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Abstract: Gas and downhole water sink-assisted gravity drainage (GDWS-AGD) is a new process
of enhanced oil recovery (EOR) in oil reservoirs underlain by large bottom aquifers. The process
is capital intensive as it requires the construction of dual-completed wells for oil production and
water drainage and additional multiple vertical gas-injection wells. The costs could be substantially
reduced by eliminating the gas-injection wells and using triple-completed multi-functional wells.
These wells are dubbed triple-completion-GDWS-AGD (TC-GDWS-AGD). In this work, we design
and optimize the TC-GDWS-AGD oil recovery process in a fictitious oil reservoir (Punq-S3) that
emulates a real North Sea oil field. The design aims at maximum oil recovery using a minimum
number of triple-completed wells with a gas-injection completion in the vertical section of the well,
and two horizontal well sections—the upper section for producing oil (from above the oil/water
contact) and the lower section for draining water below the oil/water contact. The three well
completions are isolated with hydraulic packers and water is drained from below the oil–water
contact using the electric submersible pump. Well placement is optimized using the particle swarm
optimization (PSO) technique by considering only 1 or 2 TC-GDWS-AGD wells to maximize a 12-year
oil recovery with a minimum volume of produced water. The best well placement was found by
considering hundreds of possible well locations throughout the reservoir for the single-well and
two-well scenarios. The results show 58% oil recovery and 0.28 water cut for the single-well scenario
and 63.5% oil recovery and 0.45 water cut for the two-well scenario. Interestingly, the base-case
scenario using two wells without the TC-GDWS-AGD process would give the smallest oil recovery of
55.5% and the largest 70% water cut. The study indicates that the TC-GDWS-AGD process could be
more productive by reducing the number of wells and increasing recovery with less water production.

Keywords: gas injection; downhole water sink; assisted gravity drainage; particle swarm optimization;
well placement optimization; enhanced oil recovery

1. Introduction

In the petroleum industry, enhanced oil recovery (EOR) technologies sometimes make
it possible to substantially increase ultimate resource recovery (50–70%, or more) of the
initial oil in place (IOIP) from a reservoir, thereby improving on the performances of primary
and secondary oil recovery technologies [1]. Gas-injection technologies have become some
of the most effective EOR processes applied. Natural gas, carbon dioxide, nitrogen, and
other gases have all been successfully used in multiple oil reservoirs for EOR purposes
in either miscible or immiscible processes. These gases can increase or maintain reservoir
energy and reduce the viscosity of oil [2,3]. Many factors affecting the gas-injection process
must be taken into account, such as reservoir inhomogeneity and unwanted movements
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within the reservoir of oil and/or gas, including gas coning problems and issues of low
sweep efficiency [4–8].

There are several applicable gas-injection methods, and each tends to work best
in specific types of oil reservoirs. Each method has its own characteristics, advantages,
and disadvantages. The established gas-injection-EOR methods include continuous gas
injection (CGI), huff-n-puff or intermittent gas injection (H-n-P), water-alternating gas
(WAG) [9], gas-assisted gravity drainage (GAGD), and gas-downhole water sink-assisted
gravity drainage (GDWS-AGD). GAGD exploits the gravity impacts of gas injection in
either immiscible or miscible conditions. Applied in field tests, GAGD has achieved about
70% recovery of IOIP [2]. Such performance has also been achieved by laboratory-based
GAGD core-flooding tests [3]. In this method, typically, vertical gas-injection wells are
completed close to the top of the reservoir. These injectors are accompanied by horizontal
oil-production wells positioned close to the base of the pay zone but crucially above the
oil/water contact (OWC) [10,11].

The injected gas in the GAGD process tends to accumulate at the top of the reservoir
and gradually results in gas cap formation. This growing gas cap provides additional
reservoir energy that assists the downward drainage of oil towards the horizontal-
water-producer wells, exploiting gravity impacts on the contrasting fluid densities
(gas < oil < water). Figure 1 presents the schematic illustration of the gas-assisted grav-
ity drainage (GAGD) process. Gravity segregation tends to enhance reservoir sweep
efficiency and thereby achieve its EOR objectives [12]. An additional benefit of the
GAGD process is that it delays gas breakthrough into the oil-production wells [4,13–16].
However, GAGD sometimes has negative reservoir consequences resulting in high water-
cut levels and/or a high tendency for water coning/cresting to occur, particularly when
applied to reservoirs associated with strong water aquifers [17–20].
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Figure 1. Schematic illustration of the GAGD process.

The GDWS-AGD method was developed specifically to address the recognized GAGD
limitations. It integrates GAGD with downhole-water-sink (DWS) technology. It achieves
this by injecting gas through a stand-alone near-vertical injector well completed in a
top-reservoir position. This gas injector is accompanied by multiple horizontal-water-
producer wells positioned beneath the OWC, and multiple horizontal-oil-producer wells
positioned above the OWC. In some cases, individual horizontal wells, equipped with
dual completions separated by hydraulic packers, can simultaneously produce oil from
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above the OWC and water from below the OWC [17,18,21]. Figure 2 provides a schematic
diagram of a classic GDWS-AGD well configuration.
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Figure 2. GDWS-AGD gas injector, oil-, and water-producer well configurations.

To further reduce premature gas breakthrough and high-water-cut tendencies of
GDWS-AGD, it is possible to use triple-completed (TC) wells, incorporating water/oil-
production and gas-production completions in each well drilled. This TC-GDWS-AGD
approach eliminates the need for drilling separate, vertical gas-injection wells. More
specifically, the gas injection is implemented through the wellbore annulus, and oil and
water production is accomplished through 2 23/8 -inch strings of tubing drawing production
from perforations located above and below the OWC, respectively. In order to achieve
maximum performance of the TC-GDWS-AGD process, it is essential to determine the
optimal well placement into the reservoir to attain maximum oil production along with
minimum gas injection and minimum water cut. The well placement optimization is a
challenging procedure as it is impacted by the fluid properties, reservoir heterogeneity,
and the developing history of the reservoir. Thus, the optimal well placement or location
has a significant impact on the economic profit of oil field development and thus on the
net present value (NPV). The objective function of well placement optimization is a highly
nonlinear constraint, and due to reservoir heterogeneity, the decision variables are multi-
modal. These optimization problems are typically computationally expensive as they entail
full reservoir heterogeneity. Thus, finding optimal well locations with less time and fewer
function evaluations is crucial [22–29].

To overcome the unavailability of mathematical model-based approaches, particle
swarm optimization (PSO) and genetic algorithm (GA) are commonly applied to well
placement optimization problems [30–32]. Sometimes, these methodologies suffer from
premature local optimization issues. Therefore, to achieve improved performance, classical
techniques have been integrated with non-classical techniques to develop many hybrid
algorithms [33–35]. Particles in the PSO algorithm are initialized randomly and change their
position with time to identify the optimum solution in a search space [36,37]. To effectively
find the global optimum, a modified GA algorithm has been implemented for well place-
ment optimization in a gas condensate field [38], and under geological uncertainties as a
multi-objective problem [39]. A combination of PSO with a local generalized pattern search
(GPS) strategy was implemented to handle general constraints by establishing a ranking
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system [35]. However, they concluded that it is necessary to consider more sophisticated
constraint-handling methods for well-placement optimization.

In this study, the feasibility of the TC-GDWS-AGD technique was evaluated through
simulation-flow modeling applied on the PUNQ-S3 synthetic reservoir based on a real
North Sea oil field. This process reduces the number of required injector wells by uti-
lizing some wells for combined gas injection and oil/water production, making it more
commercially viable. TC-GDWS-AGD also aims to achieve maximum oil recovery re-
sulting from a minimum gas-injection rate and minimum water cut. PSO was employed
to determine the best well completion locations and to identify the optimal production
and injection control parameters. The operational decision parameters considered by
the production scenarios evaluated by PSO include the maximum oil-production rate
(STO) at the wellhead, the minimum bottom-hole pressure (BHP) of oil well completions,
maximum surface-water-production rate (STW) at the wellhead, minimum BHP of the
water-production well completions, maximum surface gas-injection rate, and maximum
BHP of gas-injection well completions. These operational decision parameters govern
the ultimate maximum oil recovery, gas breakthrough, and water cut achieved by the
triple-completion well configurations.

Previous research on the GDWS-AGD has focused on implementing the technique
by applying dual-completed, horizontal wells for oil production and water injection com-
bined with multiple additional, vertical, gas-injection wells. This approach is expensive
based on the total wellbore lengths that need to be drilled. For the first time, this study
evaluates an implementation (TC-GDWS-AGD) aimed at substantially reducing well costs
by eliminating the requirement for separate gas-injection wells. The new method achieves
this by incorporating triple-completed wells that charge a reservoir’s gas cap from the
upper gas-injection completion, while simultaneously segregating production of oil and
water from two lower well completions, with produced water being re-injected into the
reservoir’s water zone from the lowest completion. This study also demonstrates a novel
application for the PSO algorithm for improving reservoir development designs relat-
ing to the TC-GDWS-AGD method by simultaneously seeking designs that optimize oil
production while minimizing water cut.

2. TC-GDWS-AGD Well Configurations

Increasing oil recovery by improving sweep efficiency and reducing water cut is the
main objective of the application of the GDWS-AGD technology [14,18,40]. Reducing
the number of production wells is one way to improve its commercial viability. One
way to achieve this is to produce oil and water from each production well through two
isolated completions while in the same wellbore to inject gas via the annulus through the
casing [41,42]. This TC-GDWS-AGD technique, for maximum effect, should inject gas as
close to the highest point of the oil pay zone as possible to gradually cause the reservoir to
develop a gas cap. This is best achieved by injecting gas through a near-vertical section of
the wellbore utilizing a set of perforations isolated from the rest of the well via a packer.

For the oil and water dual completions in separate horizontal wellbore sections,
depending on the diameter of the well drilled, 2 separate strings of production casing
are installed (for example, each with a 7-inch diameter): one in the oil zone, and one in
the water zone. Each production casing is perforated and completed, for example, with
23/8-inch diameter horizontal tubing. The oil-production section needs to be positioned
near horizontally above but close to the OWC, whereas the water-production section needs
to be positioned near-horizontally, below but close to the OWC. A submersible pump
is required to extract water through the water-production completion at high rates, as
required. Hydraulic packers are required to isolate each of the production completions.
Both production well sections are typically drilled with similar horizontal lengths and
wellbore diameters for the TC-GDWS-AGD to be most effective (Figure 3).
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3. PUNQ-S3 Truth Case Description

The viability of the TC-GDWS-AGD technique for gas injection and its efficiency in
maximizing oil production and minimizing water cut are evaluated in this study with
simulations applied, with the aid of an optimizer, to the PUNQ-S3, three-phase, three-
dimensional, synthetic reservoir [43]. Production uncertainty quantification (PUNQ)-S3 is
a heterogeneous saturated-oil synthetic reservoir with a gas cap and strong water drive
based on an actual North Sea field. This synthetic reservoir has been widely used in recent
years for reservoir development optimization studies [44,45].

PUNQ involves a modest-sized, 5-layered reservoir extending over 4260 acres, and
simulated with 1761 active cells (originally 19 × 28 × 5 grid blocks; 2660 total grid blocks).
The depth to the top of the reservoir at the crest of the structure is 2430 m with flanks
dipping at 1.5◦. A gas cap is located beneath the crest of the structure surrounded by an oil
rim. The grid block size is set to 180 m × 180 m × 4.42 m. Pressure and temperature for
this reservoir are 3400 psi, 220 ◦F, respectively. The reservoir includes fault boundaries on
its eastern and southern sides, but is fully connected to strong aquifers located to the west
and north. The first (uppermost) layer incorporates a small gas cap positioned near the
crest of the domal trap. A total of 6 horizontal-producing wells are positioned below the
gas–oil contact (GOC) with prevailing BHPs of 1740 psi. Water injection is not required to
maintain reservoir pressure due to the presence of a strong aquifer [43]. Figure 4 represents
a top structure map and well locations for the PUNQ-S3 reservoir.
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Porosity and permeability maps of the reservoir were constructed with a geostatistical
model. The PUNQ-S3 synthetic model lacks capillary pressure data but it does include
reservoir permeability curves, PVT data, and an aquifer dataset [43]. Average porosity and
vertical and horizontal permeability are provided for each reservoir layer (Table 1).

Table 1. PUNQ-S3 average of key parameters for each reservoir layer (Al-Mudhafar et al., 2021 [14]).

Reservoir Characteristic Reservoir
Layer 1

Reservoir
Layer 2

Reservoir
Layer 3

Reservoir
Layer 4

Reservoir
Layer 5

Average Porosity (φ%) 0.17 0.08 0.17 0.16 0.19

Average Horizontal
Permeability (Kh mD) 432 33 432 196 654

Average Vertical
Permeability(Kv mD) 137 13 137 64 205

4. TC-GDWS-AGD Simulation Applied to PUNQ-S3 Reservoir

A black-oil-reservoir simulation model was applied, with a twelve-year prediction
horizon, to the PUNQ-S3 reservoir incorporating TC-GDWS-AGD. Horizontal wells with
multiple completions were positioned in the reservoir to replace the six producing wells
incorporated into the basic reservoir model. These two MC wells each include gas-injection
completions (G-INJ1and G-INJ2) in the annulus of their vertical sections, horizontal oil-
producing completions in a separate lateral branch above the OWC (OIL WELL1, OIL
WELL2), and water-producing completions in a separate lateral branch below the OWC
(DWS1, DWS2). A miscible gas injection is initiated from the two wells into the (upper)
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reservoir layer one. The two horizontal oil-producer wells were completed in reservoir
layer four, and the two horizontal water-producer wells were completed in reservoir layer
five. Figure 5 displays the trajectories of the two MC wells within the PUNQ-S3 reservoir
grid. Each wellbore contains three distinct completed sections (GAS INJ1, OIL WELL1,
and DWS1).
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A key advantage of the TC-GDWS-AGD configuration over the base case PUNQ-S3
simulation is that two TC wells, each with three distinct completed zones, replace the six
base-case horizontal wellbores. The Carter–Tracy approach was used to model three distinct
zones associated with the active and infinite water-drive aquifer providing the naturally
occurring reservoir-drive mechanism. The TC-GDWS-AGD-configured simulation, with
the two MC wells, was set up to calculate reservoir pressure, recovery factor, cumulative oil
production, oil-flow rate, and the cumulative water cut fraction from a two-well production
system extending over 12 years. The TC-GDWS-AGD simulated results are compared
with the results achieved by GDWS-AGD and GAGD simulations applied to the reservoir
involving the six base-case horizontal wellbore.

The operational constraints applied to the TC-GDWS-AGD, GDWS-AGD, and GAGD
simulations included maximum gas-injection rate, bottom-hole-flowing pressure each
injection-well completion, maximum flow rate at the wellhead, and minimum bottom-hole-
flowing pressure for each horizontal (oil and water) production completion. Table 2 lists
the values of these constraints as applied to the TC-GDWS-AGD, GDWS-AGD, and GAGD
EOR configurations and to the primary base-case production case.

Table 2. Well-related constraints applied to the TC-GDWS-AGD, GDWS-AGD, and GAGD EOR cases
and the primary base production case for the PUNQ-S3 simulations evaluated.

Well Type Constraints TC-GDWS-AGD GDWS-AGD GAGD Primary
(Base Case)

Gas Injector MAX STG 350,000 m3/day 350,000 m3/day 350,000 m3/day -
MAX BHP 28,000 kpa 28,000 kpa 28,000 kpa -

Oil Producer
MAX STO 800 m3/day 800 m3/day 800 m3/day 800 m3/day
MIN BHP 12,000 kpa 12,000 kpa 12,000 kpa 12,000 kpa

Water Producer
MAX STW 3800 m3/day 3800 m3/day - -
MIN BHP 12,000 kpa 12,000 kpa - -
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Figure 6 displays a comparison between TC-GDWS-AGD, GDWS-AGD, GAGD, and
primary production simulation cases. The results are shown for stock-tank cumulative oil
production (m3) and oil-production daily rate (m3/day) extending over the twelve-year
production horizon. The results reveal cumulative oil production of 1.47 × 106 m3 gener-
ated by the primary (base-case) production simulation from 6 horizontal producers with
no EOR technique applied. On the other hand, 1.6 × 106 m3 of cumulative oil production
is generated from the TC-GDWS-AGD simulation incorporating just 2 TC wells (a total of
6 completed reservoir zones), and the GDWS-AGD simulation incorporating 6 separate hor-
izontal wells generates 1.7 × 106 m3 of cumulative oil production. Figure 7 reveals that the
overall water cut is substantially reduced from 90% for the primary (base-case) simulation,
to 74% for the GAGD simulation, and to 57% for the TC-GDWS-AGD simulation.
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Figure 8 displays the average reservoir pressure trends associated with each simulation
configuration expressed over the twelve-year production horizon. In the TC-GDWS-AGD
simulation, the average reservoir pressure decreased due to the DWS wells. This decrease in
reservoir pressure is associated with improved cumulative oil production and a reduction
in the water cut compared with the other simulated cases.
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Figure 9 displays the oil-recovery factor trends over the twelve-year planning horizon
for each of the simulated cases. After 12 years of production, the oil-recovery factor
increased to 9%, 14.5%, and 15% for GAGD, TC-GDWS-AGD, and GDWS-AGD simulated
cases, respectively, compared with 8% for the primary (base-case) simulation.
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The GDWS simulation generates slightly superior results to TC-GDWS-AGD in the key
objectives (Table 3). On the other hand, implementing the TC-GDWS-AGD configuration



Energies 2023, 16, 1790 10 of 18

substantially lowers the well costs by involving just two MC wells compared with the six
wells required by the GDWS configuration.

Table 3. Oil recovery and water cut after twelve years of production for the TC-GDWS-AGD, GDWS-
AGD, GAGD, and primary (base-case) PUNQ-S3 simulations.

PROCESS TC-GDWS-AGD GDWS GAGD PRIMARY

Oil Recovery 14.5% 15% 9% 8.5%
Water Cut 57% 60% 70% 90%

5. Well Placement Optimization

Optimization is conducted to determine the optimal simulation solution that achieves
maximum oil production, minimum gas breakthrough, and minimum water cut. The opti-
mization of the TC-GDWS-AGD process was conducted based on a series of simulation runs
using the CMG-CMOST 2015.10 package [46]. The optimization assesses each simulation
solution by taking into account a range of possible uncertainties regarding the operational
decision parameters affecting the reservoir fluid flows generated. In addition to the well
locations, the operational parameters include BHP in each of the injection- and production-
well completions, gas-injection rate, oil-production rate, and water-production rate in the
production wells. The optimal case is selected based on the maximum oil-recovery factor
combined with the minimum possible water cut.

6. Particle Swarm Optimization

Particle Swarm Optimization (PSO) has been adopted for the optimization of reservoir
flow responses in limited petroleum engineering applications, such as well placement
optimization [47], minimum miscibility pressure [48], recovery optimization in geothermal
reservoirs [49], wellbore trajectory optimization [50], gas lift optimization [51], recovery
optimization in shale oil reservoirs [52], and history matching and uncertainty quantifica-
tion [53].

PSO was the optimizer selected to solve the uncertainties associated with the decision
parameters. It conducted this by generating random solutions within the feasible solu-
tion space [54]. Each simulation solution generated represents one “particle” in the PSO
algorithm's swarm of generated “particles”. Each particle in the swarm has a calculated
velocity that moves it progressively through the search space by updating its position in
each of a series of PSO iterations to ultimately identify a global best or optimal solution.
PSO particles affect each other based on the relative performance of the solutions in respect
of the dependent variables (oil-recovery factor and water cut) through the sequence of
iterations executed. The PSO algorithm terminates after completing a specified number of
iterations. A multi-objective PSO configuration is applied to enable it to assess more than
one objective in locating its optimal (global best) solution.

The PSO algorithm was configured to optimize two key objective reservoir variables:
(1) maximize the oil-recovery factor; and (2) minimize water cut. For the TC-GDWS-AGD
simulation cases, the well completion locations were modified in one or both MC wells
by varying the reservoir locations of the completed sections in each well together with
the values of specified operational decision variables used across the twelve-year produc-
tion horizon. The operational decision variables modified were: maximum gas-injection
rate, maximum BHP in the gas-injection completions, maximum oil-production rate and
minimum BHP in the oil-production completions, and maximum water-production rate
and minimum BHP in the water-production completions. The proposed triple-completion
method, involving simultaneous gas injection coupled with oil and water production, can
be optimized to achieve optimal reservoir flow responses that combine the highest oil
production and the lowest water cut. Therefore, the aforementioned operational decision
parameters that control the injection and production activities are included as part of the
well placement optimization process. The incorporation of these parameters could be
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auto-optimized using intelligent completion technologies as part of the real-field imple-
mentation [55,56].

In scenario one, and to achieve maximum areal coverage of the reservoir by the
completion locations evaluated, each TC well was split into two trajectories: one extending
to the left of the surface location, and one extending to the right sides of the surface
location, as shown for one example simulation solution in Figure 10. The PSO algorithm
is then deployed to determine the optimal well completion placement that achieves the
maximum oil recovery and minimum water cut. Five hundred what-if-simulation runs
were evaluated and fed into the PSO algorithm from which it identified the optimal case.
Figure 11 displays the reservoir performance over time, in terms of water cut, reservoir
pressure, and oil-recovery factor, for the historical production from the six existing wellbores
for the pre-prediction period combined with that of the two TC wells for all five hundred
simulation cases evaluated.
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In Figure 11, two solutions are highlighted involving the TC wells. The dark red curve
identified the PSO optimal TC-GDWS-AGD solution and the thick black curve identifies
the base case TC-GDWS-AGD assumptions. The PSO optimal case is associated with the
highest oil-recovery factor combined with the minimum water cut. Specifically, the oil
recovery was increased from 0.55 for the base-case TC-GDWS-AGD decision variable values
to 0.58 in the optimal solution, whereas the water cut decreased from 0.72 for the base-case
TC-GDWS-AGD decision variable values to 0.57 in the optimal solution. A comparison of
the values of the key decision variables between the base-case TC-GDWS-AGD and the
optimal-case TC-GDWS-AGD simulation evaluated is presented in Table 4.

Table 4. Base-case and PSO-derived optimal-case operational decision variable values for the TC-
GDWS-AGD simulation of the PUNQ-S3 reservoir.

Decision Variables Base Case
TC-GDWS-AGD

Optimal Case
TC-GDWS-AGD

Maximum Oil Production Rate
(MAX_STO; m3/day) 800 967.33

Minimum Bottom Hole Pressure (Oil)
(MIN_BHP; kpa) 12,000 9533.48

Maximum Gas Injection Rate
(MAX_STG; m3/day) 350,000 420,358.11

Maximum Bottom Hole Pressure (Oil)
(MAX_BHP; kpa) 28,000 25,926.01

Maximum Water Production Rate
(MAX_STW, m3/day) 3800 4424.58

Minimum Bottom Hole Pressure (Water)
MIN_BHPW, kpa 12,000 9058.99

Location of MC Well 1
(WELL 1_ J) 20 22

Location of MC Well 2
(WELL 2_J) 20 19

Sobol analysis was applied to identify the most influential decision variables affecting
the performance of the TC-GDWS-AGD simulation. Figure 12 displays the results of the
Sobol analysis for the oil-recovery factor, identifying that the minimum BHP in the DWS
well completion section (Well 2) was most influential (37%) and the location of Well 2 was
the next most influential decision variable (35%). On the other hand, the least influential
decision variable was the maximum surface gas rate (MAX_STG). The value of permeability
in the PUNQ-S3 reservoir layer two is very low; consequently, the effect of the gas-injection
rate on the simulation outcomes is low because the transfer of gas from reservoir layer
one to reservoir layer three cannot be effectively increased by increasing the gas-injection
rate. Among the five hundred simulation cases evaluated, a completion location with
the lowest possible water cut did not coincide with the best-performing oil-production
completion locations, which are primarily located in relatively high water-saturation areas
of the reservoir. In order to further address this conflict, the cases evaluated gradually
increased the surface-water-production rate (STW) to values that generated lower water
cuts (MAX_STW = 20,000 m3/day).

Figure 13 reveals the substantial effect of STW on water cut for the TC-GDWS-AGD-
simulated cases. By allowing MAX_STW to increase, the oil-recovery factor was increased
from 59% to 63.5%, whereas the water cut was reduced to 0.45 coupled with a substantial
decrease in reservoir pressure as a consequence of the additional produced water extracted
from the reservoir.
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In scenario two of well placement optimization, two wells were placed to the right
side and two wells to the left side of the reservoir, as shown in Figure 14. Table 5 shows the
operational decision parameters used in this optimization scenario. The related general
solutions of the oil recovery for the four new wells are illustrated in Figure 15.
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Table 5. Base-case and PSO-derived optimal-case operational decision variable values for TC-GDWS
recovery optimization applied to scenario 2.

Parameters Base Case Optimum Case

MAX_STO, m3/DAY 800 714.11
MIN_BHP, kpa 12,000 9031.55

MAX_STG, m3/DAY 350,000 325,512.06
MAX_BHP, kpa 28,000 26,894.18

MIN_BHPW, kpa 12,000 9065.37
WELL 1_J 20 23
WELL 2_J 20 20
WELL 3_J 17 14
WELL 4_J 17 17
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From the Sobol analysis for scenario 2, the most influential variables with respect
to oil recovery are the locations of Well 4 and Well 3 with 24% and 17% main effect and
2% and 1.7% interaction effect, respectively. The optimal locations are positioned in high-
oil-saturation zones. On the other hand, the least influential decision variable was the
maximum surface oil rate with only a 1.3% main effect, as illustrated in Figure 16.
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7. Summary and Conclusions

In this study, a black-oil reservoir simulation was conducted on the Punq-S3 hetero-
geneous reservoir to evaluate and determine the optimal setting of the triple-completion
gas and downhole water sink-assisted gravity drainage (TC-GDWS-AGD) process. The
evaluation and well placement optimization procedures of the TC-GDWS-AGD process
were conducted to achieve maximum oil production with minimum water cut through a
12-year prediction period in a comparison with GDWS-AGD and GAGD processes. The
operational decision parameters that were included in the well placement optimization
along with the potential well locations included maximum surface oil rate and minimum
bottom hole pressure of oil producers; maximum surface water rate and minimum bottom
hole pressure of water producers; and maximum surface gas rate and maximum bottom
hole pressure in gas injectors. The following points are the main conclusions retrieved from
the evaluation and optimization procedures:

• The effectiveness of the TC-GDWS-AGD enhanced oil recovery (EOR) technique was
confirmed by this simulation study in terms of its ability to increase oil recovery and
decrease water cut compared with applying gas-assisted gravity drainage (GAGD) and
gas-downhole water sink (GDWS) EOR processes to the Punq-S3 synthetic reservoir.

• The TC-GDWS-AGD completions are effective in reducing water cut and increasing
cumulative oil production. Cumulative oil was increased from 1.47 × 106 m3 from
the primary process to 1.6 × 106 m3 from the best TC-GDWS-AGD case with an oil
recovery factor of 0.58, whereas water cut decreased from 70% in the GAGD process
to 57% in the best TC-GDWS-AGD case.

• As the TC-GDWS-AGD gas-injection rate was enhanced from 350,000 m3 to 500,000 m3,
the water cut decreased from 0.57 to 0.50. When the maximum surface-water-production
rate (STW) constraint was raised to 20,000 m3/day, the PSO algorithm was able to find
locations that achieved high oil recovery with the lowest overall water cut (0.45) for
the two-TC-well cases.
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• The PSO algorithm was highly effective at identifying the optimum well comple-
tion locations for maximizing oil recovery and minimizing water cut in the studied
reservoir. To achieve maximum reservoir coverage, for each simulated scenario, one
well completion was placed to the right side of a surface location and one well to the
left side.

• The gas injection rate (STG) had only a minor impact on oil recovery volumes because
the permeability of the reservoir layer two was very low. In fact, the transfer of gas
from reservoir layer one to reservoir layer three was found to decrease as the gas
injection rate increased.
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