
Citation: Manikandan, G.; Kanna,

P.R.; Taler, D.; Sobota, T. Review of

Waste Cooking Oil (WCO) as a

Feedstock for Biofuel—Indian

Perspective. Energies 2023, 16, 1739.

https://doi.org/10.3390/en16041739

Academic Editor: Mohammad Rasul

Received: 10 January 2023

Revised: 27 January 2023

Accepted: 3 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

Review of Waste Cooking Oil (WCO) as a Feedstock for
Biofuel—Indian Perspective
Gurunathan Manikandan 1 , P. Rajesh Kanna 2 , Dawid Taler 3 and Tomasz Sobota 3,*

1 Department of Mechanical Engineering, Velammal College of Engineering and Technology,
Madurai 625009, India

2 CO2 Research and Green Technologies Centre, VIT, Vellore 632014, India
3 Faculty of Environmental Engineering and Energy, Cracow University of Technology, 31-155 Cracow, Poland
* Correspondence: tomasz.sobota@pk.edu.pl

Abstract: A detailed review was conducted to explore waste cooking oil (WCO) as feedstock for
biodiesel. The manuscript highlights the impact on health while using used cooking oil and the
scope for revenue generation from WCO. Up to a 20% blend with diesel results in less pollutants, and
it does not demand more modifications to the engine. Also, this reduces the country’s import bill.
Furthermore, it suggests the scope for alternate sustainable income among rural farmers through a cir-
cular economy. Various collection strategies are discussed, a SWOC (strength, weakness, opportunity,
and challenges) analysis is presented to aid in understanding different countries’ policies regarding
the collection of WCO, and a more suitable method for conversion is pronounced. A techno-economic
analysis is presented to explore the viability of producing 1 litre of biodiesel. The cost of 1 litre of
WCO-based biodiesel is compared with costs Iran and Pakistan, and it is noticed that the difference
among them is less than 1%. Life cycle assessment (LCA) is mandatory to reveal the impact of WCO
biodiesel on socio-economic and environmental concerns. Including exergy analysis will provide
comprehensive information about the production and justification of WCO as a biodiesel.

Keywords: waste cooking oil; biodiesel; circular economy; economic analysis

1. Introduction

Waste or used cooking oil (WCO/UCO) is a common source of trans fat consumed
by Indians, leading to many non-communicable diseases like diabetes, hypertension,
cardiovascular diseases, stroke, cancer, etc. [1]. Although many medical practitioners have
cautioned about the harmful effects of WCO, its usage has been found to be increasing,
mainly due to the volatile pricing of imported cooking oil in India. It was found out that
nearly 60% of the national oil consumption is met by importing WCO, and it is priced
dubiously, influencing consumers to reuse the oil repeatedly [2]. However, this WCO could
be used to efficiently and effectively replace feedstock in a biodiesel plant. WCO as a
feedstock offers the twin advantages of breaking the food supply chain that is causing
harmful diseases and providing a cheaper alternative to the growing demands of fossil
fuels. Also, using WCO as a feedstock helps to reduce the production cost of biodiesel [3].
Various other benefits like lower dependence on fossil fuels, improved environmental
quality, and an additional source of income for small food vendors are also reported by
many researchers while using WCO as a feedstock for biodiesel production [4–6]. Many
nations are setting a target of meeting their 10 to 20% transportation fuel needs through
the use of WCO-based biodiesel to their advantage [7]. The Indian government is also
intending to collect 5% of its edible oil consumption as a feedstock for biodiesel production,
according to its recent biofuel policy [8,9].

Energies 2023, 16, 1739. https://doi.org/10.3390/en16041739 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16041739
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-6859-3779
https://orcid.org/0000-0002-3430-7575
https://orcid.org/0000-0002-5191-2785
https://doi.org/10.3390/en16041739
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16041739?type=check_update&version=1


Energies 2023, 16, 1739 2 of 17

Circular Economy—An Incentive to Use WCO as a Feedstock

Even with all these advantages, the collection of WCO comes with many problems,
and as a result, many countries have developed their own regulatory and incentive-based
collection mechanisms. In general, there are two types of WCO collection mechanisms:
1. biodiesel enterprise takeback (BET), and 2. third-party takeback (TPT). Most of the
successful WCO recovery countries, like the United States of America and Japan, follow
the TPT mechanism, and other countries like China, Brazil, etc., follow the BET mechanism
with some modifications to suit their specific conditions [3]. India, too, developed a
unique circular economy model (Figure 1) for WCO collection from different sources. India
consumes the third largest amount of edible vegetable oil (over 24,660 ML per annum)
in the world. Of that total, 40% of the oil is consumed by commercial food and beverage
operators (FBO) and the remaining 60% by domestic households. Although the huge
potential of over 15% of the oil consumption is there for biodiesel production, due to the
lack of an effective supply chain and enforced collection mechanism, only 0.133% of the
WCO is collected. This vast gap forced the various stakeholders of the Indian government
to formulate and release a determined biofuel policy in the year 2018. In addition, the
Goods and Services Tax imposed on biodiesel was reduced from 12% to 5% to increase the
use of WCO as a feedstock [10].
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Recent research on pricing WCO-based biodiesel also encourages the move to consider
WCO as an important feedstock for biodiesel production. It was reported that nearly 60%
to 70% of the production cost will be reduced in comparison to the use of vegetable edible
or non-edible oils [11–13].

2. Suitability of WCO as a Feedstock for Biodiesel Production

In order to overcome the difficulties associated with depleting fossil fuel resources,
biodiesel offers an excellent alternative, as it is produced from renewable feedstocks such
as vegetable edible oils, WCO, or non-edible vegetable oils like Jatropha, among oth-
ers. Biodiesel is a mono alkyl ester of long-chain fatty acids produced from renewable
feedstocks [4].

2.1. WCO as a Feedstock for Biodiesel Production to Address Social Challenges

Although medical professionals have cautioned that the Indians are consuming 20%
more than the world per capita average of edible oils, the increasing trend is likely to
continue, and it was found to be 19 kg per annum. This rising demand is met by importing
edible oils after spending about 40% of the total agricultural imports bill, making biodiesel
production from edible vegetable seeds unethical [14,15]. However, the import of edible
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oils has been predominant even in recent years (Figure 2). Moreover, the availability of
wasteland and water resources for the cultivation of non-edible vegetable feedstocks poses a
considerable problem, leaving WCO as the only sustainable option for biodiesel production.
Nevertheless, the safe disposal of WCO is an added advantage for using it as a feedstock.
Most often, WCO is not disposed of but used until the last drop, leaving the consumers
with several health hazards. Especially, WCO in big commercial food establishments is
sold to small eateries and used in household applications which amount to nearly 60% of
the total edible oil consumption. Due to this, it was evident that consumers contracted
many non-communicable diseases like cardiovascular diseases, cancer, and organ failure.
Therefore, WCO could be an excellent option for biodiesel production [1].
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Figure 2. Total annual consumption and import of edible oil.

2.2. WCO as a Feedstock for Biodiesel Production to Address Technological Challenges

Up to 20% of biodiesel blended with diesel does not require engine modifications and
results in better emission quality than petrol–diesel engines [11]. Several studies indicate
that the use of WCO biodiesel resulted in reduced emission of particulate matter (PM),
carbon monoxide (CO), and hydrocarbons (HC) [16–19].

Especially in India, environmentally sustainable fuel is essential for the growing
transport sector, whose conventional diesel consumption is predicted to reach 132 MKL,
resulting in nearly 3 times the CO2 production [7]. Although the pour point of the biofuel-
blended diesel will be increased, researchers have demonstrated that the addition of suitable
bioadditives solves this problem [19].

2.3. WCO as a Feedstock in Biodiesel Production to Address Economical Challenges

India’s transport sector requires about 132 MKL of diesel and contributes 6.7% of
India’s gross domestic product (GDP), with nearly 81% of the crude demand being met by
imports. With the Indian government target of 5% of blending with biodiesel, WCO can be
a perfect alternative, with the potential to save 10% of the import costs of INR 10,000 crores
(INR 100 billion) [9].

Many recent research findings have contributed to the fact that WCO is an essential
feedstock for biodiesel production, especially in isolated rural locations with a shortage of
conventional fuel supply facilities. Collection of WCO paves the way for additional income
to many collectors involved in the WCO biodiesel supply chain [11,20]. Furthermore,
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this collection of WCO could very well augment the Indian government’s Biofuel Policy
2018 and National Mission on Edible Oils—Oil Palm 2021 as a suitable alternative in the
biodiesel supply chain [15].

Poverty reduction through income generation for a low-skilled population is also
reported in many works concerning WCO collection through community collectors [19–22].
One of the biggest challenges in the WCO biodiesel supply chain is the collection, which is
well addressed by recent research on circular economies. Many issues like seasonal variation
of feedstock, availability of appropriate volume of feedstock for transportation, and real-
time information could be easily solved using this circular economy model (Figure 1) [23].

3. Overview of WCO Collection Mechanisms

A recent study on biofuel feedstock reveals that China, Japan, and Korea use WCO as
a major feedstock for biodiesel production [24]. However, in India, WCO is little-used as a
feedstock for biodiesel production, with a contribution of 0.133% against the set target of
5% of conventional diesel fuel. Therefore, a country like India must study the best practices
of those countries like Brazil, China, Japan, the United States, and Korea pertaining to
collection methods [10]. Margarida Ribau Teixeira et al. (2018) [25] reported that out
of WCO production from 23 countries, India’s per capita WCO production is abysmally
deficient [26].

Several studies indicated that the collection of WCO from usage sectors is the major
hindrance in using it as a feedstock in the biodiesel production chain [11,26]. It was reported
in recent research that WCO-based biodiesel forms an essential component in meeting the
United Nations (UN) Sustainable Development Goals (SDG), especially 2 (Zero Hunger),
3 (Good Health), 11 (Sustainable cities and communities), and 13 (Climate action) [27].
In order to obtain a positive image among the nations, many countries have formulated
several incentive policies to collect WCO from their food supply chains. A comprehensive
SWOC analysis of the initiatives of the different countries for WCO collection is presented
as follows (Table 1):

Table 1. SWOC analysis of different countries’ WCO collection policies.

Country Strength Weakness Opportunity Challenges

Brazil
Appropriate replacement of
high-productivity soybean

oil feedstock [28].

Because of the scattered
logistics and collection

infrastructure, the cost of
WCO might be higher

than fossil diesel,
especially in urban

areas [29,30].
The transport cost of
WCO from collection

points to biodiesel
factories is greater [20].

WCO meets only 0.5% of
the present energy

needs [20].
Acts as an additional
income source for the
low-skilled employee

population [20].
Reduces water

contamination and
improves aquatic life [20].

Potential to be recirculated
to the food supply

chain [30].
As low-skilled employees
perform the collection in a
disordered manner, supply
at the required volume for

biodiesel plants is not
being attained [20].

China
Due to the various incentives
to the collectors, illegal WCO

recycling is reduced [31].

Many commercial
establishments sell their
WCO to illegal peddlers

for profit [32].

Incentives are given to
restaurants using WCO

biodiesel for power
generation [32].

Smaller establishments
often pay the fine and send

their WCO to sanitation
management [32].

Japan

Subsidies to the biodiesel
producers are provided to

reduce production costs [16].
Biodiesel is used as a fuel in

transporting WCO [33].

The difference in pricing
between different

third-party recyclers
using different level of

technologies
prevails [31].

Biodiesel producers were
given tax waivers to
increase their profit

level [34–36].
Transaction taxes are

waived for consumers who
use 100% biodiesel [31].

Advanced recycling
technologies must be
introduced in all the

biodiesel plants to sort out
the price difference [36].
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Table 1. Cont.

Country Strength Weakness Opportunity Challenges

United
States of
America

Biodiesel producers can
receive 0.5 USD/gallon,

resulting in a nearly 100%
WCO recycling rate [36].

Due to the higher
incentive than in other

countries, strict control is
required to stop illegal
WCO supply into their

biodiesel supply
chain [32].

The federal government
imposes stricter control
measures on restaurants.
Restaurants can obtain

better health ratings and
attain price subsidies and

tax benefits [36].

A high degree of
administration and control

is required.
The absence of a direct

incentive mechanism for
restaurants affects the

collection of WCO [36].

Korea
Command and control

measures for households in
WCO collection [36,37].

Local recyclers often
neglect households with
a small quantity of WCO

produced [33,38].

Only 18% of the household
WCO is collected [38].

The Korean government
increases the blend ratio

from 2.5% to 3% [39].

Unlike the United States,
Korea does not have

carbon-saving criteria,
even if its transport

consumption is about 25%.
Therefore, the motivation
for WCO in the transport

sector is low [39].

India

Strict rules are enforced for
food business operators

(FBO) whose daily edible
consumption exceeds 50 L.
Well-structured guidelines

formulated for WCO
collection from FBOs.

Total polar compounds (TPC)
in edible oil are fixed at 25%;
oil crossing this limit should
be documented and given to
the biodiesel producers [10].

Low-level societal
awareness among
WCO-producing
households and

restaurants prevails.
Poor compliance from

FBOs due to the demand
for WCO from roadside

eateries [2].

Only 20% of the potential
WCO is collected at present.

Almost 60% of the WCO
makes its way back into the

food chain [2].
India has the potential to
collect 1.4 billion litres of

WCO [39].

Indifferent policy of
allowing the topping of

fresh oil to reduce free fatty
acid (FFA) levels in

restaurants.
Ineffective ground-level

implementation by
FSSAI [2].

India at present adopts a strategy of education, enforcement, and ecosystem (EEE) for
collecting WCO from households and FBOs. Considering the growing urbanisation and
younger demographic advantage, this strategy is appropriate. However, the implementa-
tion of stricter rules and regulations at the grassroots level by enforcing agencies like the
Food Safety and Standards Authority of India (FSSAI) and the Ministry of Petroleum and
Natural Gas are found to be ineffective [2]. India should adopt an incentive-based approach
similar to that of the developed nations mentioned above to increase WCO collection.
Initiatives like eat-right campus awards among educational institutions effectively educate
the student population about the harmful effects of reusing WCO in the food chain. This
rating should be made mandatory for all accreditations of educational institutions [40,41].

The FSSAI should also consider enforcing stricter regulations for FBOs consuming less
than 50 litres/day. In addition, they should adopt a health rating for FBOs as an essential
prerequisite for licence approval [42]. Various studies have elucidated that the disbursal
of incentives to restaurants and households for depositing WCO is highly effective in
its collection [43–46]. Regarding a suitable ecosystem for better WCO collection, it was
reported in the research literature that small FBOs, especially roadside food vendors, due
to a lack of storage space and inadequate filtering equipment, do not submit their WCO
and often drain it into sewer lines [2,46].

However, if suitable incentives had been given to the biodiesel producers instead of the
recyclers, WCO collection would have improved [35]. For example, with the participation
of biodiesel-producing companies, local FBOs, and local FSSAI officials, Madurai, a city in
India, was able to collect 30 tonnes of WCO in the year 2020, out of which nearly 70% was
used for biodiesel production [47]. Similar WCO collection models could be extended to all
the cities of India. India should also think about providing such incentives to household
consumers and FBOs. Based on the above SWOC analysis, the authors of this paper
recommend the following model (Figure 3) for enhanced WCO collection.
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4. WCO-to-Biodiesel Conversion Technologies

Many conversion technologies are available for turning WCO into biodiesel, like hy-
drotreating, gasification, pyrolysis, and transesterification [18]. However, Tabatabaei et al. [48]
reported that the transesterification technique is the most economical and environment-
friendly conversion method for biodiesel production from WCO after comprehensively
reviewing all the conversion technologies. Transesterification is the process of fatty acid or
vegetable oil reaction in the presence of a monohydric alcohol, catalysts, and heat over a
period of time (Figure 4) [49–51].
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As a competitive conversion technology, the advantages of the transesterification
process are presented in (Table 2).

Table 2. Competitiveness of transesterification process for WCO biodiesel production.

Competitiveness Reference

Eco-friendly [48]

Increased volatility and reduced viscosity, molecular weight, flash point,
and pour point [52]

Requires no engine modification [4,53]

Better biodegradability, combustion efficiency, and lubricity; higher cetane
number; and lower sulphur and aromatic content compared to

conventional diesel
[54–56]

Lower hydrocarbon, particulate matter, and unburnt carbon emissions [57,58]

Lower stress on the environment and food security [59]

Low-cost feedstock with higher yield [60]

Wide choice of catalysts for better yield [61]

Suitable for catalytic hydrotreating to improve the storage stability [62]

Even with these advantages, several studies reported limitations of the transesterifi-
cation process for WCO biodiesel conversion due to its high FFA content. Generally, oils
having greater than 1% content of FFAs are not suitable for transesterification using basic
catalysts. Without pre-treatment, the biodiesel yield will be drastically reduced because
of the saponification effect. However, these pre-treatment processes are expensive and
time-consuming and need to be replaced with methods using more effective heterogeneous
solid bifunctional catalysts [49,63–66].

Traditionally, homogeneous catalysts such as KOH, NaOH, potassium methoxide, and
sodium methoxide are used for biodiesel conversion due to their ability to facilitate the
transesterification reaction at relatively very low temperatures and high reaction rates over
4000 times faster than acid catalysts. Even with all these advantages, these homogeneous
base catalysts’ transesterification processes are suitable only for oils with less than 1% FFA
content, i.e., food-grade oils. WCO conversion to biodiesel using these catalysts requires
the reduction of FFAs by several pre-treatment processes. In addition, the biodiesel yield
will be low due to high FFA content and impurities in the WCO [67,68].

Recently, researchers demonstrated that using heterogeneous catalysts for biodiesel
conversion eliminates the costlier post-reaction washing problems, resulting in better
biodiesel yield. Because these heterogeneous catalysts are in a different state (solid), the
reacting medium can easily be separated effectively from the post-reaction mixture by
filtration and centrifuging. In addition, these separated solid catalysts can be reused,
thus making the biodiesel conversion process a more economical one. In addition to this,
the quality of biodiesel produced from the solid catalysts is very good due to the lower
level of dissolved metals and other elements. However, even with all these advantages,
the use of heterogeneous catalysts is limited in industry because of the following issues:
severe reaction condition requirements [69], slower reaction rate due to the mass transfer
resistance [70], solid base catalysts being suitable only for oils with up to 3% FFA content
under mild reaction conditions [71], and heterogeneous acid catalysts requiring higher
temperature and more reaction time for converting WCO [72].

Therefore, recent research on biodiesel production techniques has focused on using
heterogeneous bifunctional catalysts to accomplish transesterifying triglycerides and es-
terifying FFAs simultaneously under moderate reaction conditions. These bifunctional
catalysts are found to be best suited for biodiesel production from WCO, even with their
high FFA content and moisture content (Figures 5 and 6) [73–75].
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Recently, researchers have also aimed at using a new catalytic system from a biosource
incorporated into transition metal oxides, which is biodegradable, environmentally friendly,
and renewable, for the conversion of biodiesel from WCO utilising the advantages of
heterogeneous bifunctional solid catalysts. The cost of feedstock and prices of cata-
lysts are the significant costs involved in biodiesel production; using catalysts from
bioresources which would otherwise go waste will certainly bring down the cost of
biodiesel [49,51,64,65,69–71,73]. India at present has 32 biodiesel plants across the country,
producing over 4000 tonnes per day, which can make use of the country’s rich bioresources
as suitable catalysts in the transesterification of triglycerides and esterification of FFAs
in WCO, obtaining an economic advantage over the other global biodiesel-producing
countries [2,76].

5. Techno-Economic Analysis of WCO Based Biodiesel

One of the chief advantages of WCO biodiesel is its contribution to the circular econ-
omy and the United Nations Sustainable Development Goals (SDG). The circular economy
focuses on adding higher value to the recycling of low-cost bioresidues in a sustainable and
environmentally friendly way. This unique advantage attracts many nations to adopt the
production of WCO biodiesel. Additionally, the safe disposal and health benefits associated
with terminating WCO in the food supply chain motivate countries to adopt WCO biodiesel
production. However, many researchers pointed out that the collection and pre-treatment
of WCO prior to transesterification involve many environmental issues. Especially, the
energy and chemicals used in the pre-treatment process might affect the sustainability of
WCO biodiesel production [27,77–81].

Various researchers ascertained that life cycle assessment (LCA) should be carried out
to study WCO biodiesel’s impact on socio-economic and environmental concerns. For any
product or process to be viable, it is necessary to analyse its full impact on the environment
using a knowledge-based decision support system like LCA. The LCA model for a WCO
biodiesel often focuses on mass and energy balance parameters. LCA mandatorily includes
all the products (mass) and all the work and heat energy required for the transformation of
WCO into biodiesel, along with their complete impact on the environment. Such an LCA
analysis focuses on the transformation process and the greenhouse gas (GHG) emissions to
evaluate the method’s effectiveness in meeting the SDGs prescribed by the United Nations.
For its member countries, especially India, which aspires to balance economic growth and
environmental impact assessment, these LCA studies on WCO biodiesel are highly useful
in finding the best fuel mix of biofuel and fossil fuel [82–86].
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Ideally, any techno-economic analysis of a process or product should offer solutions
to technical and economic problems to make that particular product or process profitable
and sustainable. However, similar assessments performed on WCO biodiesel often lack
clarity on the part of environmental emissions, resource starvation, and thermodynamic
aspects because of the uncertainties associated with the collection of WCO. Therefore, an
exhaustive LCA should focus on energy analysis as well as exergy analysis to arrive at an
informed decision on WCO biodiesel production by evaluating different processes from
the environmental sustainability perspective [3,87–89].

Many studies are available on energy analysis of WCO biodiesel production in India,
but an exhaustive energy and exergy analysis covering the entire spectrum of India is the
need of the hour. This is more important considering that the collection and production
techniques of WCO in India vary drastically compared to other countries. The lack of
uniformity in the policy of WCO collection and pricing of biodiesel, lack of conclusive prior
data available on energy, and lack of cost analysis of biodiesel production make an LCA
study a difficult proposition [3,10,90]. However, with the maturity level of the transesterifi-
cation process, India can use other countries’ energy and cost analyses without any loss of
accuracy. A typical energy and cost analysis of the transesterification process used for WCO
biodiesel is presented in Table 3. Various energy indicators [6] are tabulated in Table 4,
and the energy equivalent of the same information is shown in Figures 6 and 7 [81,91,92].
Figure 8 illustrates the comparison of various energy indicators for India and Iran.

Table 3. Quantities inputs and outputs for producing one litre of biodiesel.

Head Unit Amount per Litre of Biodiesel * Energy Equivalent (MJ/L)

India [87] Iran [89] Pakistan [81] India [87] Iran [89]

Inputs
1. Human Labour

2. WCO
3. Alcohol
4. Catalyst

5. Electricity
6. Machinery

(hours)
(L)
(L)

(kg)
(kWh)

(hours)

0.036
1.009
0.271
0.015
0.013
0.240

0.033
1.184
0.169
0.012
0.002
0.100

0.011
1.027
0.216
0.171
0.165
0.001

0.071
25.225
9.125
0.298
0.155
0.24

0.065
30.181
5.807
0.239
0.046
0.314

Input energy 35.114 36.652

Outputs
1. Biodiesel

2. Glycerol, Monoglyceride,
and Diglyceride

3. Alcohol

(L)

(L)

(L)

1.000

0.205

0.001

1.000

0.096

0.085

1.000

0.200

0.008

37.25

6.9

7.5

32.035

3.339

11.392

Output energy 51.65 46.76

Cost of biodiesel per litre in USD 0.634 0.611 0. 660

* Energy equivalent data is not available in [81].

Table 4. Energy indicators comparison of India and Iran.

Energy Indicator India [87] Iran [89]

Energy Use Efficiency 1.47 1.28

Energy Productivity 1.06 0.87

Net Energy 16.54 10.11

Energy Intensiveness 55.38 59.99

Yield 26.08 16.55
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6. Discussions

From the above indicators, it was evident that India has vast potential for WCO
biodiesel production in an environmentally friendly and competitive manner compared
to other countries. Even though these comprehensive energy and cost analyses provide
valuable information on the difficulties involved in the biodiesel conversion process, many
researchers criticised the lack of sustainability issues and thermodynamic aspects in the
analyses. They suggested exergy analysis be carried out regarding the biodiesel conversion
process. Exergy analysis is a method for evaluating the efficiency of a system or process by
considering the maximum possible work that can be obtained from the system or process.
In the case of a biodiesel plant, exergy analysis can be used to assess the plant’s efficiency
in converting WCO into biodiesel fuel. This analysis can help identify potential areas for
improvement and optimisation in the plant’s design and operation. Some key factors to
consider in an exergy analysis of a biodiesel plant include the WCO type and quality, the
type of catalyst and reaction conditions used, and the efficiency of the transesterification
and purification processes [27,93].

In the biodiesel conversion process, all the thermodynamic losses are quantified,
thereby improving the production process’s sustainability. Economic analysis is integrated
into this exergy analysis, making it a robust, comprehensive tool for evaluating the biodiesel
production process from the environmental sustainability perspective to take all the ad-
vantages of meeting the SDGs. With the growing uncertainties due to the war in Ukraine
and COVID-19, many countries are taking action, like Poland, which used its rich forest
resources increase its share of liquid biofuels in the renewable energy sector from 2.3%
to 10.36% from 2007–2019 [27]. Poland also implemented a rigorous law preventing food
wastage and encouraging organizations to obtain certifications under the European Union
Sustainable Development System. One such organization in south-eastern Poland effec-
tively handles 1000 tons of waste cooking oil every month [94]. India, too, should exploit
its colossal consumption of edible oils to aid biofuel production. To the best of our knowl-
edge, this kind of analysis from the Indian perspective has never been used in biodiesel
production. Specifically in India, with varying constraints on WCO biodiesel production
originating from the collection of WCO, choice of production techniques and catalysts,
willingness to accept WCO submissions, and health awareness, such an analysis is clearly
required [93,94].

In fact, out of 230 million MT of edible oil consumption, India is currently capable
of producing only 3 million MT of biodiesel. Moreover, with the increased emphasis on
the circular economy to improve rural employment opportunities, India should adopt a
complete exergy analysis of biodiesel production from WCO.

7. Scope for Future Work
7.1. Economical Processing Route for Biofuel Conversion from WCO

The transport sector accounts for 6.7% of India’s gross domestic product (GDP), and
diesel alone contributes to 72% of the nation’s fuel consumption. Moreover, only 18% of the
demand is met by domestic crude production, leaving the rest to be imported from abroad
at fluctuating prices [9]. However, India’s WCO has the potential to contribute to a savings
of 10%, i.e., over INR 100 billion, as an import substitute for petroleum products by the year
2024 [7]. In order to take advantage of these lucrative incentives, the biodiesel conversion
process needs to be carried out in an economically sustainable way. Numerous LCA studies
were available for different countries [95–98]. However, all these LCA analyses leave
out the costs associated with procurement and logistics, as well as the varying location-
specific costs like labour, capital, and land costs. However, in a country like India, with its
varied economic and educational status, an LCA should be carried out incorporating all
these factors.
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7.2. Choice of Bioconversion Methodology

Contemporary biofuel researchers have carried out extensive studies on the process
intensification techniques used in the biofuel conversion process, like microwave assistance,
ultrasonic assistance, supercritical transesterification, catalytic membrane, magnetic flu-
idization, electrolysis, and hydrodynamic cavitation. Among these techniques, ultrasonic
transesterification has been demonstrated to be an effective and efficient bioconversion
methodology with a yield of 92%. In addition, this methodology can be an appropriate
choice for India, as it can be implemented with coal fly ash as a catalyst [16]. India, despite
being in the nascent stage of employing biofuel conversion technology, should carry out a
thorough analysis of the same technique to attain economic advantages.

7.3. Role of Nanoparticles in Biofuel Conversion and Performance Characteristics

Much research literature was available regarding the use of metal-based nanocata-
lysts like zinc oxide, calcium oxide, titanium oxide, magnesium oxide, and zirconium
oxide, as well as carbon-based nanocatalysts like K2CO3-supported KL-activated carbon
(K2CO3/KLC) and single-walled carbon.

Nanohorn (SWCNH) reported an improved yield of 95–100% [99,100]. The Indian
biofuel conversion industry should make use of these nanoparticles in biofuel production
to provide cheap and clean energy.

Even though the blending of biodiesel with diesel fuel does not require any engine
modifications, blending it with nanoparticles improves the engine performance and emis-
sion characteristics. Recently, researchers reported that with the addition of 0.5% of nanopar-
ticles to the 20% biodiesel blended with diesel resulted in an increase of nearly 10% in
the brake thermal efficiency and a significant reduction in the unburnt hydrocarbon and
nitrogen oxide emissions [101,102]. Another encouraging advantage of biofuel blending
with conventional diesel can be found in mining truck applications. The blending of 10%
biofuel into diesel in mining transport vehicles led to carbon emissions being reduced by
25–45%, nitrogen oxides being reduced by 65–71%, and a soot particle reduction in the
range of 7–13% [103]. With the introduction of the electric vehicle policy, India’s demand
for minerals is predicted to be very high, leading to more mining activities [104]. India can
exploit this advantageous fuel blend for its growing mining applications.

7.4. Role of Statistical Methods and Artificial Intelligence Techniques in Biofuel Conversion and
Performance Improvements

The transesterification methodology used for biofuel conversion from WCO as a
feedstock depends on several parameters such as type of catalyst, catalyst loading, process
time, alcohol-to-oil molar ratio, and mixing intensity. Among these, the alcohol-to-oil
molar ratio, catalyst loading, and reaction time are considered to be critical parameters
to be optimized for producing better yield. Several studies reported the use of statistical
techniques like the response surface methodology (RSM), full factorial design, Taguchi
method, Box–Behnken design, and central composite design (CCD). Among these statistical
techniques, CCD offers better accuracy (99.83%) than others [52].

However, these conventional statistical techniques leave out the nonlinear relationship
between the production parameters, but the success of WCO biofuel conversion depends on
collection, consumption, and emission parameters. Various artificial intelligence algorithms
like artificial neural networks (ANN), genetic algorithms (GA), random forest regression
(RF), fuzzy logic, particle swarm optimization (PSO) and other developed machine learning
algorithms have demonstrated superior accuracy in dealing with complex issues associated
with WCO biofuel conversion. Among these algorithms, ANN is considered to be effective
in dealing with the challenges associated with biodiesel production [52,105,106]. Indian
biofuel manufacturers can accelerate their operations with these matured AI techniques to
produce high-quality biodiesel.
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7.5. Cost Benefits of By-products after Biofuel Conversion

In India at present, only a meagre 0.13% of total edible oil consumption is used as
WCO feedstock for biodiesel production. However, there is the potential for this figure
to reach at least 10%, amounting to 660 crore litres of biodiesel made using WCO, which
could replace imported palm stearin as a primary feedstock for biodiesel production [39].
In addition, the conventional transesterification process gives off 10% of the glycerol as
a by-product [107], which could be an excellent financial incentive for a country like
India whose food, pharmaceutical, and detergent requirements are always on the rise.
Additionally, current research has demonstrated that the production of bioplastics from
biofuel conversion plants is another attractive option for country like India [108].

8. Conclusions

A detailed review is presented of WCO collection and conversion technologies. It
emphasises the significance of a circular economy using WCO to create biodiesel. Blending
5% biodiesel with diesel will result in saving 10% of import costs for India. The SWOC
analysis aids in identifying the future actions required to amend the relevant policies
for WCO collection among different countries. The techno-economic analysis reveals
the importance of the life cycle assessment of WCO and the role of exergy analysis in
comprehending the investigation regarding the suitability and sustainability of WCO.
The tecno-economic analysis shows that the cost of producing WCO-based biodiesel is
cheaper than that of conventional fuel, and the difference is less than 1% when compared
to neighbouring countries.
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