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Abstract: With the emergence of the electric vehicle (EV) era in which the vehicle’s embedded
batteries can be exploited for grid support purposes, the role of EVs participating in ancillary services
via vehicle-to-grid (V2G) technology cannot be disregarded. Although there are many forms of
ancillary services, the most common services delivered by EVs are frequency regulation, frequency
contingency, inertia, and voltage regulation. Numerous research studies have been conducted to
propose the most effective control strategies for electric vehicle ancillary services (EVASs). In this
paper, a comprehensive review is carried out on various control strategies for EVs with respect to their
participation in ancillary services. The methodology applied for this review comprises a combination
of thematic and historical reviews. The review explores the benefits and limitations of these control
strategies and provides a clear understanding of the research gaps in the EVAS area. This review will
provide a useful framework and a strong point of reference for researchers working in V2G controls
for providing EVASs to a grid. V2G will be a way forward for future grids to accommodate more
renewable resources and achieve sustainability pathways.
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1. Introduction

The global demand for EVs is increasing day by day, as shown in Figure 1. It is
predicted that EVs will soon outnumber their counterpart: internal combustion engine
vehicles (ICEVs) [1]. Furthermore, with the battery replacing the fuel tank, research states
that EV batteries run in idle condition most of the time [2]. Based on these data, counter-
flowing energy from the EV to the grid via vehicle-to-grid (V2G) technology could be
possible [3]. Globally, several pilot projects have been successfully conducted [4]. From the
electricity market standpoint, two markets exist: the energy market and ancillary services.
Considering that V2G is not a priority for an EV owner, electric vehicle as an ancillary
service (EVAS) is a more suitable contribution. The structure of modern power systems
with the EVAS scheme is depicted in Figure 2. The grid consists of loads and generators.
Normally, electricity flows from the power source to the load. When installed by using
bidirectional charging, EVs could act as a load and power source.

An ancillary service is a service provided by supporting both the transmission and dis-
tribution levels in order to maintain reliable electric power system operations [5]. There are
several types of ancillary services, such as frequency regulation, frequency contingency, in-
ertia, voltage regulation, black start processes, and load following [6]. Frequency regulation
ancillary services regulate the small perturbations of the operating frequency. On the other
hand, frequency contingency ancillary services aim to restore more considerable frequency
deviations, such as a deviation caused by a sudden loss of load generation or connecting
load [7]. Inertia ancillary services provide additional inertia to the power system, prevent-
ing transient spikes that can damage the equipment [8]. Physically, frequency regulation
and contingency ancillary services are implemented by the fast frequency response (FFR)
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unit. FFRs could comprise spinning (conventional rotational generator) or nonspinning
units (converter-based power source). As is evident in its name, voltage ancillary services
assist in controlling the voltage of the grid within specified tolerances. In reality, voltage
regulation ancillary services could be supplied by synchronous condensers or static reactive
power units such (capacitor/reactor bank). Black start ancillary services enable a restart
with respect to the power system after a blackout event [9], while load-following ancillary
services comprise a service balancing the supply and demand side of the power system
continuously [10].
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Figure 1. Growth of the global EV population in 2010–2021. Adapted from Ref. [1].
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Figure 2. The modern power system scheme incorporating EVAS.

Short-term ancillary services include frequency regulation, frequency regulation, fre-
quency contingency, inertia, and voltage regulation, while long-term ancillary services
include black start and load following [11]. However, because this paper is primarily
concerned with the short-term transient response analysis of control strategies, only the
first class of ancillary services will be discussed. Furthermore, while EVs could theoretically
provide black start services, research into this concept is still in its early stages [12].
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Several reviews have been conducted on various ancillary services and their control
techniques. Report [13] surveys the ancillary service provided by several types of energy
storage components, such as flywheels, batteries, pumped storage hydropower, superca-
pacitors and compressed air. The authors in [14] examined the role of EVs in the smart
grid, and they identified that one of the most important roles of EVs is to provide ancillary
services. A significant portion of the discussion covered the aggregator and its centralized
and decentralized approach. Report [15] discusses the applications, challenges, and solu-
tions of V2G. V2G is referred to as mobile energy storage systems (MESSs), and the role of
V2G as an ancillary service provider is discussed. The impact of V2G on the distribution
network Is discussed in [16]. Article [17] presents an overview of EVAS with respect to
V2G technology. The ancillary services discussed are primary frequency control (PFC),
secondary frequency control (SFC), tertiary frequency control (TFC), and voltage control.
In [18], EVs were used to support frequency control in microgrid scenarios. Several control
strategies, such as droop control and adaptive neuro-fuzzy systems, were discussed briefly.
Various optimization algorithms utilized for schedule charging (G2V) and discharging
(V2G) activities were discussed in [19]. A comparative study was carried out in [20] on
several power management approaches of V2G-participating frequency regulation. The
comparative study considered several aspects, such as system architecture, optimization
algorithm, time scheduling, and objective functions. Finally, in [21], charging (G2V) and
discharging (V2G) strategies based on coordinated/uncoordinated, continuous/discrete,
and direct/delayed control were discussed.

The main aim of this paper Is to carry out a comprehensive review on control ap-
proaches that have been proposed for EVAS, identify benefits and limitations of the control
approaches, and provide recommendations. Each proposed EVAS control technique in the
literature will be described briefly in this review, specifically on benchmark strategies for
comparison purposes. The rest of the paper is organized as follows. Section 2 elaborates on
methods used for this review. Section 3 discusses the control and optimization strategies
applied for EVAS. Section 4 conducts a comprehensive literature review on the control and
optimization strategies of EVAS and discusses various features of the individual control
and optimization technique. The section primarily discusses the ancillary services provided
by EV; hence, it is divided into four subsections that discuss frequency regulation, fre-
quency contingency, and inertia and voltage regulation services. Considering the number
of research articles in the frequency contingency service category, Section 4.2 is further
classified into four major areas based on control variants: PID, fuzzy, MPC, and others. A
detailed discussion of the direction of EVAS control–optimization research is presented in
Section 5. A summary of the review is also presented, along with future direction of the
research. Conclusions are highlighted in Section 6.

2. Methods

The methods applied in this review include a combination of thematic and historical
review techniques, and the focus is only on a specific area; the results are presented histori-
cally from the past to the present [22]. First, various research papers related to the topic
reviews were collected. The search terms “electric vehicles”, “grid”, and “control” were
used. The term “ancillary services” was not used as a search term due to its unpopularity.
The reason for this was based on experience; the explicit term “ancillary services” was not
always found, despite the fact that the papers themselves discussed EV–grid integration,
where ancillary services were the most likely method.

Despite the use of the term “control”, many of the collected papers cover unrelated top-
ics such as scheduling and dispatching order. Following the selection of only control-related
papers, they were classified according to functionality: frequency regulation, frequency
contingency, inertia, and voltage regulation. The thin line distinguishes frequency regula-
tion from frequency contingency. To solve this, each frequency regulation and frequency
contingency was defined by regulating small perturbations and restoring frequency de-
viation. Following classification, it was discovered that papers dealing with frequency
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contingency accounted for the lion’s share of the total. To facilitate discussion, collected
papers were further classified based on control variants such as PID, fuzzy MPC, and others.
As a result, the number of papers in each variant was distributed fairly evenly. Finally, the
results are served historically based on publication dates. In order to keep up to date, only
publications that fall within a 10-year period are discussed.

3. Control and Optimization Strategies
3.1. Control Strategies

This section discusses the control strategies that can be used for EVs to participate in
delivering ancillary services. A proportional integral derivative (PID) can be considered
as one of the oldest control strategies [23]. The idea lies in taking anticipation based on
current, past, and future error deviations from a set point. The transfer function of the PID
controller is given by (1). Several variations based on the PID technique can be achieved,
such as fractional order PID (FO-PID), tilt proportional integral derivative (TID), and
integral double derivative (IDD). As its name suggests, rather than using an integer as
the traditional PID, FO-PID generalizes the operator of the integral and derivative to be
a fractional or even complex number [24]. Thus, the equation is given by (2). It is clearly
observed that PID is a general form of FO-PID, with values of λ and δ equal to 1. While
FO-PID modifies integral and derivative parts, the proportional part is replaced with the
s
−1
n compensator in IDD. Thus, the form is given by (3). This was first used in [25] for

controlling robot manipulators:

C(s) = kp +
ki
s
+ kds (1)

C(s) = kp +
ki

sλ
+ kdsδ (2)

C(s) = kts
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𝑠
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where the following is a breakdown of the variables. 

   

+
ki
s
+ kds (3)

where the following is a breakdown of the variables.

C(s) = controller transfer function in Laplace domain
kp = proportional gain
ki = integral gain
kt = tilt gain
kd = derivative gain
λ = integral operator order
δ = derivative operator order

A two-degree-of-freedom PID (2DOF-PID) comprises a modification of traditional
PIDs added with a feedforward compensator, as shown in Figure 3 (left) [26]. One of its
earliest enactments was to solve the vehicle suspension problem [27]. A derivative filter
was used with PID to progress its performance. Hence, the arrangement is called PID with
a derivative filter (PID-N), as shown in Figure 3 (right) [28]. While a conventional PID
uses a single loop, a cascaded control PID (CC-PID) fulfils two control loops, primary and
secondary, as demonstrated in Figure 4 [29]. The other variants of PID include PIPD, I-PD,
and PI-D structure [30].
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A fuzzy logic controller (FLC) can be considered as a second-generation control
strategy after PID [31]. Similarly to PID, the error value is manipulated for corrective
actions; however, rather than using calculus, FLC uses the membership function. In general,
FLC overpowers PID in terms of the overshoot, settling time, and transient. Considering
the benefit of the fuzzy controller, PID, and its expansion, several scholars combine those
together: fuzzy-PID [32], fuzzy-FO-PID [33], and fractional-fuzzy [34]. As an improvement
of the original FLC, the interval type-2 FLC (IT2-FLC) introduces an interval named the
footprint of uncertainty [35]. This feature is beneficial for handling uncertainty.

A model-predictive controller (MPC) is a control method using the principle of op-
timizing one or several objective functions under one or several constraints and over a
receding horizon window [36]. The objective function, constraint, and optimization al-
gorithm selection are open options depending on several factors (designer, equipment,
condition, etc.).

The reality of having highly unpredictable situations encourages scholars to generate
a control methodology with uncertainty-enduring characteristics [37]. Methods that have
such characteristics are grouped under the robust control method. Several popular types
of these controllers include H-infinity (H∞) and sliding mode control (SMC). The former
is a robust control method based on the highest value of possible frequency gain (H∞
norm) [38]. At the same time, the latter is another robust control based on sliding variables
and sliding surfaces [39]. In SMC, the sliding variable swarms around the sliding surface
in order to obtain robustness. One of its oldest fruitful enactments was to control induction
machines [40]. While robust control methods approach real situations by anticipating
worst-case scenarios, another variant, called adaptive control, adjusts its parameters [41].
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Optimal control methods were invented and motivated by the observation that human
beings maximize gains while preserving resources [42,43]. The physical objective and
constraints are transformed into mathematical form so that an optimum solution can be
computed via a particular algorithm. The most frequent objective functions applied include
the minimization of the integral of the product of time and the absolute value of the error
(ITAE), the integral of the absolute value of the error (IAE), the integral of the product of
time and the squared value of the error (ITSE), and the integral of the squared value of the
error (lSE) [44].

3.2. Optimization Algorithm

First reported in 2007, artificial bee colony optimization (ABCO) is a method influenced
by the intelligent behaviour of honey bee swarms [45]. One of the first operations of this idea
in the control area was for tweaking a PID controller [46]. The electrostatic phenomenon
sparked the idea of a published algorithm titled artificial electric field algorithm (AEFA) [47].
The method of tuning a PID-based LFC-AVR was employed early in the control world [48].
Persuaded by the superior combination of an adaptive network and inference system, a
hybrid rule titled adaptive neuro-fuzzy inference system (ANFIS) was published [49]. One
of its earliest functionalities in the control optimization area was the gain scheduling of a
PI speed controller with respect to DC drives [50]. Artificial neural networks (ANNs) were
used for training [51]. In 1990, a dynamic system was identified and controlled [52,53].

The black hole phenomenon inspired a researcher to systematize an optimization
algorithm named the black hole algorithm (BHA) [54]. The improvement of a secondary
LFC in 2018 became one of its successes within control systems [55]. Differential evolution
(DE) was first announced by Storn and Price, while its adaptive variant (adaptive differ-
ential evolution/ADE) was proposed by Liu and Lampinen [56,57]. Its first contribution
to the control field was to optimize a PID controller [58]. Motivated by the flight skills of
hummingbirds, the artificial hummingbird algorithm (AHA) was introduced [59]. Atom
search optimization (ASO) is an optimization method motivated by the natural move-
ment of an atom [60]. Its first involvement in control matter was for the scheduling gain
of an FO-PID-controlled DC motor [61]. Motivated by the advantage of DE and PSO, a
hybrid differential evolution particle swarm optimization (DEPSO) was organized [62].
An early connection with the control operation comprised calculating the parameters of
PID-controlled two-area AGCs [63]. The behaviour of elephant herds inspired Wang et al.
to publish an elephant herding optimization (EHO) algorithm [64]. It was tested firstly for
PID-controlled LFCs [65]. The firefly algorithm (FA) was inspired by the natural behaviour
of fireflies [66]. Its first success story in the control topic was in computing the parameters
of a PID-controlled LFC [67]. The flower pollination algorithm (FPA) was first reported by
Yang in 2012 [68]. One of the initial involvements in control optimization was to achieve an
optimal static VAR compensator damping controller [69].

A genetic algorithm (GA) is a metaheuristic algorithm inspired by Darwin’s evolu-
tionary theory. The idea is based on a population that learns the existing condition and
moves to a better future direction [70,71]. The early application of GA in the control area
comprised a learning algorithm for FLC-controlled spacecraft autonomous rendezvous
operations in [72]. Firstly initiated in 2014, grey wolf optimization (GWO) was inspired by
the phenomenon of wolves hunting their prey [73]. One of the first employments of GWO
comprised designing a static VAR compensator controller [74]. An algorithm called har-
mony search algorithm (HSA) was triggered by how musicians perform improvisation [75].
One of its first combinations with a control strategy was in tuning an interfaced-DG parallel
inverter [76]. By mimicking the behaviour of particular hawk species while chasing its
prey, the Harris’s hawks optimization (HHO) was formulated [77]. The enhancement of an
FO-PID-controlled DC–DC converter in 2016 was categorized as its initial linkage with the
control system [78]. Taking the idea of how two countries in the classical era behaved, the
imperialist competitive algorithm (ICA) was initialized [79]. One of the first verifications
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of this idea in the control strategy was for tuning the fuzzy-controlled pendulum-cart
system [80].

In 2016, Mirjalili and Lewis published a technique named whale optimization al-
gorithm (WOA) [81]. An early interconnection with optimal control methods was for
tuning active disturbance rejection control (ADRC)-based automatic carrier landing sys-
tems (ACLSs) [82]. Inspired by the Sanskrit principle of achieving success and avoiding
failure, an idea titled the Jaya algorithm (JA) was produced [83]. Tuning the fuzzy-based
inertia emulator was one of its first advancements in control optimization [84]. Yazdani
and Jolai made a mathematical model based on how a lion pride behaves [85]. One of its
first engagements in the control world was for optimizing a PID-based LFC [86]. The linear
matrix inequality (LMI) method is an optimization technique centred on forming linear
inequality constraint equations in a matrix. Its combination with the Lyapunov theory was
developed into a functional algorithm to analyse the stability of a system [87]. Following
the approach of a mine bomb explosion, Ali et al. conceptualized the mine blast algorithm
(MBA) [88]. One of its earliest executions in control optimization methods comprised tun-
ing a robust PID [89]. By using the magnetic-orientation behaviour of particular bacteria, a
magnetotactic bacteria optimization algorithm (MBOA) was proposed [90]. Early practi-
cality in the control system comprised tweaking a fractional active disturbance rejection
LFC [91]. The marine predator algorithm (MPA) is an algorithm taking the interaction
between a predator and prey in a marine ecosystem as insight [92]. One of its very first
collaborations in the control field was for the improvement of power system stabilizers
(PSSs) and power oscillation dampers (PODs) [93].

The multiverse optimizer (MVO) idea was motivated by three astrophysics phenom-
ena: black holes, white holes, and wormholes [94]. One of its earliest implementations in
control operations was for the enhancement of a fuzzy-PID-based LFC [95]. Motivated
by the goal of quicker and nonelitist characteristics, an improvement of the GA named
nondominated sorting genetic algorithm II (NSGA-II) was recommended [96]. The design
of lateral acceleration control operations for a nonlinear homing missile became one of
its first introductions with respect to control techniques [97]. Invented by Eberhart and
Kennedy, particle swarm optimization (PSO) was motivated by the behaviour of birds when
flocking [98]. The initial implementation of this algorithm in the control system was to tune
the SVC damping controller [99]. A Nobel laureate first introduced quadratic programming
(QP), and it is aimed at solving portfolio problems [100]. Its earliest development in the
control system can be traced back to 1986 when the idea was implemented to solve a robot
manipulator problem [101]. When launched in 2017, the salp swarm algorithm (SSA) was
motivated by the movement of salps when swimming in the ocean [102]. In the control
area, the early execution of this scheme was for optimizing a PID-fuzzy active tuned mass
damper (ATMD) [103].

Initially published by Mirjalili, the sine cosine algorithm (SCA) aims for the best
solution by utilizing sine and cosine mathematical functions [104]. One of the primary uses
of this algorithm in optimal control methods was for tuning PID-based two-area LFCs [105].
An observation of how a volleyball team interacts during competition motivated a group
of researchers to publish the volleyball premier league algorithm (VPLA) [106]. One of
its first applications in control practice was the optimization of a fuzzy FO-PI-PID with a
derivative filter (FFOPI-PIDN)-based AGC [107]. An optimization named the equilibrium
optimizer (EO) was published in 2020 [108]. One of its earliest exertions concerning
control optimization was for a cascaded fractional fuzzy controller AGC optimization [109].
Motivated by business and management practices, a method named rolling optimization
(RO) was published [110]. In the control field, one of its earliest recorded application was for
tuning a synchronous motor controller [111]. The behaviour of particular microorganisms
in their search for nutrients triggered some scholars to invent a procedure named the slime
mould algorithm (SMA) [112]. One of its successful implementations in control practice
was to tweak an FO-PID-based DC motor [113].



Energies 2023, 16, 1782 8 of 36

The seagull optimization algorithm (SOA) was inspired by how a seagull attacks and
migrates [114]. Tuning a fuzzy controller AGC became one of its early establishments within
control optimization [115]. Teacher and learner interactions motivated Rao et al. to create
an algorithm termed teaching–learning-based optimization (TLBO) [116]. Historically, one
of its earliest connections to control problems was tuning an interval type-2-fuzzy PID
(IT2-FPID) controller of wheeled mobile robots [117]. A procedure named the water cycle
algorithm (WCA) was formulated based on the cycle of water in nature [118]. Tuning
an FLC-based standalone hybrid green power (SHGP) system became one of its earliest
implementation in optimal control [119]. The motion of the wind in the atmosphere
motivated several research experts in codifying a strategy named wind-driven optimization
(WDO) [120]. One of its connections to control optimization methods comprised enhancing
a D-STATCOM’s PI controller in 2015 [121].

4. Literature Review
4.1. Frequency Regulation Service

Thirteen papers discussed the EVAS control method, providing frequency regulation
services since 2012. A compilation of the control strategies of EVAS as frequency regulation
services above is displayed in Table 1. A fuzzy load controller and fuzzy voltage controller
(FLC-FVC) was proposed in [122]. Voltage regulation was also improved by using the
proposed strategy in addition to frequency regulation. Moreover, the spinning reserve
requirement was reduced. The authors in [123] suggested an autonomous distributed
V2G control scheme for regulating frequencies. Compared to the condition without V2G,
other than the regulating frequency, the scheme also reduces the spinning reserve required
by the system. Ref. [124] offers the implementation of a fuzzy logic controller (FLC). In
this study, the FLC was tested on the IEEE 39-bus system and actual data from Victoria,
Australia. The results revealed that the FLC strategy performs better than [123] even in
the situation without V2G. Researchers in [125] recommended using the real-time smart
charging algorithm. In this study, a genetic algorithm (GA) was utilized to optimize the
size of renewable energy farms. The research also used real data from Florida City by
PJM. With the exception of regulating frequencies, the impact of EV charging on the grid
was also minimized. The process of charging battery SoC holders (BSHs) with frequency
regulation (CFR) was examined by [126]. Other than the control strategy, a framework
named distributed V2G control (DVC) was also presented. Then, the combination rivalled
with [18] and the case scenario without V2G. The frequency regulation objective was
accomplished, and the main objective of fulfilling charging demands was not sacrificed.
Frequency modulation control (FMC) methods were also investigated [127]. During a
competition with a no-V2G scenario, frequency fluctuations decreased by 56%. In [128],
decentralized primary frequency regulation control (DPFRC) methods were discussed. It
was discovered that the discussed method was superior to the autonomous distributed
control (ADC) method as a benchmark.

Table 1. EVAS as a frequency regulation service.

Ref. Year Control Benchmark Remark

[122] 2012 FLC-FVC N/A. Reducing spinning reserve, improving
voltage regulation.

[123] 2012 ADV2G Without V2G. Reducing spinning reserve.

[125] 2014 RTSC Without controller.

Optimized by genetic algorithm (GA) and
involving the step of optimizing the size
of renewable energy farms, applying real
data from Florida City by PJM and
minimizing the impact of the charging of
PEVs relative to the grid.

[126] 2013 BSH-CFR 1. Without V2G, ADV2G [123]. Proposing the framework of the
distributed V2G control (DVC).
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Table 1. Cont.

Ref. Year Control Benchmark Remark

[124] 2017 FLC 2. Without V2G, ADV2G [123].
Tested using the IEEE 39-bus system:
actual data from Victoria, Australia,
were used.

[127] 2017 Frequency
modulation Without V2G.

Successfully reduced frequency deviations
while maintaining the EV owner’s
satisfaction level.

[128] 2018 DPFRC Autonomous distributed
control (ADC).

Featuring a balanced objective to maintain
frequency stability and battery SoC.

[129,130] 2018
2019

ACE-ARR-based
control 1.

Area control error-based optimal
approach (ACE-OA), area control
error-based proportional approach
(ACE-PA), area regulation
requirement-based optimal approach
(ARR-OA), area regulation
requirement-based proportional
approach (ARR-PA).

Proposing a hierarchical control
framework; control centre, EV
aggregators, and EV charging stations.

[131] 2018 Decentralised control Droop control.
90% SoC guarantee, featuring the
suspension of charging when frequencies
are too low.

[132] 2018 GPA Coordinated control strategy [133]. Offering demand declaration strategy
frameworks.

[134] 2019 Decentralised
V2G/G2V N/A.

Proposing a two-way communication and
energy flow architecture using real data
from PJM.

[135] 2019 SDV2G 1. Without V2G, droop control,
BSH-CFR [126].

Simulated in MATLAB environments; two
conditions were applied: normal and
worst condition.

A technique was introduced based on extracting area control error (ACE) signals [129,130].
An optimal dispatch (OD) algorithm was also featured to ensure the optimal allocation
among EVs. In order to support such a technique, a hierarchical control framework con-
sisting of the control centre, EV aggregators, and EV charging stations was also described.
Combined with operations for regulating frequency, it was recognized that this technique
also reduced the output of traditional generators. The experimentation performed in [131]
pointed out the decentralized control scheme and correlated it with the droop control
method. It was observed that the scheme was able to regulate frequencies without sac-
rificing the EV’s SoC. Article [132] introduced the grouping power allocation approach.
Additionally, a framework demand declaration strategy was also prepared. It was shown
that this procedure was superior to the method introduced in [133]. The analysts in [134] ad-
vocated implementing decentralized V2G/G2V support by utilizing charge and discharge
rates (C-rate/D-rate). In parallel, the study also demonstrated a two-way communication
and two-way energy flow architecture. The analysis was carried out using factual data from
PJM. The authors in [135] proposed a smart decentralized V2G (SDV2G) control method,
and they discovered that the practice was more desirable than having no V2G condition and
droop control [21]. Although papers were recently collected (2023), the most recent research
on EVAS as a frequency regulated service was conducted in 2019. The research on this topic
appears to have peaked, and the focus has shifted to EVAs as a frequency contingency.

4.2. Frequency Contingency Service
4.2.1. PID Variants

Since 2017, forty-four reports elaborated upon the control scheme of EVASs that sup-
port frequency contingency services using the PID model. The chronological development
of PID control variants as EVAS frequency contingency services is provided in Figure 5,
while a compilation of PID variants acting as EVAS frequency contingency services is
provided in Table 2. FO-PID in accordance with FPA was investigated and analysed
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in [136–138]. It was determined that the combined FO-PID and FPA technique was more
fitting than the PID controller, both with and without a filter. The usage of a Hebbian
learning PID was explored in [139]. The fluctuation of wind power generators (WPGs) was
also examined. It was observed that the method was preferable to PID and supervised
Hebbian learning. FO-PID-ICA was presented in [140]. As a comparison, selected hybrid
gravitational search and pattern search (HyGS-PS) and DE algorithms were used. It was
revealed that the ICA optimization algorithm outruns both its rivals. The use of the com-
bined FO-PID and SCA technique was investigated in [141,142]. It was recognized that the
combined FO-PID and SCA technique was more prominently successful than PID-SCA,
PID-PSO, and FO-PID-PSO. LOA was applied to tune the PID controller in [86]. The trial
also included a FACTS device, which comprised a UPFC. It was shown that the proposal
could minimize frequency deviations during disordered conditions.
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Table 2. EVAS as frequency contingency services with the PID variant.

Ref. Year Control Optimization Benchmark Remark

[136–138] 2017 FO-PID FPA PID, PIDN.

Simulated in a three-area power
system incorporated by both HVAC
and HVDC transmission
interconnections.

[139] 2017 Hebbian
Learning-PID N/A PID, supervised Hebbian learning. Incorporating the fluctuation of WPG.

[140] 2018 FO-PID ICA
Hybrid gravitational search and
pattern search (HyGS-PS) algorithm,
differential evolution (DE).

Comparing optimization algorithms
rather than comparing
control strategies.

[141,142] 2018 FO-PID SCA PID-SCA, PID-PSO, FO-PID-PSO.
Simulated using MATLAB/Simulink,
applying the delay scenario on EV’s
aggregator side.

[86] 2018 PID LOA Without V2G. Incorporating the FACTS device
of UPFC.
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Table 2. Cont.

Ref. Year Control Optimization Benchmark Remark

[143] 2019 PID JA PID-GA, PID-PSO, PID-GWO. Incorporating the fluctuation of WPG
and PV.

[144] 2019 CC-TI-TD WCA PI, integral–tilt derivative (I-TD),
CC-TI-TD without V2G.

Incorporating several scenarios:
single-area, two-area, parameter
variations, load variations, EV number
variations, and communication delay.

[145] 2019 2DOF-PIDN VPLA Without V2G.

Simulated in a three-area power
system by applying constant and
variable distributed energy
systems (DESs).

[146] 2019 TID ABCO TID-PSO, TID-GA, TID.

Simulated in a two-area power system
by applying step and random load
changes and assessing the controller’s
effectiveness by several control
performance indicators (minimum
damping ratio, peak overshoot, peak
time, settling time, and ITSE).

[147] 2020 FO-PID SSA PID-PSO, PID-SSA, FO-PID-PSO.

Simulated in single-area and two-area
power systems with two scenarios:
single and multistep load changes.
The control performance was
monitored by using several indices:
IAE, ITAE, and MAE.

[148] 2020 PID MVO, SSA Without V2G.

Incorporating two scenarios: step load
change in area-1 and random load
change in area-2. In addition, ISE
performance indicators, such as
settling time, rise time, overshoot, and
undershoot, were captured.

[149] 2020 2DOF-PID WDO PID, PI, integral (I).

Incorporating various scenarios:
variations in the steady-state load,
system inertia, and step load changes.
Settling time, overshoot, and
undershoot were used as performance
measurements.

[150] 2020 CC-PI-PD SSA Integral (I), PI, PID, PI-PD-PSO,
PI-PD GWO.

Implementing numerous scenarios:
step load perturbation, random load
perturbation, variation of inertia
constant, damping constant, and
droop constant. Measuring ISE and
settling time as performance
indicators. Equipped study with
stability analysis.

[151] 2020 CC-PID GWO PI-GWO, PID-GWO, CPID-PSO,
CPID-GA.

Evaluating overshoot, undershoot,
and ITAE as the performance
indicators.

[152] 2020 I+PD WOA PIDN-WOA. Simulated using MATLAB/Simulink
in two-area systems.

[153] 2020 CC-TID Filter
1+PI MBA Integral (I), PI. Using OPAL-RT’s digital simulator.

[154] 2021 TIDN||HybFO MPA

TIDN||HybFO-GA,
TIDN||HybFO-MRFA,
TIDN||HybFO-AEO,
TIDN||HybFO.

Incorporating the scenarios of load
changes, RES disorder, high-RES
penetration, and system uncertainties.
Applied ISE, IAE, ITSE, and ITAE as
comparison parameters.

[155] 2021 PI N/A Without V2G.
Substantially fewer area control errors
(ACEs) generated with V2G
connected to the system.
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Table 2. Cont.

Ref. Year Control Optimization Benchmark Remark

[156] 2021 CC-FO-PI-FO-
PD SMA

PID-GA, PID-PSO, PID-SMA,
FO-PID-GA, FO-PID-PSO,
FO-PID-SMA, CC-FO-PI-FO-PD-GA,
CC-FO-PI-FO-PD-PSO.

Incorporating the fluctuation of WPG
and PV.

[157] 2021 CC-FOPI-
FOPD SCA

PI-GA, PI-SCA, PID-GA, PID-SCA,
PI-PD-GA, PI-PD-SCA,
FO-PI-FO-PD-GA, PI-PD-SCA.

Simulated in a three-area power system
and used ITAE, overshoot, and
undershoot for performance assessment.

[158] 2021 PID MLCCA N/A.

Monitoring the performance
indicators, such as the minimum,
maximum, average, and standard
deviation, of the frequency.

[159] 2021 TIDN||HybFO SMA
TIDN||HybFO-ALO,
TIDN||HybFO-PSO,
TIDN||HybFO.

Incorporating the fluctuation of WPG
and PV.

[160] 2021 IDD MBOA
Integral (I), ID, PI, PID, IDD-BBO,
IDD-FA, IDD-PSO, IDD-GA,
IDD-fuzzy.

Incorporating variations in
solar irradiance.

[161] 2021 CC-ID-PD MBOA PID-MBOA, PIID-MBOA,
PIDD-MBOA, CC-PD-ID-MBOA.

Implementing the demerit index (DI),
which is the sum square value of the
minimum overshoot (MO), minimum
undershoot (MU), and time of settling
(ToS), as the performance indicator.

[162] 2021 PI-DD GWO PIDN, PID, PI. Incorporating AC–DC lines.

[163] 2021 TID ASO TID-ASO, TID-GOA, TID-SSA,
TID-GWO, TID-SCA, TID-PSO.

Applying various scenarios such as
random load disturbance (RLD),
sinusoidal load disturbance (SLD),
and pulse load disturbance (PLD).
Assessing the performance indicator
of overshoot, undershoot, and ITSE.

[164] 2021 CC-3DOF-PID-
FO-PID SCA FO-PID-SCA.

Simulated by MATLAB/Simulink in a
four-area power system. Measuring
overshoot, undershoot, and settling
time as the performance indicators.

[165] 2021 PID PSO-ANN CPID, FPID.
Involving several scenarios: variations
in load, wind, and battery’s state of
health (SoH).

[166] 2021 SO-IDD MBOA ID, PID, IDD.

Using the demerit index (DI), which is
the sum square value of the minimum
overshoot (MO), minimum
undershoot (MU), and time of settling
(ToS), as the performance indicator.

[167] 2021 PI FA I-FA.

Implementing the scenarios of step load
disturbances (SLDs) and random load
disturbances (RLDs). Monitoring
settling time, overshoot, and
undershoot as performance indicators.

[168] 2021 FO-PI ANN PI, FO-PI.

Simulated in a three-area power
system by evaluating settling time
and overshoot as the performance
indicators.

[169] 2022 PID QO-WOA Incorporate superconducting
magnetic energy storage (SMES).

[170] 2022 CFC QO-LOA PID-BBO. Incorporating superconducting
magnetic energy storage (SMES).

[171] 2022 DR-PI SSA PI, PID.

[172] 2022 PD-N Plus
(1+PI) ADE PID-DE, PID-ADE.

Incorporating OPAL-RT and
incorporating the fluctuation of WPG
and PV.
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Table 2. Cont.

Ref. Year Control Optimization Benchmark Remark

[173] 2022 T-FO-ID-FN AHA
PIDN, TIDN, FO-PIDN, FO-TIDN,
T-FO-ID-FN-ABC, T-FO-ID-FN-BOA,
T-FO-ID-FN-AEO, T-FO-ID-FN-PSO.

Incorporating fluctuation of WPG
and PV.

[174] 2022 FO-PID SOA PIDD-SOA, PID-SOA, PI-SOA. Incorporating superconducting
magnetic energy storage (SMES).

[175] 2022 CC-2DOF-PI-
PDN OVPLA

2DOF(PI)-PDN-PSO,
2DOF(PI)-PDN-WOA,
2DOF(PI)-PDN-VPLA,
2DOF(PI)-PDN-OVPLA,
integral-OHS, PID-BBO,
2DOF-TIDN-HSSDEA,
PDF(1+FOD)-SSA.

Incorporating HVDC.

[176] 2022 FO-PID DEPSO PID-DEPSO. Incorporating HVDC.

[177] 2022 FO-PID N/A
PID, PD without PHEV, PI without
PHEV, PID without PHEV, FO-PID
without PHEV.

Simulated on a two-area system and
applied ITAE as the control
performance index.

The conventional PID was adjusted using JA [143]. The water cycle algorithm (WCA)
was engaged to optimize CC-TI-TD in [144]. When this method was compared to PID,
the integral–tilt derivative (I-TD), and no-V2G CC-TI-TD controller, it was observed that
the obtained effect was more desirable. The two-degree-of-freedom PID with a derivative
filter (2DOF-PIDN) was improved by using the new volleyball premier league algorithm
(VPLA) [145]. It was demonstrated that the assortment reduces frequency disorders effec-
tively. Simulations in [146] matched the tilt integral derivative (TID) and ABCO. It revealed
that, with the same topology, the chosen optimization was better than PSO and GA. SSA
was applied to optimize the parameter of the FO-PID [147]. Its practicality was described
as outsmarting PID-PSO, PID-SSA, and FO-PID-PSO. MVO and SSA optimizations were
used in trials on PID [148]. It was deduced that MVO was more advanced than SSA in
terms of settling time, while SSA exhibited smoother results than MVO. Another study
examined the combination of 2DOF-PID with WDO [149]. It was observed that the mixture
was more promising than the I, PI, and PID. PI and PD were arranged in a cascade [150].
Then, SSO was applied to obtain the most optimum parameters. It was concluded that the
entire system overcame the traditional integral, PI, and PID, and the cascaded structure
with PSO and GWO optimization. P, I, and D controllers were cascaded, forming CC-PID.
Then, the parameter was adjusted using GWO [151]. It was affirmed that this practice was
more advantageous than PI-GWO, PID-GWO, CC-PID-PSO, and CC-PID-GA. A relatively
new algorithm of WOA was implemented to find the most optimum gain of the sum of the
integral and PD (I+PD) [152]. It was observed that the collaboration surpassed the results
of PIDN-WOA. MBA was applied to tweak the parameters of the CC-TID with the 1+PI
filter (TIDN-1+PI) [153].

An OPAL-RT digital simulator was also applied to verify the results. In summary, it
was noted that the results of the procedure were ahead of the integral and PI. Article [154]
suggested the option of using parallel TID with a hybrid-fractional order (TIDN||Hyb-FO)
filter and MPA. It was depicted that the duo was finer than TIDN||HybFO optimized
with GA, MRFA, AEO, or an individual TIDN and HybFO. Roshan and Ismayil proposed
a PI controller [155]. They summarized that there were fewer generated area control
errors (ACEs) when V2G was connected to the system. The experts in [156] proposed a
cascaded control operation of FO-PI and FO-PD (CC-FO-PI-FO-PD) and SMA. Considering
the fluctuation of WPG and SPV, it was discovered that the product of the proposition
had better performances than PID-GA, PID-PSO, PID-SMA, FO-PID-GA, FO-PID-PSO,
FO-PID-SMA, CC-FO-PI-FO-PD-GA, and CC-FO-PI-FO-PD-PSO. SCA was employed in
CC-FO-PI-FO-PD [157]. The simulation showed that this conception outstrips PI-GA,
PI-SCA, PID-GA, PID-SCA, PI-PD-GA, PI-PD-SCA, FO-PI-FOPD-GA, and PI-PD-SCA.
In [158], a pair of conventional PIDs with a multilevel coordinated controlled charging
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algorithm (MLCCA) was fully explored. SMA was used to optimize TIDN||HybFO
in [159]. In conclusion, this approach was more successful than TIDN||HybFO-ALO,
TIDN||HybFO-PSO, TIDN, and HybFO. The simulation also absorbed the reality of
WPG and PV fluctuations. Reference [160] verified the possibility of using MBOA when
adjusting the I-DD. Variations in solar irradiance were also observed. It was revealed that
the recommendation proved to be a better solution than the integral, ID, PI, PID, I-DD-BBO,
I-DD-FA, I-DD-PSO, I-DD-GA, and I-DD-fuzzy. In [161], MBOA was used to calculate the
control parameter of the CC-ID-PD. Then, it was realized that the result was more desirable
than PID-MBOA, PI-ID-MBOA, PI-DD-MBOA, and cascaded PD-ID-MBOA. PI-DD was
finetuned by GWO [162] in a system incorporating AC–DC lines. It was shown that the set
of two algorithms was more powerful than PIDN, PID, or PI. Several experts employed
ASO to enhance TID [163]. It was shown that this method was more assuring than TID-
ASO, TID-GOA, TID-SSA, TID-GWO, TID-SCA, and TID-PSO. Article [164] introduced a
cascaded control operation of a three-degrees-of-freedom PID-FO-PID (CC-3DOF-PID-FO-
PID) featuring SCA. It was exposed that this application was more useful than FO-PID-SCA.
A PID containing PSO-ANN was discoursed in [165]. It was recapitulated that the offering
outshines CPID and FPID controllers. A static observer-I-DD enclosed by MBOA was
investigated [166]. It was portrayed that the mixture scheme was more convincing than ID,
PID, and IDD. A PI boosted by FA was evaluated [167]. It was recorded that the contribution
was stronger than the I-FA. Article [168] thoroughly discussed an ANN-enhanced FO-PI.
In conclusion, it was shown that the presentation was more excellent than the PI and
FOPI. A system integrated by using superconducting magnetic energy storage (SMES)
was used as a plant for the PID-QO-WOA [169]. A similar idea of implementing SMES
was carried out in [170]. QO-LOA was used to improve a cascade fractional controller. It
was disclosed that the implementation was more effective than PID-BBO. The disturbance
rejection PI (DR-PI) control was amalgamated with SSA [171]. It was shown that the
idea outshined PI and PID. An innovative ADE was employed on PDN Plus (1+PI) [172].
Then, the arrangement was modelled using OPAL-RT with the counting fluctuation of
WPG and PV. This conception was more remarkable than PID-DE and PID-ADE. AHA
was engaged in revealing the optimal condition of tilt FO-ID with a fractional filter (T-
FO-ID-FN) [173]. In actual applications, the fluctuation of WPG and PV was also taken
into account. It was divulged that the concept was more valuable than PIDN, TIDN,
FO-PIDN, FO-TIDN, T-FO-ID-FN-ABC, T-FO-ID-FN-BOA, T-FO-ID-FN-AEO, and T-FO-
ID-FN-PSO. The fresh SOA was exerted to augment FO-PID [174]. The system operates
an SMES. It was communicated that the contribution overcomes PI-DD-SOA, PID-SOA,
and PI-SOA. The 2DOF-PI-PD with a filter (2DOF-PI-PDN) assisted by OVPLA can operate
a system that implements HVDC [175]. This constructing outstripped 2DOF(PI)-PDN-
PSO, 2DOF(PI)-PDN-WOA, 2DOF(PI)-PDN-VPLA, 2DOF(PI)-PDN-OVPLA, Integral-OHS,
PID-BBO, 2DOF-TIDN-HSSDEA, and PIDN(1+FOD)-SSA. FO-PID combined with DEPSO
was promoted in [176]. This technique performs better than PID-DEPSO. FO-PID was
implemented in [177]. The implementation defeated the results of using PID, PD, and PID
with PHEV and FO-PID without PHEV.

Despite the fact that the criteria for papers collected are from 2012, it is clear that the
research trend of EVAS for frequency contingency using PID variant began in the mid-2010s.
The first wave of research focused solely on PID modification (e.g., FO-PID [140]) or PID
plus optimization (e.g., PID-LOA [86], PID-JA [143]). By the end of the 2010s, the second
generation of research had begun with the application of both PID modifications (e.g.,
CC-PID, TID, 2DOF-PID, PIDN) and novel optimization algorithms (WCA, VPLA, ABCO),
such as 2DOF-PIDN-VPLA [145] and TID-ABCO [146]. Finally the recent trend is cascading
of two modified PIDs, such as 3DOF-PID and FO-PID, yielding CC-3DOF-PID-FO-PID-
SCA [164], or 2DOF-PI and PDN, yielding CC-2DOF-PI-PDN-OVPLA [175].
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4.2.2. Fuzzy Variants

From 2018, nineteen papers explain the control system of EVAS-supporting frequency
contingency services exercising the fuzzy scheme. The time order progression of fuzzy
control variants as EVAS frequency contingency services is specified in Figure 6, while the
collection of fuzzy variants acting as EVAS frequency contingency services is provided
in Table 3. A decentralized-FLC was investigated in [178]. The method successfully
outperformed the examined scenario, whereas V2G was not in the picture. An FLC
optimized by ICA was proposed in [179,180]. A trial using the IEEE-39 bus determined
that the proposal surpasses the results in [181] and PI-ICA controllers. General type-2
fuzzy logic sets (GT2FLS) combined with the MHSA were elaborated in [182,183]. The
analysis also incorporated the uncertainty factor of WPG. It was observed that the control
was finer than the optimal fuzzy-PI (OFPI), optimal interval type II fuzzy-PI (IT2FPI), PID,
and fuzzy-PID (FPID). The investigators in [184] examined the polar fuzzy control method.
In the simulation, several examined scenarios involved a sudden increase/decrease in
wind speeds, load demand, and solar radiation. An additional method, the minimal-
order observer, was applied to estimate the supply error. It was evident that the method
was more prominent than conventional FLCs. The enhancement of [55] was completed
in [185], in which MO-BHA updates the multiobjective-fractional order-fuzzy-PID (MO-FO-
FPID). With the exception of being integrated with HIL, the experimentation also reflects
the fluctuation of WPG and PV. It was confirmed that the performance was above the
multiobjective-fuzzy PI (MO-FPI), multiobjective-interval type-2-FLC (MO-IT2-FLC), and
multiobjective-PID (MO-PID). A novel TLBO was applied to regulate adaptive fractional
order-fuzzy-PIDs (adaptive FOFPID) [186]. The simulation integrated the fluctuations of
WPG and PV. It was confirmed that the mixture outperformed PID-TLBO, FO-PID-TLBO,
fuzzy PID, and FO-FLC-PID. FLC-FO-PID was described in [187]. From simulations, it
was concluded that the idea was superior to PID and FO-PID. A novel strategy named the
FLC-data integrity check correction (FLC-DICC) method was proposed [188]. The strategy
utilized ANN for forecasting and verifying integrities. In order to support this argument, a
two-layer framework comprising a data integrity and correction check block in the first
layer and an FLC in the second layer was also proposed. Later, the idea was confirmed
by using data from Guwahati City collected from a regional power distributor provided
by Assam Power Distribution Company Limited (APDCL). The adaptive enhancement
version of FLC, named fuzzy-logic-based adaptive two-degree-of-freedom internal model
control (FL-2DOF-IMC), was suggested [189]. The simulation incorporated a fluctuation in
WPG. At the end of the study, it was shown that it was better than its nonadaptive version.
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Table 3. EVAS as a frequency contingency service with fuzzy variants.

Ref. Year Control Optimization Benchmark Remark

[178] 2015 Decentralized-FLC N/A Without V2G.

[179,180] 2016 FLC ICA H2/H∞-PSO [181], PI-ICA. Tested using IEEE-39 Bus.

[182,183] 2016 GT2FLS MHSA
Optimal fuzzy PI (OFPI), optimal
interval type II fuzzy-PI (IT2FPI),
PID, FPID.

Incorporating the fluctuation
of WPG.

[184] 2017 PFLC N/A FLC.

Tested with several scenarios with a
sudden increase/decrease in wind
speed VW, load demand, and solar
radiation ϕ, and a linear increase in
ϕ. Minimal-order observer method
was applied to estimate the
supply error.

[185] 2018 MO-FO-FPID MO-BHA

Multiobjective-PID (MO-PID),
multiobjective-FPI (MO-FPI),
multiobjective-IT2-FLC
(MO-IT2-FLC).

Incorporating the fluctuation of
WPG and PV and incorporating
hardware-in-the-loop (HIL)
simulations.

[186] 2019 Adaptive-FO-FPID TLBO PID- TLBO, FO-PID- TLBO, FPID,
FO-FLC-PID.

Incorporating the fluctuation of
WPG and PV.

[187] 2019 FLC-FO-PID PID, FO-PID.

[188] 2020 FLC-DICC ANN FLC.

Using data from Guwahati City
collected from a regional power
distributor provided by Assam
Power Distribution Company
Limited (APDCL), using ANN for
forecasting and integrity check,
proposing a 2-layer framework:
data integrity and correction check
block in the first layer and an FLC
in the second layer.

[189] 2020 FL-2DOF–IMC Nonadaptive TDF-IMC. Incorporating the fluctuation
of WPG.

[190] 2021 SI-IT2-FLC IWOA T1-FPD/FPI, PD/PI. Adopting a hardware-in-the-loop
(HIL) simulator.

[191] 2020 SI-IT2-FLC FGD-DDPG
FGD-SIT2-FPID, GD-SIT2-FPID,
A-SIT2-FPID, S-SIT2-FPID, T1-FPID,
and PID.

Incorporating real-time setup (RTS)
space for results verification.

[192] 2021 FOA-FPIDN MSSA

PI, PI-GA, PI-BFOA, PI-PSO,
hBFOA-PSO, PI-NSGA-II,
PIDN-NSGA-II, fuzzy PI-PS,
fuzzy PI-PSO.

Incorporating variations of PV
and WPG.

[193] 2021 Adaptive FPID SCAHHO

PI, PI-GA, PI-BFOA, PI-PSO,
hBFOA-PSO, PI-NSGA-II,
PIDN-NSGA-II, fuzzy PI-PS, fuzzy
PI-PSO, AFPID-MMFO.

Using OPAL-RT’s digital simulator,
involving the modern elements of a
hybrid power system (HPS);
ultracapacitor (UC), super magnetic
energy storage (SMES), and fuel
energy storage (FES).

[194] 2021 FPIDN EHO PI, PID, PIDN.

Incorporating modern devices:
unified power flow controller
(UPFC), interline power flow
controller (IPFC), fuel cells (FC),
redox flow batteries (RFB), and
superconducting magnetic energy
storage (SMES).
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Table 3. Cont.

Ref. Year Control Optimization Benchmark Remark

[195] 2021 FPI- LADRC QO-AEFA Integral (I), PI, PID, PIDN, FPI,
LADRC, PID-BBO.

Involving fluctuation of PV
and WPG.

[196] 2022 FFOPI||PIDN QOEO

FFOPI||PIDN-WOA,
FFOPI||PIDN-EO,
FFOPI||PIDN-OEO, an optimal
output feedback controller,
integral-OHS.

Incorporating HVDC, considering
variables SPV and WPG, and
incorporating Bode plot analyses in
the design phase.

[197] 2022 FLC PSO N/A.

Applying two scenarios (normal
and abnormal) while using the
performance evaluation of the
maximum frequency deviation,
average frequency deviation,
frequency regulation generator cost,
frequency regulation EV cost, and
restoration time.

There was an attempt to use an improved WOA to set the parameters of a single-
input interval type-2 FLC (SI-IT2-FLC) [190]. A hardware-in-the-loop (HIL) simulator
was included in the simulation. The proposition was shown to be more effective than
T1-FPD/FPI and PD/PI. The same authors proposed SI-IT2-FLC, with the substitution
of IWOA for reinforcement learning (RL) [191]. A self-tuning fractional gradient descent
(FGD) algorithm and adaptive deep deterministic policy gradient (DDPG) technique were
introduced. The simulation’s result showed that the plan outplayed FGD-SIT2-FPID, GD-
SIT2-FPID, A-SIT2-FPID, S-SIT2-FPID, T1-FPID, and PID. A fractional order adaptive-fuzzy
PIDN (FOA-FPIDN) was optimized by an MSSA that was controlling a system containing
variations of PV and WPG [192]. It was determined that the technique overpowered PI,
PI-GA, PI-BFOA, PI-PSO, hBFOA-PSO, PI-NSGA-II, PIDN-NSGA-II, fuzzy-PI-PS, and
fuzzy-PI-PSO. A sine-cosine-adopted Harris’s hawks optimization (SCAHHO) was picked
out as a combination for the adaptive fuzzy PID (AFPID) [193]. The investigated system
comprised the modern elements of a hybrid power system (HPS), ultracapacitor (UC),
fuel energy storage (FES), and SMES. Later, using OPAL-RT’s digital simulator, it was
revealed that the pairing was more beneficial than its benchmark (PI, PI-GA, PI-BFOA,
PI-PSO, hBFOA-PSO, PI-NSGA-II, PIDN-NSGA-II, fuzzy-PI-PS, fuzzy-PI-PSO, and AFPID-
MMFO). A model with a unified power flow controller (UPFC), interline power flow
controller (IPFC), fuel cells (FCs), redox flow batteries (RFB), and SMES was used as the
object of a fuzzy PIDN (FPIDN)-EHO arrangement [194]. It was unveiled that this method
was more attractive than PI, PID, and PIDN. A complex strategy named the fuzzy-PI-
linear active disturbance rejection control (FPI-LADRC) was improved by QO-AEFA [195].
The simulation was accomplished in a fluctuating PV and WPG environment. It was
exposed that the proposition was more fitting than the integral, PI, PID, PIDN, fuzzy-PI,
LADRC, and PID-BBO controllers. Parallel fuzzy fractional order PI-PID controllers with a
filter (FFOPI||PIDN) were matched with QOEO [196]. The design phase was executed
with a Bode plot analysis in a system involving HVDC and fluctuated SPV and WPG.
The finding was that the FFOPI||PIDN-QOEO combination delivered more results than
FFOPI||PIDN-WOA, FFOPI||PIDN-EO, FFOPI||PIDN-OEO, optimal output feedback,
and the integral-OHS controller. Dissemination [197] elaborated upon the pairing of FLC-PSO.

It is observable that there are three subcategories in fuzzy variants. The first is fuzzy
plus optimization (e.g., FLC-ICA [179,180], FLC-PSO [197]). The second subcategory is
a hybrid of fuzzy and PID variants (e.g., MO-FO-FPID, MO-BHA [185], adaptive-FO-
FPID-TLBO [186]). The higher computation requirement of the second subcategory is
compensated by its superior result.
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4.2.3. MPC Variants

A variety of experiments described the control routine of EVAS-maintaining frequency
contingency services exercising the MPC types. An assortment of MPC variants acting
as EVAS frequency contingency services is shown in Table 4. Multiple MPC (MMPC)
pairs with quadratic programming (QP) were discussed in [198]. It was declared that the
suggestion outplays the PID controller and conventional MPC. Analysis [199] examined
multivariable generalized predictive control (MGPC) methods equipped with quadratic pro-
gramming (QP). The controlled autoregressive and integrated moving average (CARIMA)
model completed the prediction process. It was demonstrated that the results were finer
than the PI controller and FLC. A decentralized MPC (DMPC) was discussed in [200,201]. It
was uncovered that this particular configuration of MPC outplayed the centralized MPC as
well as conventional PD controllers. As a continuation of [199], the generalized predictive
controller (GPC) and CARIMA were mixed with rolling optimizations [202]. Additionally, a
controllable load was implemented. It was summarized that the performance surpasses the
PI controller. In [203,204], the MPC was explored. It was demonstrated that the suggestion
was more powerful than the PI and PID controller. Dissemination [205], which operates
the linear–quadratic regulator-robust model-predictive control (LQR-RMPC) method, sum-
marized its advantages over type-II fuzzy-PID, MPC, PID, and fuzzy controllers. The
adaptive intelligent model-predictive control (AIMPC) method in combination with SCA
was presented and discussed in [206]. It was reported that the method excels over PID and
adaptive fuzzy MPC methods.

Table 4. EVAS as a frequency contingency service with MPC variants.

Ref. Year Control Optimization Benchmark Remark

[198] 2015 MMPC QP PID, MPC. Applying several cases of SoC (30%,
50%, 65%, and 79%).

[199] 2015 MGPC QP PI, FLC.

The prediction was performed by the
controlled autoregressive and
integrated moving average
(CARIMA) model.

[200,201] 2018 DMPC PID, CMPC.

[202] 2019 GPC Rolling
optimization PI.

CARIMA was used as a predictive
model, incorporating a
controllable load.

[203,204] 2019 MPC PI, PID. Using ITAE, IAE, and ISE as
performance evaluation.

[205] 2021 LQR-RMPC N/A Type-II fuzzy-PID, MPC,
PID, fuzzy.

Applying scenarios of wind
disturbance, load disturbance,
parameter uncertainties, and islanded
microgrid operation.

[206] 2022 AI-MPC SCA PID, adaptive fuzzy MPC.

Simulated various scenarios: single
load perturbation (SLP), random load
perturbation (RLP), wind/solar PV
variation, and parameter uncertainties.
Assessing the sum of the squared
errors (SSEs) and mean of the squared
errors (MSEs).

4.2.4. Other Variants

There are diverse trials defining the control practice of EVAS-preserving frequency
contingency services with outlines other than PID, fuzzy, and MPC-type methods. The time
order evolution of other variants as EVAS frequency contingency services control is detailed
in Figure 7, while a collection of fuzzy variants acting as EVAS frequency contingency
services is shown in Table 5. The scholars in [207] demonstrated and promoted an online
reinforcement learning (RL)-based goal representation adaptive dynamic programming
(GrADP) method as a supplementary control signal to a PI controller. It was shown
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that the procedure surpassed the PI controller and FLC. The authors in [181] proposed a
robust controller (H2/H∞) associated with PSO. It was shown that that the method was
preferred over [123] and the PI controller. The trial in [133] explored the coordinated control
strategy. It was shown that the procedure improves frequency stability and renders the
incorporation of renewable energy smoother. Simple linear control (SLC) methods were
proposed in [208]. Taken together with SLC, it also defined the hardware’s design based
on IC556 and ICM7216. Then, an analysis using the region of asymptotical stability (RAS)
was performed. IEEE Case 3 and IEEE New England were implemented as case studies.
Several experts demonstrated the frequency regulation capacity-expected V2G (FRC-EV2G)
control method [209]. This work was an enhancement of [126], which was also published
by the same group. Conjointly, they also proposed a framework to support this strategy.
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Figure 7. Time order evolution of other variants as EVAS frequency contingency services control method.

Table 5. EVAS as a frequency contingency service with other variants.

Ref. Year Strategy Optimization Benchmark Strategy Remark

[207,210] 2014 GrADP N/A PI, FLC, FLC-PSO.
Incorporating the scenario with EV
constraints and communication
delay.

[181] 2014 H2/H∞ PSO Autonomous distributed V2G
control [123], PI. Using IAE as a performance indicator.

[133] 2014 CCS N/A Without V2G.
Simulated in a two-area power
system and using the scenarios of
step and random load variations.

[208] 2015 SLC N/A Without V2G.

Incorporating hardware design,
incorporating an analysis using the
region of asymptotical stability
(RAS), using IEEE Case 3 and IEEE
New England.

[209] 2015 FRC-EV2G
based control N/A Without V2G.

Improvement of [126], proposing the
framework of supplementary
frequency regulation (SFR) with V2G.

[211] 2016 CPN -based control N/A FRC-EV2G-based control [209].

Reducing frequency fluctuations,
using actual data from PJM-ERCOT,
proposing a framework comprising
power generation, transmission,
and substations.

[212] 2016 DFO N/A Open loop, optimal state
feedback, LRO. Incorporating HVDC link.

[213] 2017 ADC CPA N/A.
Investigated by scenario with
respect to positive and negative
changes in frequency.
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Table 5. Cont.

Ref. Year Strategy Optimization Benchmark Strategy Remark

[214] 2017 FDC N/A N/A. The design process incorporates a
Bode plot and eigenvalue analysis.

[215] 2017 OISM NN PID.
A neural network observer was
designed to predict the PV
power disturbance.

[216] 2017 NN-ASMC N/A PI, SMC. Investigated by the scenario of load
and parameter variation.

[217] 2017 HC-DV2G N/A Without V2G, FLC.

Two levels of control; lower-level
controller is a local (decentralized)
fuzzy controller for each parked
PEV, and the upper-level controller
is a centralized coordinate of the
power flow in the entire grid.

[218] 2018 DCC N/A Centralised cooperative control.

[55] 2018 MFNL-SMC MBHA PID, fuzzy-PID, MPC. Involving HiL real-time simulation.

[219] 2018 AMFR N/A Without V2G. No control centre, simulated using
IEEE 14 bus system.

[220] 2018 MAS ACA N/A. Investigated by the scenario of load
variations and time delay.

[221] 2019 H2/H∞ LMI N/A. Incorporating the fluctuation of
WPG and PV.

[222] 2019 IDC ANFIS Droop control, ODC. Involving control of voltage,
simulated using a 14-bus test MG.

[223] 2019 UVF N/A Without V2G. Involving control of voltage.

[224] 2019 COVC PSO DVC [209], without V2G. Incorporating a hierarchical
distributed control framework.

[225] 2019 SFMS N/A N/A.
Involving power
hardware-in-the-loop (P-HiL)
experiments.

[226] 2020 GSC N/A Droop control. Using Great Britain data as a
case study.

[227] 2020 EFRAM NSGA-II N/A. Using a reduced model of the
Nordic power system.

[228] 2020 BoCo-LoDeCo N/A El-Co, Ba-Co, Sm-Ch-Co, Bo-Co.

[229] 2021 SUIO LQR UIO-LQR, Luenberger
observer-LQR.

Incorporating the fluctuation of
WPG and PV.

[230] 2021 H2/H∞ -SOF LMI H∞-SOF.

Simulated using various scenarios:
single-area/three-area power
system and step/random load
variations. Monitoring the
parameters of ISE, mean absolute
error (MAE), mean squared error
(MSE), and standard deviation as
performance indicators.

[231] 2021 FRSM N/A Without FRSM. Using the Jeju Island power
network as a case study.

[232] 2021 SMC LMI PID.

[233] 2021 CCA N/A N/A.
Incorporating power
hardware-in-the-loop (PHIL)
simulation.

[234] 2022 PI-DC N/A Droop control. Incorporating real data from PJM.

[235] 2022 Robust (mixed)
M-synthesis N/A FLC, H∞, µ-synthesis,

mixed-µ controller.
Incorporating the fluctuation of
WPG and PV.

An improvement of [207] was completed by changing the PI into PID [210]. A new
comparison was established by optimizing the FLC with particle swarm optimizations
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(PSOs). The improvement exceeded the PI controller and new FLC-PSO’s performance. A
coloured Petri net-based (CPN) control method was disseminated in [211]. A framework
comprising power generation, transmission, and substation was shown. Verification was
performed with actual data from PJM-ERCOT. The results showed that its performance was
preferred compared to [209]. A distributed functional observer (DFO) control method was
proposed in [212]. The scenario also involves an HVDC link. It was shown that the strategy
chosen was more desirable than the open loop, optimal state feedback, and Luenberger
reduced-order observer (LRO) controller methods. The scholars in [213] used an adaptive
droop control and consensus priority algorithm (ADC-CPA). With the intention to increase
confidence levels, the result was also verified by using an FPGA board. The authors in [214]
used a frequency-droop controller. The method incorporated a Bode plot and eigenvalue
analysis. The experts in [215] revealed that an observer-based integral sliding mode (OISM)
control featuring a neural network was superior to a PID. A neural network observer was
applied to predict PV power disturbances. The authors in [216] used neural-network-based
adaptive sliding mode control (NN-ASMC) as the object of discussion. It was achieved that
the mixture exceeded the PI and SMC both with and without V2G.

Hierarchical centralized–decentralized V2G (HC-DV2G) control methods were de-
picted in [217]. In the framework proposed, the fuzzy controller managed the lower-level
(decentralized) controller for each parked PEV, while the upper-level controller coordinates
the power flow in the entire grid. It was examined that this scenario was better than
no-V2G and conventional FLC conditions. The distributed cooperative control (DCC) was
expanded upon in [218]. It was perceived that compared to centralized cooperative con-
trol methods, it was superior with respect to anticipating wind uncertainty and provided
quicker communication. A model-free nonlinear sliding model controller (MFNL-SMC)
optimized with MBHA was proposed by [55]. A hardware-in-the-loop (HIL) real-time sim-
ulation was also completed for authentication processes. It was detected that the outcome
was more desirable than the fuzzy-PID, MPC, and PID. Asynchronous method frequency
regulation (AMFR) was depicted in [219]. The asynchronous features of this method require
no control centres. The system proved to work well in simulations using the IEEE 14 bus
system. Multiagent system (MAS) control methods were investigated in [220]. The average
consensus algorithm (ACA) was applied as a rule among EVs. It was proven that the
technique was able to anticipate disturbances in the system. A group of experts offered a
linear matrix inequality (LMI) robust optimized controller [221]. The simulations in [146]
matched the tilt integral derivative (TID) and ABCO. The results revealed that, with the
same topology, the chosen optimization was better than PSO and GA methods. Conven-
tional droop control methods trained by an adaptive neuro-fuzzy inference system (ANFIS)
were proposed in [222]. Simulated using a 14-bus test MG droop control method, the results
surpass overall droop controllers (ODC) and untrained droop controllers. Not only did the
frequency deviation become better, but the voltage was also controlled within tolerance
levels. Several scholars suggested the unification of the voltage–frequency (UVF) control
strategy [223]. The suggestion successfully outperformed the condition, whereas no V2G
was involved. The co-optimal V2G control (COVC) controller parameter was optimized by
using PSO [224]. A hierarchically distributed control framework was proposed to support
the strategy. As a result, it was confirmed that the idea was more successful than that
in [209] and the no-V2G condition. A group of experts applied the smart fleet management
strategy (SFMS) [225]. The experimental hardware test not only used software but was also
performed by using power hardware-in-the-loop (P-HiL) simulations.

In [226], a Great Britain dataset was applied for grouping strategy control (GSC)
methods. It was summarized that this strategy beat the performance of droop control.
The simulations in [227] made use of the Nordic power system. A combination of the
enhanced frequency responsive aggregate model (EFRAM) and nondominated sorting
genetic algorithm II (NSGA-II) was suggested. A bounded control–low degradation control
(BoCo-LoDeCo) method was submitted in [228]. The investigator concluded that it per-
formed better than other schemes: elementary control (ElCo), balance control (BaCo), smart
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charging control (SmChCo), and bounded control (BoCo). The stochastic unknown input
observer-linear quadratic regulator (SUIO-LQR) strategy was investigated in a system
with the fluctuation of WPG and PV [229]. It was presumed that the option was more
acceptable than UIO-LQR and the Luenberger observer-LQR controller. H2/H∞ static
output feedback (SOF) was equipped with the LMI algorithm [230]. It was resolved and
shown that the selection was more attractive than using the H∞-SOF controller. Using the
Jeju Island power network as a case study, the frequency regulation with SoC management
(FRSM) strategy was carried out [231]. It was substantiated that the proposal was more
credible than the condition with no FRSM. Simulations were performed to examine the
LMI-optimized sliding mode control (SMC) method [232]. It was shown that the couple
delivered better results over the PID controller. The coordinated control algorithm (CCA)
was proposed in [233]. The results were validated against power hardware-in-the-loop
(PHIL) tests. Real data from PJM were applied to investigate power-imbalance-based droop
control (PI-DC) [234]. It was observed that the console overtakes the performance of the
droop controller. In a system with fluctuating WPG and PV, the robust (mixed) M-synthesis
strategy was replicated [235]. It was discovered that the result outdistanced FLC, H∞,
µ-synthesis, and mixed-µ controllers.

4.3. Inertia Service

There are eight articles that discuss how EVAS controls provided inertia services ten
years ago. A collection of control techniques for EVAS as inertia services is shown in Table 6.
A combination of inertia emulation and droop control was proposed and investigated
in [236]. The results show that the combined inertia emulation and droop control strategy
performed better than only using inertia emulation/droop control individually. Several
experts advocated a virtual synchronous machine (VSM) structure [237]. Liu et al. proposed
a synchronverter as a model of inertia services by EVAS [238]. The T-S fuzzy control method
also stipulated the reference charging power. Moreover, an adaptive algorithm was applied
to the frequency drooping coefficient to adjust the changing conditions. A similar technique
as the method proposed in [237] was proposed in [239]. The improvement of its predecessor
comprised the implementation of the multiobjective-PSO (MO-PSO) algorithm to adjust its
parameter. A two-stage control was presented and was proven to be better than an integral
controller [240]. A droop-virtual inertia controller technique similar to [236] was reported
in [241]. The simulation was performed using an OPAL-RT simulator while involving
faults such as a disturbance scenario and PV fluctuations. The self-adjusted feature was
introduced in [242], and it was verified that it was healthier than [241]. A noninteger MPC
combined with an improved whale optimization algorithm (IWOA) was installed in the
inertia service EV [243]. It was reported that services were delivered more compared to
MPC and model-free SMC. In order to guarantee verifications, real-time simulations based
on dSPACE hardware and the fluctuation of WPG and PV were involved.

Table 6. EVAS as an inertia service.

Ref. Year Strategy Optimization Benchmark Remark

[236] 2015
Inertial
emulation-droop
control

N/A Droop control, inertial emulation.

[237] 2016 VSM N/A N/A. Applying the scenario of step load
changes and sudden islanding.

[238] 2018 Synchronverter N/A N/A.

Proposing T-S fuzzy control for
stipulating the reference charging
power, the frequency drooping
coefficient is calculated using an
adaptive algorithm.

[239] 2019 VSM MO-PSO N/A.
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Table 6. Cont.

Ref. Year Strategy Optimization Benchmark Remark

[240] 2019 Two-stage control N/A Integral control.
Applying the scenario of both
grid-connected and islanded
operations.

[241] 2019 Droop-virtual
inertia controller N/A N/A.

Using an OPAL-RT simulator
involving faults such as a
disturbance scenario and
incorporating PV fluctuations.

[242] 2020
Self-adjusting
inertia emulation
control

N/A Droop-virtual inertia
controller [241].

[243] 2021 Noninteger MPC IWOA MPC, model-free SMC.

Involving real-time simulations
based on dSPACE hardware and
incorporating the fluctuation of
WPG and PV.

4.4. Voltage Regulation

Although there are not as many EVASs for frequency regulation and contingency,
there are some scientific papers that demonstrate EVAS control modes in delivering voltage
regulation services. A collection of studies on using EVAS in voltage regulation is shown in
Table 7. An FLC was used in [244]. This paper used real data with a 56-node distribution
network from Guwahati City. In this paper, voltage was not only regulated, but the load
profile was also flattened. An EV-based dynamic voltage restorer (DVR) was implemented
in [245]. A distributed MPC as a control strategy was simulated [246]. In order to support
this, a framework titled DMPC is also outlined in the table.

Table 7. EVAS as a voltage regulation service.

Ref. Year Strategy Remark

[244] 2012 FLC Using real data with a 56-node distribution network from Guwahati City, not
only regulating the voltage but also flattening the load profile.

[245] 2013 DVR

[246] 2022 DMPC Proposes the DMPC framework.

5. Discussion and Future Research Directions

Similar to the other fields of technology, control techniques also evolve from time to
time. In the case of PID variants, it is forecasted that issues such as automatic tuning and
event-based control methods will attract the attention of many researchers [247]. For the
MPC, possessing a finite horizon, which later causes instability issues, pushed research
studies to solve these issues [248], while for fuzzy variants, the research path will be
the implementation of the type-2 fuzzy model and the combination with other control
techniques (e.g., adaptive-fuzzy, robust-fuzzy, etc.) [249]. As many control topologies
combine with an algorithm, forming an optimal control duo, advances in the optimization
will produce many variations that can be experimented [250]. Outside of control variants,
the rise of artificial intelligence (AI) and its possible applications in control applications
result in more research studies in this field [251]. As a controllable plant, EVAS will
surely become a focus in developing previously illustrated control techniques. Thus, it can
be predicted that the trend of EVAS control research will comprise the implementation
novel conventional control variants and the application of an advanced algorithm for
optimization.

From a grid point of view, in future, it is not only renewable energy (SPV and WPG)
that will be connected but also advanced energy sources such as SMES, UC, and FCES.
For SMES, several trials have been reported, such as in Bonneville Power Administration,
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Washington, where results as significant as 30 MJ have been reported [252]. As for FCES,
Siemens has plants in Germany and Dubai, while Mitsubishi Power Americas aims to store
150 GWh by the mid-2020s [253,254]. The dynamics of these plants and their variations
(fluctuation, sudden change, etc.) will enrich possible scenarios in the grid. Henceforward,
this will provide possibilities for EVAS controls, achieving the most appropriate solution.
With the high demand for external computer simulation verifications and increased eco-
nomic feasibility, it is projected that the usage of hardware-in-the-loop (HiL) simulations
will increase in the future. Furthermore, originating from the aerospace area, there is
an open possibility of the employment of digital twin (DT) methods for EVAS control
verification [255].

While several services are open for EVAS, most research studies accomplished ad-
vances in frequency regulation and contingency services. On the contrary, only a handful
of reports have been published with respect to inertia and voltage regulation services.
With the emergence of virtual inertia technology and its market opening in several coun-
tries, there is a massive possibility for EVAS to fill this research gap [256]. Hence, it is
predicted that more research will be conducted on EV inertia service control operations in
the coming years. The same condition is applied to voltage regulation services. Although
EVs merely act as energy lenders to their parallel capacitor for voltage regulation, with
the massive growth of EVs and their investment-free battery features, it is predicted that
voltage-regulation EVASs will be popular in the future and the control strategy for this
type of service will be an attractive topic of future research studies.

Another low-hanging fruit could be obtained from the recent trend of EVAS as a
frequency contingency service, which cascades two PID controllers to achieve better results.
A similar approach could be used to simulate fuzzy and MPC variants with two fuzzy or
two MPC controllers cascaded. Although there will be an increase in computation burden,
with recent advancements in computation technology, such as faster CPU, GPU utilisation
for computation, and parallel computing, this gap has the potential to be explored further.

6. Conclusions

In this paper, comprehensive studies on the control strategy implemented on EVASs
were outlined. A brief explanation of control theory was presented. A short description of
the optimization algorithm and its initial involvement in control techniques was provided.
Then, with the aim of reviewing the control strategies of EVAS, literature surveys were
conducted on each ancillary services category. Due to the presence of numerous papers in
the frequency contingency service category, subcategorization was performed by control
variants: PID, fuzzy, MPC, and others. Although considered the most ancient compared to
other variants, PID is ahead of its competitors for its computational simplicity and pace.
However, for fuzzy variants, while their characteristic of non-numerical has advantages
of initial development, it also has a negative drawback in terms of tuning difficulties.
Moreover, its back-to-back process of fuzzification–defuzzification also impacts the matter
of expensive computation. As the most recent development, MPC is superior regarding its
objective result; however, regarding the process of continuous optimization over a moving
receding horizon, the computation burden is even more significant than the previous one.
With the influx of novel development of optimization algorithms, especially metaheuristic
ones, ample opportunity is open for mixing and matching it with existing control strategies.

For all four EVAS categories, each paper was summarized to provide insight for
any prospective scholars who plan to conduct research in a similar field. By reading this
paper, future research duplication can also be prevented, and any remaining research
gaps in this field can be determined with more clarity. In addition, the future direction
of research in this area was also presented. This work shows that there are prospective
areas for research, especially with respect to the inertia and voltage regulation service
ancillary market. With the progression of trends such as novel control techniques, artificial
intelligence/machine learning/deep learning implementation, various sophisticated energy
storage, and their dynamics, the field of EVAS control is promising for further investigation.
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Finally, considering the similarity of frequency contingency–inertia ancillary services, it
is recommended to replicate the already-matured EVAS frequency contingency pattern
into an inertia ancillary service case. In addition, the novelty of training techniques and
nonconventional energy storage could also be placed into the picture.
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Abbreviations

2DOF Two-degree-of-freedom
ABCO Artificial bee colony optimization
ACA Average consensus algorithm
ADC Autonomous distributed control
ADE Adaptive differential evolution
ADRC Active disturbance rejection control
AEFA Artificial electric field algorithm
AHA Artificial hummingbird algorithm
AIMPC Adaptive intelligent model-predictive control
AMFR Asynchronous method frequency regulation
ASMC Adaptive sliding mode control
ASO Atom search optimization
BHA Black hole algorithm
BSH Battery SoC holders
CARIMA Controlled autoregressive and integrated moving average
CC Cascaded control
CCA Coordinated control algorithm
COVC Co-optimal V2G control
CPA Consensus priority algorithm
CPN Coloured Petri net-based
DCC Distributed cooperative control
DE Differential evolution
DEPSO Differential evolution particle swarm optimization
DFO Distributed functional observer
DPFRC Decentralized primary frequency regulation control
DVC Distributed V2G control
DVR Dynamic voltage restorer
EFRAM Enhanced frequency responsive aggregate model
EHO Elephant herding optimization
EO Equilibrium optimizer
EVAS Electric vehicle as an ancillary service
FGD Fractional gradient descent
FLC Fuzzy logic controller
FMC Frequency modulation control
FO-PID Fractional order PID
FPA Flower pollination algorithm
FPID Fuzzy PID
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FRC Frequency regulation capacity
FRSM Frequency regulation with SoC management
GA Genetic algorithm
GPC Generalized predictive controller
GrADP Goal representation adaptive dynamic programming
GSC Grouping strategy control
GWO Grey wolf optimization
HC-DV2G Hierarchical centralized–decentralized V2G
HHO Harris’s hawks optimization
HIL Hardware-in-the-loop
HSA Harmony search algorithm
ICA Imperialist competitive algorithm
IT2 Interval type-2
JA Jaya algorithm
LMI Linear matrix inequality
LQR Linear–quadratic regulator
LRO Luenberger reduced-order observer
MAS Multiagent system
MBA Mine blast algorithm
MBOA Magnetotactic bacteria optimization algorithm
MFNL Model-free nonlinear
MGPC Multivariable generalized predictive control
MMPC Multiple model-predictive controller
MO Multiobjective
MPA Marine predator algorithm
MVO Multiverse optimizer
NSGA-II Nondominated sorting genetic algorithm ii
OD Optimal dispatch
ODC Overall droop controllers
OISM An observer-based integral sliding mode
PI-DC Power-imbalance-based droop control
PSO Particle swarm optimization
QO Quasi-opposition
QP Quadratic programming
RAS Region of asymptotical stability
RL Reinforcement learning
RMPC Robust model-predictive control
RO Rolling optimization
SCA Sine cosine algorithm
SDV2G Smart decentralized V2G
SFMS Smart fleet management strategy
SLC Simple linear control
SMC Sliding mode control
SOA Seagull optimization algorithm
SOF Static output feedback
SSA Nondominated sorting genetic algorithm ii
SUIO Stochastic unknown input observer
TI/D Tilt integral/derivative
TLBO Teaching–learning-based optimization
UVF Unification of the voltage–frequency
VPLA Volleyball premier league algorithm
WCA Water cycle algorithm
WDO Wind-driven optimization
WOA Whale optimization algorithm
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