flows. Adequate models of IMs
and asynchronous load nodes in the phase frame of reference, which is the most natural
form of representation of multiphase circuits, were proposed in [22,23]. However, effective
use of such models is possible only if accurate data on the parameters of IM equivalent
circuits for positive and negative sequences are available. The parameter identification
techniques discussed below can be used to solve this problem.

2. Modeling of Unbalanced Loads in the Phase Frame of Reference

On the basis of phase coordinates, adequate models [22] of asymmetric modes of
complex electric power systems at the fundamental frequency and frequencies of higher
harmonics can be implemented. So, for example, an experimental verification of the EPS
modeling technique in phase coordinates, performed on the basis of comparison with
synchronized measurement data for a model containing 619 nodes and 2996 branches,
showed that the differences between the calculated and measured values of the asymmetry
coefficients do not exceed 0.6%, and for the phase values stresses 2.3%.

Compared to the static elements of an EPS, such as power lines and transformers, an
asynchronous load, including a large number of motors, is a more complex object.

The asymmetry of the resistance matrix corresponding to the motor poses challenges
to simulation based on the lattice circuit with RLC elements. The difficulties are due to the
presence of two magnetic fields rotating clockwise and counterclockwise. When the supply
voltages are unbalanced, the induction motor has sine wave processes running at three
frequencies: 50 Hz, the frequency of the slip s, and about 100 Hz.

The behavior of induction motors under balanced three-phase voltage, when the motor
can be represented by a single-line equivalent circuit, has been thoroughly researched.
Induction motors can have different parameters of equivalent circuits during starting up
and operation with low slip values. Furthermore, there are several variants of equivalent
circuits. From the standpoint of load flow analysis in the phase frame of reference, when it
is necessary to consider motor parameters at low slip values as well as at slip values close
to 2 (electromagnetic brake mode), it is advisable to make the following assumptions.

First, it is convenient to use the equivalent circuit of an induction motor with the
external magnetizing circuit placed on the primary terminals, according to Figure 1a. It is
assumed that at start-up and the slip value of 2 − s (for negative sequence voltage), the
equivalent circuit will have different parameters of the rotor circuit, Figure 1b. Figure 1
shows the magnetization branch components Rµ, Xµ, stator resistances R1, X1, and equiv-
alent rotor resistances referred to the stator R2

s , X2, as well as the corresponding starting
parameters R2P

2−s , X2P.
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Figure 1. Positive (a) and negative (b) sequence equivalent circuits.

Second, it was assumed that in the start-up and electromagnetic brake modes (for the
negative voltage sequence), the square of the reactive resistance is much greater than the
square of the active resistance.

Third, with respect to the magnetization branch, a dual approach was adopted. When
the no-load parameters are known (cosϕx and active power Px), its parameters are deter-
mined on the basis of the relations presented below, and when the parameters are unknown,
the magnetization branch is ignored.
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Fourth, the parameters of the circuit components in Figure 1 are determined from
the rated values of efficiency η, power factor cos ϕH, current IGH, and the current flowing
through the part of the circuit that determines the load flow.

Fifth, the values of the positive and negative sequence voltages and the given mechan-
ical power of the motor are used to determine the positive and negative sequence currents.
In this case, the motor is modeled by current sources connected in a star (Figure 2). The
values of the source currents are adjusted at each step of the iterative process. The motor
neutral is considered to be insulated, and no zero-sequence currents occur in its circuits.
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respectively, N—neutral point).

According to Figure 1a, the parameters of the circuit at rated power settings for the
positive sequence are determined from the values of efficiency η, rated current IGH, and
power factor cos ϕH.

If the active power Px and cos ϕx of the no-load operation of the motor are known, the
parameters of the magnetizing branch and the current flowing through it can be determined
from them:

Zµ =
3 U1

2 cosϕx

Px
, Rµ = Zµ cosϕx, Xµ =

√
Zµ2 − Rµ2 (1)

The mechanical shaft power of the motor at rated settings is determined by the active
power dissipated in the resistance R2(1−sH)

sH
, where sH is the rated slip. The efficiency factor

is made up of the following loss components:

• mechanical losses in the rotor ∆PM;

• steel losses in the stator U1
2

Zµ2 Rµ;

• additional losses in the stator ∆Pd;
• copper losses due to stator and rotor resistances R1 and R2.

The efficiency at rated power settings is defined as the ratio of shaft power to gross power:

η = PH

PH +∆PM +∆Pd + 3ICH
2(R1 + R2) +

3U1
2

Zµ2 Rµ
,

R0 = R1 + R2,

R0 = PH
3IGH

2

(
1
η − 1− ∆PM +∆Pd

PH
− 3U1

2Rµ
PH Zµ2

)
.

(2)

The magnetizing branch current when the vectors are counted from the voltage
.

U1 is

.
Iµ =

U1

Rµ + j Xµ
= Iµ′ + j Iµ ′′ =

U1 Rµ
Rµ2 + Xµ2 − j

U1 Xµ
Rµ2 + Xµ2 . (3)

At rated load, the motor current is

.
IH = IH

′ + j IH
′′ =

PH
3 U1 η

− j
PH

3 U1 η

√
1

cos2ϕH
− 1, (4)

where PH
η is the active power consumed at rated power settings.
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The rated current and power factor are determined by the expressions:

IGH =

√
(IH ′ − Iµ′)

2 + (IH ′′ − Iµ ′′ )
2; (5)

cosϕGH =
IH
′ − Iµ′

IGH
. (6)

However, if the no-load operation parameters of the motor are unknown, it is possible
to assume, by way of approximation, that IGH = PH

3 U1 η cosϕH
neglecting the magnetizing

current and considering that cos ϕGH = cos ϕH .
According to the equivalent circuit of Figure 1a, we can write:

.
IG =

.
U1(

R1 +
R2
s

)
+ j Xk

, Xk = X1 + X2,

IGH =
U1√(

R1 +
R2
sH

)2
+ Xk

2

, (7)

cosϕGH =
R1 + R2/sH√(

R1 +
R2
sH

)2
+ Xk

2

=
R√

R2 + Xk
2

, (8)

R = R1 + R2/sH . (9)

The system of Equations (2), (7) and (8) is solved by simple substitution. From
Equation (8) we determine

Xk
2 = R2

(
1

cos2ϕGH
− 1
)

,

and it follows from Equation (7) that Z2 =
(

U1
IGH

)2
= R2 + Xk

2, so that R = Z cosϕGH .
From relations (2) and (9) we can determine components R1 and R2:

R2 =
sH(R− R0)

1− sH
; R1 = R0 − R2.

When determining R0 from relation (3), it can be assumed that the added losses are
0.5% of the input power and that the mechanical losses are 1.0% of the rated power.

Denoting X1 + X2p = Xkp and assuming that
(

R1 + R2p
)2

<< Xkp
2, we obtain

Xkp =
U1

KP IGH
,

where KP is the locked-rotor current ratio. From the equation of the electromagnetic
locked-rotor torque when the magnetization branch is ignored, we get the relation

MP =
3 U2

1
R2p p

X2
kp
ω

, or R2p =
ω

p

MX2
p

3 U2
1

,

where p is the number of motor pole pairs.
The locked-rotor torque was determined from the locked-rotor torque ratio kMP = MP

MH

and the rated torque MH = 2PH p
(1+η)2π f , from which it follows that

R2p =
2 kMPPHX2

kp

3 U2
1
(1 + η)

.



Energies 2023, 16, 1893 6 of 18

The multiplier 2
1+η allows one to convert the shaft power to the electromagnetic

power of the motor with a small error.
Effective use of the described model is possible only if accurate data on the param-

eters Xk, R2, XkP, R2P, Xµ of IM equivalent circuit for positive and negative sequences
are available. This problem can be solved by applying the parameter identification tech-
nique [22], described below. Identification results can be used in the unbalanced load flow
analysis of complex power supply systems. In this case, the asynchronous load node can
be represented by an equivalent IM according to the technique detailed in [24].

3. Induction Motor Identification Technique

The problem of adequate modeling of load nodes can be solved on the basis of identi-
fication methods. In the context of power system control, it is advisable for identification
purposes to use information about parameters of operating conditions obtained from
information and measurement systems built using PMUs (Figure 3).
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The problem of topology and parameter identification of load nodes can be formalized
as follows [22,25]. To this end, we can introduce a class of models = =

(
=1 =2 . . . =m

)
describing the processes occurring at load nodes. Each of the models is represented as

=i = =i(X, Z, P, Σ, L)

where xk ∈ X, k = 1 . . . nX—state variables; zk ∈ Z, k = 1 . . . nZ—input variables; pk ∈ P,
k = 1 . . . nP—model parameters subject to identification; σk ∈ Σ, k = 1 . . . nΣ—internal rela-
tions defining the model structure; lk ∈ L, k = 1 . . . nX—functional relationships acting as
mathematical relations operators allowing to find the parameters describing the object state
xk ∈ X, k = 1 . . . nX by inputs zk ∈ Z, k = 1 . . . nZ, with the required degree of certainty.

Then we can write
X = L(Y, P, Σ). (10)

This relationship is called the rule governing the functioning of the model. To form the
relationship (10), it is necessary to choose from a class of models = =

(
=1 =2 . . . =m

)
a model =k ∈ = with the rule

L∗ :
(
=(O)

)
→ =k.
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The parentheses in the last relation denote that L∗ is a partially defined relation; that
is, not all characteristics of the original =(O) are captured by the model, but only those that
are deemed significant in solving the stated problem of modeling power system conditions.

The functional transformation L∗ can be chosen subject to the following condition

‖X− L∗(Y, P, Σ)‖ → min
pk ∈ P
σk ∈ Σ

in some parts of the chosen class of functions.
In addition, the choice of L∗ can be made subject to the condition that there be a

minimum of some criterion of discrepancy between the model and the original:

ℵL∗ → min
L∗∈L

.

As a rule, the choice of the functional transformation L∗, carried out at the stage of
structural identification, is subjective and does not lend itself easily to rigorous formaliza-
tion. Figure 4 is a diagram showing possible types of load node models.

1 
 

...nk
SHk

1
const;

=
=

...nk
Z Hk

1
const;

=
=

( ) ( )

CB,A,
;1

const;

=
=

=

X
...nk
Z,S X
Hk

X
Hk


sxμx
s
R2

( ) ( )( )

CB,A,
;1

=
=

=

X
...nk

,,UfS X
k

X
Hk ω( )

...nk
,,UfS kHk

1=
= ω

( )tSS HkHk
 =

( ) ( )( )

CB,A,
1

=
=

=

X
...nk

,tSS X
Hk

X
Hk



( )t,
dt
d XFX = ( )t,

dt
d

f
f XF

X
=

 

 
 Figure 4. On the problem of structural identification of load nodes.
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Parameters Xk, R2, XkP, R2P can be determined on the basis of measurements of
complexes of currents consumed by the motor and voltages at its terminals, as well as its
rotation speed. To solve this problem, it is necessary to know the resistance of the magne-
tizing branch Xµ. This parameter can be found on the basis of additional measurements,
e.g., under no-load conditions, or determined by the indirect technique described below.

If the value of Xµ is known, the parameters of the equivalent circuit of the positive
sequence can be found based on measurements of the moduli and phases of the IM currents
and voltages, as well as the speed of rotation (slip s) based on the following relation:

ZD1 =
jXµZk

jXµ + Zk
, (11)

where Zk = R2
s + jXk; ZD1 =

.
U1.
I1

;
.

U1,
.
I1 are complexes of positive sequence voltage and

current, determined on the basis of measurements of phase currents
.
IA,

.
IB,

.
IC and voltages

.
UA,

.
UB,

.
UC according to the known relations of the method of symmetrical components.

Measurements can be made under both balanced and unbalanced load flows.
The main practical focus of the research presented in the article is to create methods

for adequately taking into account load nodes when modeling stationary modes of electric
power systems. Therefore, for further consideration, the model of the load node in phase
coordinates in the form of an equivalent asynchronous electric motor was adopted. To
solve the identification problem, it is necessary to measure the parameters of load nodes,
which can be determined on the basis of PMU-WAMS devices (Figures 3 and 5).
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Based on (11), we can write the following expression:

Zk =
jXµZD1

jXµ − ZD1
.

If the slip s is known, the parameter R2 can be determined from the above equation.
The parameters of the equivalent circuit of the negative sequence can be found as per

equations similar to those given above:

Zkp =
R2p

2− s
+ jXkp =

jXµZD2
jXµ − ZD2

; ZD2 =

.
U2
.
I2

,

where
.

U2,
.
I2— complexes of negative sequence currents and voltages are determined

by measurements of phase currents and voltages. To obtain acceptable accuracy, the
parameters of start-up conditions should be found in the power flow with a voltage
unbalance (k2U of about 10%).

The resistance Xµ can be determined by the data provided in reference books. All that
is required is information about the rated voltage and the rated motor power. An acceptable
accuracy of calculation of Xµ can be obtained on the basis of a nonlinear approximation of
the following kind:

Xµ∗ = Xµ 0[1 + ∆Xµ(1− e− α P)]. (12)

Parameters Xµ0, ∆Xµ, and α, for IM powers exceeding 5 kW are given in Table 1.

Table 1. Parameters of the approximation of the relationship Xµ∗ = Xµ∗(P).

Parameter 750 rpm 1000 rpm 1500 rpm 3000 rpm

Xµ0, per unit 1.4 1.7 2.0 2.3
∆Xµ, per unit 1.0 1.2 1.4 1.4
α, kW−1 0.04 0.05 0.045 0.04

The obtained value Xµ∗ should be multiplied by the basic resistance, determined by
the rated parameters of the IM.

4. Identification Results

Input information in the form of moduli and angles of current and voltage, as well as
those of slip, was formed on the basis of computer-aided simulation using the software
package Fazonord [22]. For this purpose, an equivalent circuit of an IM with a rated power
of 90 kW was created. In the obtained currents and voltages of the calculated load flow, the
errors corresponding to the accuracy classes of measuring instruments (0.1, 0.2, 0.5, and
1) were introduced. The resistance Xµ was calculated on the basis of expression (12). The
results of the identification are shown in Figure 6. The parameter R2 was determined with
an error close to zero.

The results obtained show that in order to achieve acceptable identification accuracy, it
is necessary to use measuring instruments with an accuracy class that provides a maximum
error of no more than 0.2%.

The proposed technique can be used to solve the problem of parameter identification
for a group of IMs connected to a node in an electrical network. To confirm this possibility,
we performed identification of the AL node, the circuit of which is shown in Figure 7. The
IM parameters are summarized in Table 2. The equivalent circuit is shown in Figure 8.
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Table 2. Parameters of the nodal IM.

IM No. PH, kW Efficiency, % cosϕ, p.u. R2, p.u. Xk, p.u. R2P, p.u. XkP, p.u. Xµ*, p.u.
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In the process of identification, the slip value was set on the basis of the data for
the equivalent IM given in [25]. The load flow analysis errors that arise when using
the equivalent model of an asynchronous load node, obtained on the basis of parameter
identification, are shown in Figures 9–12.
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Table 3 and Figure 13 show the static characteristics of P = P(UPH) and Q = Q(UPH),
where P, Q stands for active and reactive powers consumed by the AL node; UPH is the
phase voltage. These dependencies were plotted for the original and equivalent AL node
models. Our analysis of the results thus obtained allows us to conclude that the AL node
model, formed on the basis of parameter identification, provides for valid simulation of the
asynchronous load node within a wide range of changes in network operating conditions.

Table 3. Static load characteristics.

UPH, kV

Original Model Equivalent Model Discrepancy

P Q P Q δ P δ Q
kW kVar kW kVar % %

0.18 325 179 324 180 0.19 −0.72
0.19 325 166 324 167 0.19 −0.31
0.21 325 160 324 160 0.19 −0.01
0.22 325 158 324 157 0.19 0.23
0.23 325 157 324 156 0.19 0.43
0.24 325 159 324 158 0.19 0.61
0.25 325 162 324 161 0.19 0.77
0.26 325 166 324 165 0.19 0.90
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The results obtained also allow us to conclude that, with the aid of parameter identifica-
tion, we can arrive at an equivalent model of an asynchronous load node that provides high
accuracy for both balanced and unbalanced load flow analysis. It should be emphasized
that the model was validated in a wide range of changing power flow parameters.

The proposed technique is also valid for AL circuits of a more general type, the models
of which are shown in Figure 14. In these circuits, induction motors are connected to the
buses of the node through cable lines. In addition, the node was powered by a busbar
trunking system.
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The simulation results are presented in Table 4, which shows that equivalent models
with a structure similar to the one presented in Figure 8 provided acceptable accuracy for
unbalanced load flow analysis.

Table 4. Identification errors.

Parameters
Error, %

Circuit of Figure 1a Circuit of Figure 1b

δ UA, % –0.04 −1.51
δ UB, % –0.05 −0.05
δ UC, % 0.00 0.00
δ IA, % 2.56 0.33
δ IB, % 8.71 6.96
δ IC, % 1.88 −2.08
δP, % 3.26 0.25
δQ, % 2.82 −0.32

δ∆P, L% 2.40 3.21
δ∆Q, L% 3.94 4.09
δ k2U , % –0.18 −0.17

Figures 15 and 16 show the results of parameter identification for the case when, in
addition to the IM, a static load was connected to the nodal point of the network, with
such a load specified by the amount of power

.
SC = P + jQ drawn by it. Percentage of

stationary load

λ =
SC

SAH
· 100

ranged from 0–80%. Here SAH is the total power of the IM group.
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The obtained relationships δ U = δ U(λ) and δ I = δ I(λ) attested to the fact that with
an increase of the parameter λ, the errors of load flow analysis using the equivalent IM
model increased but remained quite acceptable for practical applications over a sufficiently
wide range of variation of λ.

The following conclusions can be drawn on the basis of the results obtained:
1. The technique of parameter identification of an asynchronous load node allows

one to obtain adequate models of IMs that provide high accuracy for balanced load flow
analysis. In the numeric example presented in the paper, the calculation error of phase
voltage moduli for different motor connection schemes did not exceed 1.5%;

2. If a static load is present at the node, the error of the equivalent model increases; in
the numeric example above, when the value of the parameter λ = was equal to 75%, the
error of the voltage moduli increased to 5%, and the error of the currents increased to 3.3%.

5. Parameter Identification of Asynchronous Load Nodes with Variable Frequency Drives

At modern production facilities, variable-frequency induction-motor drives equipped
with static frequency converters (SFC) are widely used. Therefore, the problem of iden-
tifying AL nodes that contain, along with conventional IMs, frequency-controlled asyn-
chronous electric drives that can create harmonic distortions in networks becomes rele-
vant [26]. The technique described above can be used to solve this problem.

The verification of its efficacy and accuracy in the presence of electric drives at the
load node that are equipped with an SFC was carried out for the circuit shown in Fig-
ure 17 as follows. Based on the SimPowerSystems MATLAB package, a load node model
was generated.
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The power of the IM controlled by the SFC was assumed to be 22 kW. The power of
the fixed-speed IM ranged from 22 kW to 45 kW. The power ratio was set by the coefficient

α =
Pspch

Paed
,
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where Pspch—power of the motor equipped with an SFC; Paed—power of the fixed-speed
IM. The power supply system was fed from a source with unbalanced voltage (k2U = 3%),
which corresponded to real-life conditions that hold true for many facilities connected
to district windings of traction substations on mainline AC railroads. The results of the
simulation are presented in Table 5.

Table 5. Voltages and currents at load node buses.

α

Voltages Currents

Phase A Phase B Phase C Phase A Phase B Phase C

Modulus, B
Angle, Deg.

Modulus, B
Angle, Deg.

Modulus, B
Angle, Deg.

Modulus, A
Angle, Deg.

Modulus, A
Angle, Deg.

Modulus, A
Angle, Deg.

1 215.4
27.8

209.2
–91.3

215.5
149.6

79.97
2.1

69.59
–102.8

90.59
134.7

0.6 209.7
27.5

203.8
–91.5

209.1
149.4

105.7
7.5

96.52
–98.9

120.7
137.6

0.5 204.7
27.4

198.7
–91.7

204.2
149.3

125.3
1.7

113.9
–107.9

137.8
130.7

In accordance with the identification technique described above, we determined the
parameters of AL equivalent circuits (Table 6). Next, we created a model of the power
supply system in the software package Fazonord, in which the load node was represented
by an equivalent induction motor (see Figure 18). With the aid of this model, a load
flow analysis was performed using the parameters of the AL node obtained as a result
of identification. Comparative results of a simulation run in MATLAB and Fazonord are
shown in Table 7. Errors in determining the active and reactive powers drawn from the
network, as well as the unbalance ratio k2U , are shown in Figures 19 and 20.

Table 6. Equivalent circuit parameters.

α R2, Ohm Xk, Ohm R2P, Ohm XkP, Ohm Xµ, Ohm

1 0.056 0.224 0.430 0.250 12.005
0.6 0.04 0.023 0.315 0.216 8.991
0.5 0.034 0.237 0.313 0.236 7.566
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Table 7. Parameters characterizing the load flow of the load node.

α
P, kW Q, kVar k2U,%

MATLAB Fazonord MATLAB Fazonord MATLAB Fazonord

1 48.76 48.85 16.52 15.49 1.90 1.93
0.6 65.29 65.25 15.88 15.47 1.84 1.82
0.5 71.58 71.54 27.11 26.57 1.90 1.89



Energies 2023, 16, 1893 16 of 18

Energies 2023, 16, x FOR PEER REVIEW 17 of 20 
 

 

Table 7. Parameters characterizing the load flow of the load node. 

α 
P, kW Q, kVar %,2Uk  

MATLAB Fazonord MATLAB Fazonord MATLAB Fazonord 
1 48.76 48.85 16.52 15.49 1.90 1.93 

0.6 65.29 65.25 15.88 15.47 1.84 1.82 
0.5 71.58 71.54 27.11 26.57 1.90 1.89 

In Figures 19 and 20, the index “M” refers to the results obtained using the SimPow-
erSystems package, and the index “F” refers to the data calculated using the Fazonord 
software package. 

  
(a) (b) 

Figure 19. Errors of active (a) and reactive (b) powers as functions of the parameter. 

 
Figure 20. Unbalance ratio error as a function of the parameter %,2Uk  α. 

The results obtained allow us to draw the following conclusions: 
1. Our technique of parameter identification in the phase frame of reference is based 

on the substitution of a load node with an equivalent induction motor. The technique al-
lows one to obtain high accuracy in unbalanced load flow analysis in the presence of con-
ventional induction machines and electric motors with variable-frequency drives at the 
node. The error in determining the unbalance ratio of the negative sequence did not ex-
ceed two percent. 

2. As the share of static frequency converters at the load node increased, the errors in 
determining the unbalance ratios Uk2  also increased but remained within the limits 
deemed acceptable for solving practical problems; 

Figure 19. Errors of active (a) and reactive (b) powers as functions of the parameter.

Energies 2023, 16, x FOR PEER REVIEW 17 of 20 
 

 

Table 7. Parameters characterizing the load flow of the load node. 

α 
P, kW Q, kVar %,2Uk  

MATLAB Fazonord MATLAB Fazonord MATLAB Fazonord 
1 48.76 48.85 16.52 15.49 1.90 1.93 

0.6 65.29 65.25 15.88 15.47 1.84 1.82 
0.5 71.58 71.54 27.11 26.57 1.90 1.89 

In Figures 19 and 20, the index “M” refers to the results obtained using the SimPow-
erSystems package, and the index “F” refers to the data calculated using the Fazonord 
software package. 

  
(a) (b) 

Figure 19. Errors of active (a) and reactive (b) powers as functions of the parameter. 

 
Figure 20. Unbalance ratio error as a function of the parameter %,2Uk  α. 

The results obtained allow us to draw the following conclusions: 
1. Our technique of parameter identification in the phase frame of reference is based 

on the substitution of a load node with an equivalent induction motor. The technique al-
lows one to obtain high accuracy in unbalanced load flow analysis in the presence of con-
ventional induction machines and electric motors with variable-frequency drives at the 
node. The error in determining the unbalance ratio of the negative sequence did not ex-
ceed two percent. 

2. As the share of static frequency converters at the load node increased, the errors in 
determining the unbalance ratios Uk2  also increased but remained within the limits 
deemed acceptable for solving practical problems; 

Figure 20. Unbalance ratio error as a function of the parameter k2U , % α.

In Figures 19 and 20, the index “M” refers to the results obtained using the SimPow-
erSystems package, and the index “F” refers to the data calculated using the Fazonord
software package.

The results obtained allow us to draw the following conclusions:
1. Our technique of parameter identification in the phase frame of reference is based

on the substitution of a load node with an equivalent induction motor. The technique
allows one to obtain high accuracy in unbalanced load flow analysis in the presence of
conventional induction machines and electric motors with variable-frequency drives at the
node. The error in determining the unbalance ratio of the negative sequence did not exceed
two percent.

2. As the share of static frequency converters at the load node increased, the errors in
determining the unbalance ratios k2U also increased but remained within the limits deemed
acceptable for solving practical problems;

3. The error in determining the reactive power, which reaches 6.5%, can be explained
by differences in approaches to its determination adopted in the MATLAB and Fazonord
software systems. In calculations aided by the Fazonord package, only one of its segments
was used, which provided the fundamental harmonic for the unbalanced load flow analysis.
When using the MATLAB system, the simulation was carried out so as to take into account
the non-linear current-voltage characteristics of SFC components, and the reactive power
was determined by factoring in the higher harmonics.
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The reactive power error can be reduced by additional non-sine load flow modeling
using the technique reported in [22]. After determining the higher harmonic voltages,
it is possible to recalculate the reactive power, e.g., using the technique of equivalent
sine waves.

6. Conclusions

Based on the evidence provided in this study, we can claim we have solved a currently
relevant scientific and engineering problem of enhancing the accuracy of modeling unbal-
anced load flows in electric power systems. Our solution is based on an adequate model of
induction motors and a technique of parameter identification for asynchronous loads. The
following results were obtained:

1. We have developed a technique for modeling complex load nodes. The technique
stands out from other known solutions for its use of the phase frame of reference. Its
application scope covers the problems of load dispatching in smart grids;

2. The study has contributed a technique for parameter identification of load nodes.
The technique is applicable to the problems of power system load dispatching. A key
defining feature of the technique is the structure of the model, which is made up of three
sources of current with parameters that are refined in the process of iterative load flow
analysis of the power system;

3. We have proposed a technique for the identification of asynchronous load nodes with
such asynchronous loads, including electrical drives equipped with static frequency converters;

4. With the aid of the asynchronous load identification models proposed in this paper,
it is possible to solve the following practical tasks of electric power system management:
increasing the accuracy of load flow modeling; making informed decisions when taking
measures to reduce unbalance in power grids; and accounting for the balancing adjustment
effect of asynchronous loads.
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