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Abstract: In electrical power engineering, elements such as reliability analysis, modeling, and
optimization for complex systems are of the utmost importance. Although there exist myriad studies
regarding reliability optimization with conventional methods, researchers are still seeking to find
more efficient and accurate methods to address the issue of the redundancy allocation problem.
To that effect, an ideal power energy management approach is put forward for the operation of
a hybrid microgrid system with different kinds of productions. In the present study, we suggest
three algorithms in order to optimize the series-parallel power energy system: the Firefly (FA), Bat
(BA), and Interior Search (ISA) algorithms. Moreover, the reliability estimate of the system is solved
with the Ushakov algorithm (UMGF). The components may completely fail, which decreases their
performance rate. Furthermore, the optimization results are achieved using objective functions that
include the total cost of the system, emission gases (NOX, SO2, and CO2) of the power production from
fuel cells, diesel generators, and gas turbines, and take into consideration the dependability indices.
Devices used in power subsystems are characterized based on their dependabilities, performances,
capital costs, and maintenance costs. Reliability hinges on a functioning system, which naturally
entails meeting customer demand; as a result, it is influenced by the accumulated batch curve. This
method provides an idea with regards to the economic cost optimization of microgrid systems. Finally,
we present the results of numeric simulations.

Keywords: economic cost; fuel cell; gas emission; power generation; reliability

1. Introduction

In the redundancy allocation of homogeneous or heterogeneous subsystems, the goal
of the problem is to choose the best components while also determining how reliable each
subsystem is under the predetermined parameters and limitations of the system design,
such as availability, cost, and space [1]. Continuous-state models support a continuum of
states, and multi-state models support a finite number of states [2]. The state distribution
in a multi-state system (MSS) is discrete, since there are a finite number of state realizations.
The MSS has several uses in a variety of industries, including gas pipeline systems [3] and
wind energy systems [4].

There are various publications concerning the multi-state system redundancy alloca-
tion problem (MSS RAP) in the literature. In order to solve the heterogeneous MSS RAP, Du
and Li [5] investigated the memetic method with a local search. The component-level and
subsystem-level repair activities in MSS RAP were recently examined by Attar et al. [6].
Xu et al. [7] considered the redundancy allocation problem (RAP) for MSS subject to proba-
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bilistic common-cause failure. Prioritizing economic system components without neglecting
high efficiency reliability optimization was suggested in [8].

The literature contains a number of studies on sizing voltaic panels and battery
energy storage systems (PV-BESS) to maximize a particular target or cost function. As an
illustration, refs. [9,10] give a basic overview of several size approaches and strategies.
These studies demonstrate the critical role that proper component sizing plays in addressing
problems like aging, power quality, and environmental concerns that are frequently ignored.
Using a mixed-integer nonlinear programming (MILP) method, the ideal PV and BESS
sizing for the residential market is considered in [11,12], with the goal of reducing the
overall annual power cost while taking the battery deterioration process into account.
However, the analysis does not take the environmental factor into account. An online tool
for sizing PV and BESS is provided in [13], for optimizing self-sufficiency and minimizing
the environmental effect in residential settings by clustering several prosumers using a
genetic algorithm (GA) [14].

According to Ayan et al. [15], applying the Artificial Bee Colony (ABC) algorithm
to the scale optimization of renewable energy systems, leads to faster decision-making
and better solutions. Demolli et al. [16] showed that because heuristic algorithms quickly
identify the best solutions for hybrid renewable energy systems, they are more practical
than deterministic methods. According to Kallio et al. [17], if a hybrid renewable energy
system is functioning in a dynamic environment, brought on by climatic circumstances
and/or energy demand, the dynamic exergy analysis is the best technique to assess it.
Reddy Vaka et al. [18], used the particle swarm algorithm (PSO), to optimize the levelized
cost of electricity (LCOE), reliability factor, and power supply reliability factor (PSRF), for
battery energy storage systems (BESS) with a hybrid renewable energy system (HRES).

The power microgrid’s technical and financial limitations should be considered while
meeting the demand load. According to several examples in the literature, an optimal
component size according to load need is necessary for the effective planning and design of
a hybrid microgrid (MG). By using different optimization methodologies, several studies
have been conducted on the design, planning, and optimization of hybrid microgrids.
However, the cost minimization is studied without examining either the reliability of the
microgrid [19], or the probability of load loss [20]. In [21], the task comprises, reducing
the cost of the energy storage installation, energy losses, maintenance, interruption, and
system upgrading. The optimal energy storage placement in the distribution system is
also analyzed. In [22], the authors tried to minimize the energy cost while reducing the
emission rates of pollutants: nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon
dioxide (CO2). Distributed Energy Resources optimization is assessed by considering the
utility rate, transportation constraints, and generator state. Another cost study, called
annualized cost system (ACS), has been used in [23]. To reduce gas emissions, the economic
scheduling model for electricity and natural gas systems is proposed in [24].

The principal purpose of this study is to model the green economic electrical microgrid
design problem, that minimizes the net present cost (NPC) with the availability constraint,
then to propose a combination between the Ushakov algorithm and a metaheuristic, which
is the Interior Search Algorithm (ISA) [25]. The ecological objective concerns pollutant gases
such as NOx, SO2, and CO2. The electrical microgrid uses a series–parallel structure with
several subsystems, in which each of the subsystems uses a number of parallel components,
as shown in Figure 1.

The most important contributions of this paper are summarized as follows:
A thorough technical and economic optimization technique for a hybrid microgrid

system is described, in order to acquire an optimally priced design with respectable avail-
ability. As natural gas usage is taken into account in the objective function of the projected
energy production, many approaches are investigated.

A formulation of the problem that combines economic and environmental factors is
considered. While minimizing the cost in the objective function, a threshold of pollutant
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emission rate must not be exceeded in the objective function, in order to respect ecological
principles and to reduce the negative impact on the environment and on human health.
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Figure 1. A series-parallel microgrid power system.

The strategy of the optimum design is evaluated and the results confirm that the differ-
ent types of available production sources successfully meet the load with a minimum cost.

The paper is divided into five sections. Section 2 describes the redundancy problem
formulation and the microgrid components modeling. The optimization methodology is
presented in Section 3. Section 4 presents a numerical example and computational results,
to demonstrate the efficacy of the suggested methodology. The conclusions and future
research are presented in Section 5.

2. Redundancy Allocation Problem for Microgrid

The Redundancy Allocation problem (RAP) is one of the most extensively researched
dependability optimization issues. In terms of the mathematics, the system design turns
into a combinatorial optimization for numerous systems made up of discrete compo-
nent types that have varying costs, performances, and reliabilities. There may frequently
be alternate component types with varying costs, performances, reliabilities, and other
characteristics that can be used to provide the required system operations. The practical
problem is to choose the best set of component types (decision variables) to fulfill the
performance, reliability, space, and other limitations, while maximizing the reliability or
minimizing the cost while reaching specified maximum (or minimum) values for other
system aspects (constraints).

2.1. Problem Description

Consider a power microgrid network. A system with n series power subsystems (gen-
erators, substations, and lines) linked in series. Each subsystem i represents a component
and has a number of device versions that are linked in parallel. Device j from subsystem
i is defined by its availability (Aij) or reliability (Rij), total annual cost (TACij), and load
capacity (Gij). The topology of subsystem i can be characterized by the number of parallel
identical devices kij for 1 ≤ j ≤ Vi, where Vi is the number of available versions of type i as
shown in Figure 2 [26].
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2.2. Availability Estimation

To optimize the multi-state system redundancy, an effective evaluation process to
predict the availability of each series-parallel combination is required. We consider a system
having multi-state systems (MSS) that correlate to distinct levels of performance. The
likelihood of satisfying the demand for repairable MSS is determined by Equation (1) [27],
with G(h) is the system performance at hour h, and W is the demand.

R(W) = P{G(h) > W} = 1− P{G(h) ≤W} (1)

The present paper uses the universal moment generating function (UMGF) to evaluate
the MSS availability [17], also known as the Ushakov method.

Ushakov introduced the UMGF ideas for assessing system dependability [27]. The
reliability of multi-state series, parallel, and series-parallel systems is evaluated using
UMGF. It is hard to assess the system reliability using traditional methods for a multi-state
system since the system states expand considerably depending on the elements’ states. The
UMGF of component j in subsystem i is characterized by Equation (2) [28]:

u(z) =
J

∑
j=1

PjzGj (2)

The function u(z) may be used to determine the random variable G’s probabilistic
properties. Specifically, if the stationary output performance of the MSS is the discrete
random variable G, the availability A is provided by the probability (G ≥W), which may
be stated as follows:

proba(G ≥W) = φ(u(z)z−W) (3)

when Φ is a distributive operator defined by Equations (4) and (5) [26]:

φ(pjzσ−w) =

{
p, i f σ ≥ w
0, i f σ ≺ w

(4)

φ(
J

∑
j=1

pjz
Gj−W) =

J

∑
j=1

φ(pjz
Gj−W) (5)

Furthermore, two fundamental operators are combined to measure availability. For a
given set of elements, these operators define the polynomial u(z) [26].
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2.2.1. Parallel Device

Using the dependability operator for parallel device = operator, the universal mo-
ment generator function of a multi-state system connecting m redundant devices can be
calculated, Equation (6):

us(z) = =(u1(z), u2(z), . . . . . um(z)) (6)

In accord, Equation (7) shows how the operator is applied in a straightforward two-
redundant device system:

=(∑J
j=1 Pjz

Gj−W) = ∑n
i=1 ∑m

j=1 PiQiz
ai+bj (7)

2.2.2. Series Elements

The dependability operator for serial device δ, establishes its universal function [16]
for a multi-state system with m elements in series, as shown in Equation (8):

us(z) = δ(u1(z), u2(z), . . . . . um(z)) (8)

Therefore, a simple application on two elements is defined by Equation (9):

δ(u1(z), u2(z)) = ∑n
i=1 ∑m

j=1 PiQjz
min(ai ,bj) (9)

Consequently, the universal moment function of a series-parallel system is attained by
consecutively applying the two operators, where Pi is the performance probability of the
ith device, and Qi is the performance probability of the jth subsystem.

2.3. Micro Grid Components Cost Modeling

In the reliability redundancy strategy, the generated energy from the micro turbine
(MT), diesel generator (DG), fuel cell (FC), and the performance of the substation and line
power are determined. The model of each component is used to determine their costs,
availabilities, reliabilities, and their performances to satisfy consumers [29].

The low-voltage system under study, or MG, operates separately from the electrical
grid (off-grid). Therefore, it is important to regulate the frequency, voltage, and load
demand. The MG has a fuel cell, a diesel generator, a micro turbine, and other loads.
Commercial, industrial, and residential loads were divided up. The examined microgrid
is shown in Figure 1. The next subsections provide an explanation of the MG’s compo-
nents [30].

2.3.1. Micro Turbine Cost

One of the generation resources is the micro turbine (MT), which operates in both
grid-connected and off-grid modes. Micro turbines (MTs) have advantages over other
diesel generators (DGs), including more revenue, less inertia, and quicker response times
than normal gas turbines. MTs may run on a range of fuels, including propane, natural
gas, diesel, hydrogen, and diesel [31]. From 5 kW to 100 kW is the range of the rated power
turbine (PMT) of MTs [32]. The fuel cost and fixed cost (installation) that make up the cost
function of the micro turbine (MT) are always present, and may be expressed by Equation
(10), where b1 and b0 a are cost coefficients of the micro turbine [30].

f (h)MT = (b0P(h)
MT + b1) (10)

2.3.2. Diesel Generator Cost

A diesel engine and synchronous generator are connected on the same axis to create a
diesel generator. In addition to providing electricity, diesel generators may serve as backup
and emergency power sources for important facilities like hospitals, airports, etc. [33].
Diesel generators in off-grid MGs can help with frequency management, in addition to
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producing electricity. Equation (11) can be used at any moment to express the energy
produced by diesel generators with nominal power PDG, where a2, a1, and a0 are the cost
coefficients of the diesel generator [30,34]:

f (h)DG = (a0P2(h)
DG + a1P(h)

DG + a2) (11)

2.3.3. Fuel Cell Cost

A device called a fuel cell (FC) converts the chemical energy of PFC fuel directly into
electrical energy [35]. FCs are divided into two classes based on the type of electrolyte
they employ and their operating temperature: low temperature PEMFCs (proton exchange
membrane fuel cells) and SOFCs (solid-oxide fuel cells) [36]. Equation (12) may be used to
calculate the fixed cost and fuel cost for FCs (12), where c1 and c0 are the cost coefficients of
the fuel cell [30]:

f (h)FC = (c0P(h)
FC + c1) (12)

2.4. Environmental and Economic Objective Function

A system’s Total Annual Cost (TAC) is the sum of all of its expenses throughout the
course of its existence. The cost of installing, replacing, running, and maintaining each
component that is part of the MG system, the cost of fuel utilized, and the fine for emissions
are all calculated using the Total Annual Cost (TAC) approach. The goal of this article is
to reduce pollution, increase system dependability, and decrease overall yearly cost [19].
Equation (13) may be used to calculate the minimized cost:

Min {TAC = (Fuel & Capital cost + Operation & Maintenance cost + Emission cost)}

TAC = (FMC(t) + O&MMC(t) + PLMC(t)) (13)

where FMC(t) represents the fuel and capital costs, as shown in Equation (14). The O&MMC(t)
represents the operation and maintenance costs, as shown in Equation (17), and the PLMC(t)
is the emission (pollution) gas, as shown in Equation (19). Thus the mathematical formula-
tion of the objective function can be written as follows [30]:

2.4.1. Fuel & Capital Cost

F(t)
MC =

(
∑ f1j(t)× k1j

)
+
(
∑ Ccap/sub × ksub,j

)
+
(
∑ Ccap/line × kline,j

)
(14)

As the fuel cost in the first subsystem depends on MT, DG, and FC:

F(t)
MC =

[(
f (t)MT × k1MT

)
+
(

f (t)DG × k1DG

)
+
(

f (t)FC × k1FC

)
+ ∑

(
Ccap/sub × ksub,j

)
+ ∑

(
Ccap/line × kline,j

)]
(15)

By detailing more the previous equations:

F(t)
MC =

[(
b0P(t)

MT + b1)× k1MT ] +
[(

a0P2(t)
DG + a1P(t)

DG + a2

)
× k1DG

]
+
[(

C0P(t)
FC + C1

)
× k1FC

]
+
[
C cap

sub35
× ksub35

]
+
[
C cap

line8.5
× kline8.5

]
+
[
C cap

line36
× kline36

]
+
[
Ccap/sub10 × ksub10

] (16)

where PMT, PDG, PFC, Ccap/sub, and Ccap/line are the generated powers of the micro-turbine,
diesel generator, fuel cell, capital cost of substation and electrical line, respectively.

2.4.2. Operation & Maintenance Cost

O&M(t)
MC = ∑

(
OM1j(t)× P1j(t)× k1j × t

)
∑
(

O&Msub × ksub,j

)
+ ∑

(
O&Mline × kline,j

)
(17)
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As the operation and maintenance costs in the first subsystem depend on MT, DG,
and FC, each one has its own power P and expanding substations and lines, the detailed
formula obtained is:

O&MMC(t) = [(t × (OMMT(t)× PMT(t)× k1MT)
+(t× (OMDG(t)× PDG(t)× k1DG)]
+(t× (OMFC(t)× PFC(t)× k1FC) + (OMsub35(t)× ksub35)
+(OMsub36(t)× ksub36) + (OMline10(t)× kline10)
+(OMline8.5(t)× kline8.5)

(18)

2.4.3. Pollution Emission

PLMC(t) =
1

∑
j

P1j(t)× EC1j(t)× k1j (19)

The power and the emission depend on the kind of element, MT, DG, and FC [30]:

PLMC(t) = (PMT(t)× ECMT(t)× k1MT) + (PDG(t)× ECDG(t)× k1DG) + (PFC(t)× ECFC(t)× k1FC) (20)

when expanding emission according to the three pollutants, NOx, SO2, and CO2, and using
their emission cost β, the formula can be as given below (Equation (21)), where j in the first
subsystem can be MT, DG, or FC, and k1j is the optimal number of redundant elements [30]:

PLh
MC = t×

1

∑
j=MT,DG,FC

P1j(t)×
[(

β1j,NOx
)
+
(

β1j,SO2
)
+
(

β1j,CO2
)]
× k1j (21)

2.4.4. Net Present Cost

The Net Present Cost (NPC) of MG is calculated in [36,37] with Equation (22), where
TAC, is the Total Annual Cost and CRF the capital recovery facto:

NPCY =
TAC
CRFY

(22)

2.4.5. Capital Recovery Factor

The capital recovery factor (CRF) [19] is the ratio of an annuity to the present value of
receiving that annuity for a project lifetime Y (in this study, 20 years). It is calculated by
Equation (23) [38]:

CRFY =
S(1 + S)Y

(1 + S)Y − 1
(23)

The real S, interest rate, which is a function of the annual inflation rate f (here, 6%)
and nominal interest rate d (here, 5%), is calculated by Equation (24) [38]:

S =
d− f
1 + f

(24)

2.4.6. Energy Production Cost

The Energy production cost is calculated by Equation (25), where ED
tot is the sum of

the total load demand during 8760 h [38].

EPCY =
NPCY

Etot
D

(25)

2.5. Constraints

The total power generated by DG, MT, and FC should satisfy the total MG demand.
Therefore, the optimization problem constraints in this paper include reliability with
Equation (26), pollution by Equation (27), performance by Equation (28) and output power
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of each type of power generation units in subsystem 1, Equation (29). These constraints are
expressed as follows [19]:

n

∑
i=1

m

∑
j=1

PiQjZ
min(ai ,bj) ≥ R0 (26)

{
t×

1

∑
j=MT,DG,FC

P1j(t)×
[(

β1j,NOx
)
+
(

β1j,SO2
)
+
(

β1j,CO2
)]
× k1j

}
≤ PL0 (27)

Gmin(ai ,bj)≥G0 (28)

In this paper, MT, DG, and FC, produce power between some minimal and maximal
limits. This is formulated as: 

Pmin
MT ≤ PMT(t) ≤ Pmax

MT
Pmin

DG ≤ PDG(t) ≤ Pmax
DG

Pmin
FC ≤ PFC(t) ≤ Pmax

FC

(29)

3. Optimization Methodology

In this paper, the proposed metaheuristic ISA [39] for solving the bi-objective MSS RAP
problem is presented in Section 3.1. Two other algorithms, the firefly algorithm (FA) [40]
and bat algorithm (BA) [41], are described in Section 3.1.

3.1. Interior Search Algorithm (ISA)

In 2014, Gandomi introduced the Interior Search Algorithm (ISA), a novel global
optimization algorithm that drew its inspiration from Persian art’s interior design meth-
ods [39,42]. It is a brand-new approach to optimization that is reliable, adaptable, and able
to handle search areas of any size. It converges more quickly than most well-known algo-
rithms. It has been applied in a variety of real-world contexts, such as fractional order and
Butterworth filter optimization [43]. Karthik et al. studied the use ISA for economic load
dispatch in a microgrid [44]. Bhesdadiya et al. solved the training multilayer perceptrons
using ISA [45].

The metaheuristic functions in two distinct ways. To begin with, during the composi-
tion phase, solutions are shifted toward the ideal solution. Second, by positioning a mirror
between the existing solutions and the ideal solution, inspection of the mirror is employed
to produce an optimal perspective [46].

• Find the positions of items between lower and higher boundaries (LB and UB) at
random, then calculate their fitness values.

• Find the global best element xjgb, or the fittest element (for a minimization issue, this
element has the smallest objective function), on the jth iteration.

• Use a threshold value, alpha, and random variables, r1, to randomly split the other
items into two groups: the composition group and the mirror group (ranging from
0 to 1 for each element). In the mirror group, elements with r1 are placed; otherwise,
they are placed in the composition group. In theory, alpha can have a value between
0 and 1.

• However, as it is the single parameter in the algorithm, it should be carefully adjusted
to strike a balance between intensity and diversification. It is preferable to use the
random walk method for a local search around the global best to significantly alter its
position. It may be stated as follows:

xj
gb = xj−1

gb + rn × λ (30)

where rn is a vector of randomly generated numbers with a normal distribution, and
λ is a scale factor equal to:

λ = 0.01× (UB− LB) (31)
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• For the composition group, each element’s makeup is altered at random. The bound-
ary conditions (upper bounds and lower bounds) are modified for this collection of
elements, which can be stated as follows:

xj
i = LBj + (UBj − LBj)× r2 (32)

where xij is the ith element in the jth iteration; r2 is a random number between
0 and 1; LBj and UBj are the lower and upper bounds of the items in the jth iteration,
respectively, and they are the minimum and maximum values of all elements in the
(j − 1)th iteration.

• A mirror is randomly put between each element and the element with the best fit
for the mirror group (global best). The jth iteration’s position of a mirror for the ith
element is defined as follows:

xj
m,i = r3xj−1

i + (1− r3)xj
gb (33)

where r3 varies at random from 0 to 1. The placement of the mirror determines the
image’s or element’s virtual location, which can be expressed as follows:

xj
i = 2xj

m,i − xj−1
i (34)

• The fitness values of the virtual and new positions of the elements are computed. If a
location’s fitness improves, it is updated. This can be stated in terms of a minimization
equation as: {

xj
i f (xj

i) < f (xj−1
i )

xj−1
i Else

(35)

• Restart at step 2 if any of the stop criteria (such as the maximum number of repetitions)
are not met.

The Algorithm 1 is described below [39].

Algorithm 1: The Interior Search Algorithm (ISA).

1 Initialization
2 while any stop criteria is not satisfied find the xj

gb
3 for i = 1 to n
4 if xgb

5 xj
gb = xj−1

gb + rn × λ

6 else if ri ≤ a
7 xj

i = LBj + (UBj − LBj)× r2
8 else
9 xj

m,i = r3xj−1
i + (1− r3)xj

gb

10 xj
i = 2xj

m,i − xj−1
i

11 end if
12 check the boundaries except for decomposition elements
13 end for
14 for i = 1 to n
15 Evaluate f (xj

i)

16 xj
i =

{
xj

i f (xj
i) ≺ f (xj−1

i )

xj−1
i Else

17 end

The basic interior search algorithm was developed to optimize continuous optimiza-
tion problems, whereas the retained redundancy problem is a combinatorial problem. It is
a quadratic knapsack like problem. In this work, the standard interior search algorithm is
discretized following some principles:
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� The solution is coded as an integer number representing the occurrence of a version
in its subsystem.

� First, all solutions are generated using a constructive heuristic between a lower bound
and upper bound, where the lower bound can be 0 (LB = 0), which means that we
can ignore a version while selecting elements. The upper bound should respect the
number of all heterogeneous elements that can be taken in a subsystem, UB1 = 8 as an
example, and the number of homogeneous elements with the same version, UB2 = 7
as an example.

� After the decors movement in the algorithm, and before reliability estimation, real
solutions are corrected using a uniform boundary constraint scheme.

The algorithm was also combined with the Ushakov technique to estimate efficiently
the reliabilities in each step.

3.2. Bat Algorithm (BA)

Yang [41], proposed the bat algorithm, which is a swarm metaheuristic. It is based on
the echolocation of bats, which produce sound waves with certain frequencies and pulse
rates [26]. The bat algorithm has been demonstrated to be applicable in a variety of combi-
natory and continuous optimization fields, such as the optimal coordination of protection
systems based on directional overcurrent relays [47], the dynamic membrane structure for
optimization problems [48], finding all Pareto solutions of the series-parallel redundancy al-
location problem with mixed components [49], Multiple Strategies Coupling for Numerical
Optimization [50], and environmental economic power dispatch problems [51].

The frequencies vector f contains integers or real numbers based on the minimal and
maximal frequency values, which can be specified by Equation (36) [41]

fi = fmin + ( fmax − fmin)rand(), rand ∈ [0.1] (36)

Positive double numbers represent the velocities V of bats. Velocities suggest bat flight,
which should be altered at some point. A bat communicates with other bats by employing
the best global solution, gbest, as defined by Equation (37) [41]:

Vi = Vi + (Xi − gbest) fi (37)

The position can be updated using either the velocity specified by Equation (38) or the
best overall solution defined by Equation (39) [41]:

Xi = best i + Vi (38)

Xi = gbest + random(−1, 1).Amoy (39)

Or randomly by Equation (40) [41]:

Xi = gi + random(−1, 1).Amoy (40)

A is the average sound level of bats, which can be given by Equation (41) [41]:

Ai = αAi, α ∈ [0, 1] (41)

ri are the pulsation rate values, as defined by Equation (42) [41]:

ri = r0
i (1− e(−γt)) (42)

with ri
0 as a starting pulsation rate, γ > 0, and t as the rank of the current algorithm generation.
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3.3. Firefly Algorithm (FA)

Yang [40], proposed the Firefly algorithm, which was inspired by the flashing behavior
of fireflies. The primary functions of firefly flashing lights are to communicate (such as
attracting mating partners) and to attract potential prey. Inspired by this, the firefly method
was created by idealizing some of the flashing properties of fireflies and modeling each
individual optimization problem solution as a firefly in a population [52]. Fireflies are
small winged beetles that produce cold light flashes to attract mates. They are members
of the Lampyridae family. They are thought to have a capacitor-like mechanism that
progressively charges until a particular threshold is reached, at which point they release
energy in the form of light, and the cycle begins again [52,53]. The firefly algorithm has
been used in several areas such as, symbolic regression problems [54], realization of the
firefly bioluminescence cycle in vitro and in cells [55], and photovoltaic MPPT under partial
shading conditions [56].

The following are three major idealized rules [40]:

� Because all fireflies in the population are unisex, any individual firefly will be drawn
to other fireflies.

� In any pair of fireflies, the less luminous one will gravitate toward the brighter one.
The attraction of a firefly is proportionately tied to its brightness, which diminishes as
the distance between two fireflies increases.

� The brightness of a firefly is proportionally related to the value of the objective
function, which is analogous to the fitness in a genetic algorithm.

There are four critical issues in the firefly algorithm:

3.3.1. Light Intensity

The brightness I of a firefly at a specific location x can be chosen as I(x) ∝ 1/f(x) in the
simplest case for a minimum optimization problem [40].

3.3.2. Attractiveness

The main form of the attractiveness function in the firefly algorithm can be any
monotonically decreasing function, such as the following generalized form given by
Equation (43) [40], where r is the distance between two fireflies, β∗0 represents the attrac-
tiveness at r = 0, and γ is a constant light absorption coefficient:

βi,j = β∗0e−γrm
i,j (43)

3.3.3. Distance

The Cartesian distance between any two fireflies i and j at xi and xj can be calculated
by Equation (44) [40], where xi,k is the kth component of the ith firefly.

ri,j =

√√√√ d

∑
k=1

(
xi,k − xj,

)2 (44)

3.3.4. Movement

The movement of a firefly i attracted to another, more attractive (brighter), firefly j, is
determined by Equation (45), where the first and second terms are due to attraction and
the third term is randomization, where the randomization parameter “rand”, is a random
number generator uniformly distributed in the range [0, 1] [40].

xi =
(
1− βi,j

)
xi + βi,jxj + α(rand− 1/2) (45)
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4. Computational Experiments and Results
4.1. Case Study

In this section a numerical example is presented to illustrate the considered problem
and the proposed methodology. The MGRAP were solved by using the ISA, FA, and
BA algorithms presented in the previous section, implemented in C++, on a PC with
an Intel Core™ i5-7th CPU 2.7 GHz processor and 12 GB RAM, under the Windows 10
operating system. The simulation results depend greatly on the ISA, BA, and FA algorithms’
parameters’ values. Table 1 presents the parameters used in the different algorithms.

Table 1. Algorithms’ parameters.

Algorithm ISA FA BA

Parameters

λ 0.01 γ 0.01 γ 0.9
α 0.3 α 0.5 α 0.9

UB 50 Amax 20 Amax 100
LB 0 Amin 0.01 Amin 0

The five subsystems that make up the MG are linked in series, with a homogenous
design for electrical lines and substations, each subsystem was linked in parallel. For
each subsystem, there are 10 different component types accessible. A subsystem may be
allocated a minimum of one component and a maximum of 10 components. Component
performances, dependabilities, and various expenses make up the input data (fuel, capital
and O&MC).

The proposed optimization method is applied to a microgrid (Figure 1). The load
demand curve is shown in Table 2. The data of the curve is obtained from [26]. Tm is a time
period in hours, with m number of demand period intervals, and W is the power produced
during this period.

Table 2. Parameters of the cumulative load [26].

Wm [MW] 100 80 50 20

Tm [h] 4208 788 1228 2536

The cost coefficients and power limits of FC, DG, and MT are introduced in Tables 3–5,
respectively [30]. The capital cost, and operational and maintenance costs of units, shown
in Table 6, are obtained from [30,57]. The emission factors of units are given in Table 7 [30].

Table 3. Power limits and cost coefficients of fuel cell [30].

R
(%)

G
(kW)

C0
(€/kW)

C1
(€/kW)

O&MC
(€/kWh)

FC 0.96 3 25 0.215 0.015 0.0862

Table 4. Power limits and cost coefficients of diesel generator [30].

R
(%)

G
(kW)

a0
(€/kW2)

a1
(€/kW)

a2
(€)

O&MC
(€/kWh)

DG 0.97 2 70 0.074 0.2333 0.4333 0.1525

Table 5. Power limits and cost coefficients of micro turbine [30].

R
(%)

G
(kW)

C0
(€/kW)

C1
(€/kW)

O&MC
(€/kWh)

MT 0.98 6 60 0.321 0.013 0.0446
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Table 6. Economic and technical parameters of substation and power line [57].

R
(%)

G
(kW)

Capital Cost
(€)

O&MC
(€)

Substation (35/10 kV) 0.97 80 868.7 × 103 51.253 × 103

Power line 36 (Km) 0.96 60 2268 × 103 18.144 × 103

Substation (10/5 kV) 0.98 70 13.6 × 103 0.802 × 103

Power line 8.5 (km) 0.98 50 65.45 × 103 1.505 × 103

Table 7. Pollution components and emission factors of pollution [30].

Pollution
Components

βMT
(kg/kWh)

βDG
(kg/kWh)

βFC
(kg/kWh)

NOx 0.00003 0.0218 0.00044
SO2 0.000006 0.000454 0.0000088
CO2 0.001078 0.001432 0.001598

4.2. Results

The findings of microgrid system size are presented and analyzed in this section. Each
decision variable’s lower and upper bounds (NMT, NDG, NFC, NSub, and NL) were set to
1 and 10, respectively. The findings of the algorithms are summarized in Tables 8 and 9.
This research considers two scenarios.

Table 8. Optimization results of the bi-objective function: minimize cost and maximize R.

Constraints Sizing Results
Algorithms

ISA BA FA

G0 ≥ 100 kW
P ≤ 5000 kg

R % 99.4 99.6 99.4
G (kW) 150 180 150
P (kg) 555.99 4466 555.99
NMT 3 3 3
NDG 0 0 0
NFC 0 7 0

NSub35 3 3 3
NL36 3 3 3

NSub10 3 7 3
NL8,5 3 6 3

TAC (M€) 1.8952 1.9684 1.8952
NPC (M€) 9.2114 9.5673 9.2114
EPC (k€) 36.8456 38.2692 36.8456

G0 ≥ 100 kW
P ≤ 4500 kg

R % 97.00 97.00 97.00
G (kW) 150 160 150
P (kg) 741.33 4688.59 926.661
NMT 4 4 5
NDG 0 4 0
NFC 0 0 0

NSub35 2 2 2
NL36 4 4 4

NSub10 4 3 4
NL8,5 3 5 3

TAC (M€) 1.61407 1.6365 1.6365
NPC (M€) 7.8448 7.9541 7.9541
EPC (k€) 31.3792 31.8164 31.8164
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Table 9. Optimization results of the bi-objective function: minimize cost and minimize pollution.

Constraints Sizing Results
Algorithms

ISA BA FA

G0 ≥ 100 kW
P ≤ 5000 kg

R % 99.4 99.8 99.5
G (kW) 150 150 150
P (kg) 555.997 741.3292 555.997
NMT 3 4 3
NDG 0 0 0
NFC 0 0 0

NSub35 3 3 3
NL36 3 5 3

NSub10 3 6 5
NL8, 5 3 3 3

TAC (M€) 1.8952 2.2392 1.9093
NPC (M€) 9.2114 10.883 9.2798
EPC (k€) 36.8456 43.532 37.1192

G0 ≥ 100 kW
P ≤ 4500 kg

R % 97.00 99.50 97.00
G (kW) 160 150 160
P (kg) 555.997 1111.993 555.997
NMT 3 6 3
NDG 0 0 0
NFC 0 0 0

NSub35 2 3 2
NL36 4 3 4

NSub10 4 6 4
NL8, 5 4 3 5

TAC (M€) 1.6269 1.9176 1.6401
NPC (M€) 7.9072 9.3200 7.9716
EPC (k€) 31.6288 37.28 31.886

4.2.1. Scenario: Min Cost & Max Reliability

In this case, the objective is to minimize the total annual cost and maximize the
reliability under pollution and performance constraints. Table 8 shows the results of the
optimal values of the MC system. It can be seen that MT production is the most cost-
effective technique, and reliable for meeting load demand using the ISA method. The TAC
for MG systems achieved by ISA is EUR 1.61407 M, with a pollution rate of 741.33 kg, while
the TAC for the MT/DG production systems produced by BA is EUR 1.6365 M, with a
pollution rate of 4688.59 kg. The three algorithms produce a maximum dependability of
97%. Table 7 shows that the ISA and FA produce more economical results than the BA
algorithm for the MT/DG/FC systems, except for BA which was marginally less good
than ISA and FA for a reliability constraint of 99%, with a pollution rate of 555.99 kg. For a
reliability of 97%, the results show that ISA gives the best result compared to BA and FA,
whether it is for the TAC or the emission rate.

For example, ISA’s optimal sizings for a reliability constraint equal to 97% is, NMT = 4,
NDG = 0, NFC = 0, NSub35 = 2, NL36 = 4, NSub10 = 4, NL8,5 = 3, and for BA is, NMT = 4,
NDG = 4, NFC = 0, NSub35 = 2, NL36 = 4, NSub10 = 3, NL8,5 = 5.

4.2.2. Scenario: Min Cost & Min Emission

In this scenario, the objectives are to minimize the total annual cost and to minimize
the emission, under reliability and performance constraints. Table 9 shows the results of
the optimal values for the MC system. It can be observed that the production by MT is the
most economical and environmental system to supply the load demand by the ISA and
FA based methods, with a reliability constraint of 99%. The Total Annual Cost (TAC) of
the MG system obtained by ISA is EUR 1.8952 M, with a 555.997 kg rate of pollution, and
EUR 1.9093 M, with a 555.997 kg rate of pollution for FA, while the TAC obtained by BA is
EUR 2.2392 M, with a 741.3292 kg rate of pollution. We note that the BA algorithm gives a
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maximum reliability of 99.8%. Table 9 shows that, for a reliability constraint of 97%, ISA
and FA produce more economical and environmental results than the BA algorithm, which
was better than ISA and FA, with a reliability equal to 99.5%.

The optimal sizings obtained by ISA, for example for a reliability constraint equal to
99% is, NMT = 3, NDG = 0, NFC = 0, NSub35 = 3, NL36 = 3, NSub10 = 3, NL8, 5 = 3, and
for BA is, NMT = 4, NDG = 0, NFC = 0, NSub35 = 3, NL36 = 5, NSub10 = 6, NL8, 5 = 6.

5. Conclusions

In industry, the series-parallel system redundancy allocation problem (RAP) is not
easy to solve in real cases, especially for large-scale situations. Therefore, it is suggested to
use metaheuristic methods to solve such a difficult and complex problem. In this paper,
a human behavior inspired metaheuristic algorithm, called the interior search algorithm
(ISA), is used. The concept of the ISA has been inspired by shutter decoration. The aim of
this study is to determine the optimal size of the microgrid components, taking into account
different parameters, such as operating costs, reliability, and the amount of pollutant gas
emission. For this purpose, a cost-based analytical formulation is proposed. The proposed
mathematical model applies to a grid-disconnected MG using, MT, DG, or FC as generation
units. In the objective function, we considered simultaneously the different costs, such
as fuel cost, operation and maintenance of the power generation units, operation, and
maintenance and capital costs of the substations and power lines. At the same time, various
constraints had to be taken into account, which is one of the advantages of this paper.

The results showed that there was a significant reduction in greenhouse gas emissions
when micro turbines were used in the generation system. Taking into account the total
costs, the quality of reliability, and the reduction of greenhouse gas emissions as objective
functions, it can be concluded that the ISA algorithm has shown a great ability to find
optimal solutions.

In the future, the authors are working on the extension of the series-parallel system in
the case of heterogeneous reliability allocation with the integration of renewable energy.
However, other structures, such as microgrids connected to the transmission grid, can be
considered for future studies. Furthermore, the interior search algorithm can be improved
by hybridizing it with the firefly algorithm (FA) or bat (BA) algorithm.
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Abbreviations

ISA Interior search algorithm
MSS Multi states system
UMGF Universal moment generating function
FA Firefly algorithm
BA Bat algorithm
NPC Net present cost
TAC Total annual cost
MG Micro grid
CRF Capital recovery factor
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EPC Energy production cost
MT Micro turbine
DG Diesel generator
FC Fuel cell
NOx Nitrogen Oxides
SOx Sulfur dioxide
CO2 Carbone dioxide
RAP Redundancy Allocation problem
PSO Particle swarm optimization
LCOE Levelized cost of electricity
PSRF Power supply reliability factor
BESS Battery energy storage system
HRES Hybrid renewable energy system
PV Panels voltaic
MILP Mixed-integer nonlinear programming
GA Genetic algorithm
ABC Artificial bee colony
PEMFCs proton exchange membrane fuel cells
SOFCs solid-oxide fuel cells
O&MMC(t) operation and maintenance cost
Ccap/sub capital cost of substation
Ccap/line capital cost of electrical line
PLMC(t) emission (pollution) gas
Nomenclature
Symbol Meaning
t/h Operating time (hours)
m Number of demand period interval
FMC

h Cost function of micro turbine at time h
N Number of components in each subsystem
S Rate interest of micro grid finance installations
Y Lifetime of the project (years)
f Annual inflation rate
ED

tot The sum of the load demand during 8760 h
PMT

h Micro turbine power generated at time h [kW]
PDG

h Diesel generator power generated at time h [kW]
PFC

h Fuel cell power generated at time h [kW]
bo, b1 Cost function coefficients of micro turbine
ao, a1, a2 Cost function coefficients of diesel generator
c0, c1 Cost function coefficients of Fuel cell
βi Emission factor of pollutant j by unit i including micro turbine DG and, FC.
Gi Performance of power component i
G0 Minimum performance of power component i
Ri Reliability of power component i (%).
i,j Respectively indices of series, versions and demand period interval
n Number of series i
Vi Number of Available electrical components technologies of type i
kij Number of occurrences of component j in series i
Rij Reliability of power component j of type i (%)
R0 Minimum reliability required (%)
PL pollution (emission) (kg)
PL0 Maximum tolerated polluant emission (kg)
M Number of demand period interval.
Kmax Maximum number that can be taken from each component j
Pi Performance probability of ith device
Qi Performance probability of jth subsystems
W Demand levels
Tm Time period in hours
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= Reliability Operator for parallel device
δ Reliability Operator for series device.
Ccap/sub Capital cost of a substation
Ksub,j Number of a substation
Ccap/line Capital cost of a line
Kline,j Number of a line
PFC

max Maximum power of a fuel cell
PFC

min Maximum power of a micro-turbine
PDG

min Maximum power of a diesel generator
xjgb, Global best
rn Vector of normally distributed random numbers
λ Scale factor
rs Random value between 0 and 1
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