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Abstract: Synchronized phasor measurement systems are being widely used around the world
and have become essential elements in the evolution of the operation of large electrical power
systems (EPS). These systems, called Phasor Measurement Units (PMUs), are capable of recording
and communicating dynamic data from the EPSs in a synchronized way by GPS and with a high
sampling rate, generate a huge set of data that, among many applications, has the capacity to detect
events. In this way, this work presents a data management system architecture applied to a real
PMU system located in the state of Paraná, Brazil that detects and storages events using principal
component analysis and Pearson correlation. This method can detect and store electrical events that
occurred during the operation of the national interconnected system of Brazil with good results.

Keywords: principal component analysis; wide-area monitoring; phasor measurement units; electrical
events detection

1. Introduction

Synchronized phasor measurement systems are essential elements in the evolution of
the operation of large electrical power systems (EPS). These systems are based on Phasor
Measurement Units (PMU), which can record and communicate data on the dynamics of
the EPSs in a synchronized way by GPS and with a high sampling rate, composed of up to
60 samples per second.

The importance of an integrated PMU system is that it permits to observe the behavior
of the all the EPS, monitor large areas, support the stability supervision of transmission
systems, observe the dynamic behavior of the electrical network, monitor the conditions in
real time and realize offline studies.

Over the past decade in the United States, there has been a continental grid with more
than 2000 PMUs helping to improve the reliability of the North American electric power
grid [1]. Likewise, in China, there is already a wide network with more than 2400 PMUs
covering all 500 kV substations in the country and several important power plants and
substations of 220 kV [2].

In continental Europe, there is a phasor measurement system covering almost the
entire territorial area of the different countries. Applications with data exchanged between
different operators of transmission systems allow them to manage and operate the entire
system safely and efficiently [3].

In Brazil, the implementation of a synchronized phasor measurement systems has also
been growing, following the coordination and standards established by the ONS—National
Electric System Operator. In this regard, the state of Paraná, through COPEL Generation
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and Transmission S.A., was a pioneer in the implementation of the largest system in the
country, whose data are used in this work.

The Wide Area Measurement System (WAMS) of Copel is composed by 63 phasor
measurement units installed around substations of 230 kV and 525 kV, Phasor Data Con-
centrators (PDC) and a system that enables communication between them.

The 63 PMUs of the Copel WAMS permit the visualization of data in real time and an
effective way to perform analysis and operation of its own electrical network and of the
Brazil’s interconnected system in which Copel’s system is inserted. Then, the influence
of events that occur along anywhere of Brazil’s interconnected system can be monitored,
by applications for real-time and offline studies [4], making better the supervision of the
electrical system of Brazil.

However, as the amount of data generated by PMUs is very large, the concept of
data analytics has become fundamental to extract useful information from PMUs and thus
generate, for example, historical data of anomalies, which can help companies performing
post-operation analysis, EPS planning, managing indicators and forecasting trends [5].

Thus, in this article, data analytics will be used to treat the voltage, current, angles and
frequency data generated at each cycle by the PMUs installed in the electrical system of
the state of Paraná, in Brazil, to provide useful data that can be used by the company for
signaling and post-operation management.

The literature presents some data analytics applications for anomaly detection:

- Ref. [6] performs an analysis on the dimensionality of the PMU data for both normal
and abnormal conditions, using an algorithm based on the changes detected within
the subspace created by the dimensionality reduction.

- Ref. [7] describes a method based on Principal Component Analysis (PCA) capable to
locates electrical power system faults exposed to different types of disturbances by
combining the input data of phasor synchronous meters.

- Ref. [8] presents methods to detect events and storage reduction data using Principal
Component Analysis (PCA) method with a second-order differential method. The
proposed method for data reduction is based on an event-driven and self-adjusting
sliding window.

- Ref. [9] uses Random Matrix Theory (RMT) as data processing tools to estimate the
state of large power systems. The developed algorithm performs a high-dimensional
analysis and compares it with the RMT predictions for anomaly detections in the
electrical system.

- Ref. [10] proposes a dedicated method based on rules for events detection, such as
monitoring normal operating limits.

- Ref. [11] obtains data from PMUs in a reduced form using the local outlier factor
algorithm to detect and locate events.

- Ref. [12] detects and locates single-phase-to-ground faults by correlating the values of
electrical quantities and the status of the power system.

- Ref. [13] presents a PMU anomaly detection that classifies events, outliers, and the
lack of measurements. This system is based on stacking machine learning techniques
to obtain a higher level of accuracy and increased performance with high-dimensional
data. After capturing data from PMUs, the isolation forest technique is applied,
which provides scores that classify the data as normal or anomalous (which are the
events). These scores feed two other K-Means and LoOP techniques, whose results are
multiplied vectorially, and which result in probabilities that are applied to Pearson’s
correlation with other PMUs to verify whether an event is occurring.

- Ref. [14] presents a convolutional neural network (CNN)-based model to detect fre-
quency disturbance events.

- Ref. [15] exploits the statistic properties of the PMU dataset and generate a hypothesis
testing framework to detect power system events using sample covariance of the PMU
data collected during the system operations.
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- Ref. [16] uses neural network-based event detection and classification algorithms that
requires thousands of confirmed events as training labels.

- Ref. [17] develops a bidirectional anomaly generative adversarial network (GAN)
algorithm to detect power system events with the introduction of conditional entropy
constraint in the objective function of GAN and graph signal processing-based PMU
sorting technique.

Some considerations can be made about the literature studied: works based on signal
processing techniques (wavelet transforms and Fourier transforms, for example) do not
fully exploit the spatial correlations between data from different PMUs [17]; the works
that exploit the statistic properties of the PMU dataset to detect events, have complexity
of correlation matrix calculations [17]; works that uses data mining techniques to detect
power system incurs high computation cost for real-time applications [17] and the ones
that use neural network-based event detection require thousands of confirmed events as
training labels [17].

However, the technique proposed in this work, the PCA (already well known in others
power system applications), does not expend high computation cost and can be easily
implemented with good results, as will be described.

Through the synthesis of the selected technical-scientific articles, the following conclu-
sions can be drawn:

- the techniques usually used for event detection are: principal component analysis,
state extraction method, non-nested generalized examples; random matrix, isolation
forest, K-means, LoOP, among others

- most works consider application of a centralized approach to control
- few works consider real-time application aspects of real systems
- most of the data analytics techniques are being used in the analysis of electricity

distribution problems.

Therefore, the present article contains as contributions the use of a distributed ap-
proach for control, application in real time for large electrical systems (transmission) of
a Brazilian utility. For that, the PCA technique [8] is used, together with the Pearson
Correlation whose results were compared with the results of [13], to indicate potential
power grid events.

So, the data processing proposed carried out on the intelligent platform aims to detect
in real time from an amount of PMUs measurements, anomalous situations of the electrical
network and the measurement system itself. These detections include:

(i) status detection: PMUs have an algorithm that generates information about the
device’s status, which may indicate data error, PMU error, modified data, loss of
satellite communication, among others

(ii) violations of operational limits
(iii) finally, the application of PCA technique and Pearson correlation to monitor measure-

ment values and detect violations of operational thresholds

All these sets automatically trigger data storage, enabling the maintenance of a history
of electrical network occurrences.

2. Description of PMU System of State of Paraná (Brazil)

Copel Generation and Transmission (Copel GeT) has PMUs installed in all its substa-
tions, power plants and transmission lines. Most of the devices are in the state of Paraná
and some outside, such as in São Paulo (bordering the state of Paraná), Santa Catarina
(bordering the state of Paraná), Mato Grosso (located more than 2000 km from Paraná) and
Rio Grande do Norte (located more than 3000 km from Paraná). Altogether, the system
comprises an increasing number of 63 devices, each with dozens of measurement channels.

Copel GeT has PMUs so electrically distant, as Mato Grosso and Rio Grande do Norte,
because it has power plants installed at those states.
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Figure 1 shows the main screen of the software used by Copel GeT [18] which enables
the viewing of its PMUs located in Copel’s concession area (green diamonds) and in
neighboring states.
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In this way, Copel WAMS produce thousands of pieces of information which are
updated dozens of times per second. Despite the benefits, the high volume of data produced
makes manual analysis unfeasible, requiring sophisticated systems to manipulate the
amount of information.

To analyze these questions, a research project was developed with the ANEEL Research
and Development Program, Copel Generation and Transmission, Federal University of
Paraná (UFPR) and the GNARUS Institute that proposed a tool capable of handling, in real
time, the large volume of data coming from Copel GeT PMU network.

The development of a computational platform to process data from PMUs has special
characteristics, whose challenges are large volume of information, diversity (types) of
information and high refresh rate.

The purpose of the platform proposed is to deliver useful information to the operating
sector, which means that the system must have the following characteristics: fast response
(to support real-time operation) and data storage of only electrical events.

The measurements captured from all the PMUs are transmitted through frames follow-
ing the IEEE C37.118 protocol [19,20]. Frames are vectors which bring information about
the communication and carry the data. PMUs send up to 60 frames per second and they are
uninterrupted. Therefore, featuring a data stream updated once every 16.6 milliseconds.

For that, a computational platform was proposed with a set of fundamental function-
alities, such as: communication with PDC, data processing, storage (database), real-time
visualization, report generation and, finally, support and management of all modules.

Communication between computers can use both TCP (Transmission Control Protocol)
and UDP (User Datagram Protocol). In the first case, there is the control of data packets
during a transmission, offering retransmission in case of loss or error in the packets. UDP,
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on the other hand, is a simpler protocol and does not allow re-transmission. On the other
hand, it is faster and with greater bandwidth, therefore, it allows transport of greater
volume of data. The messages are defined by the IEEE C37.118 protocol [19,20], performed
by a typical communication architecture.

The technology used for data storage is National Instruments (NI)’s native solution for
streaming data. NI introduced the Technical Data Management System (TDMS) file format
in LabVIEW 8.2 to overcome some shortcomings of other data storage options commonly
used in test and measurement applications.

The data processing analyzes the number of measurements of the electrical network.
This step involves a set of detectors developed to identify and report situations in the
electrical network and in the measurement system itself.

One of these detectors will be described in the next section.
Figure 1 shows, the example of the main screen of the PDC software used in Copel GeT.

3. Data Anomaly Detection Using Principal Component Analysis

Copel Generation and Transmission has PMUs installed in all its substations, power
plants and transmission lines. Most of the devices are in the state of Paraná and some
outside, such as in São Paulo, Santa Catarina, Mato Grosso and Rio Grande do Norte estates.
Altogether, the system comprises an increasing number of 63 devices, each with dozens of
measurement channels. This section aims to describe assumptions and procedures adopted
for the detection of events (or anomalies) monitored by PMUs, which use simple monitoring
rules together with the principal component analysis technique and Pearson’s correlation.

PCA is one of the most widely used and useful tools in the field of exploratory data
analysis because it offers an overview of the subject in question, showing the relationship
that exists between objects, as well as between objects and variables [21]. It allows the
data to maintain its original structure, making only an orthogonal rotation of the vari-
ables, which helps to simplify the visualization of all the information already contained in
the data [21].

Pearson’s linear correlation coefficient is a commonly known method for measuring
the correlation between several variables. This correlation coefficient, R, measures the
statistical relationship between continuous variables [22]. Thus, (i) if R < 0 it means that the
variables are inversely related; (ii) if R = −1 means a perfect negative correlation between
the variables, that is, if one increases, the other always decreases; (iii) if R > 0: it means
that the variables are directly correlated, (iv) if R = 1 it means a perfect positive correlation
between the two variables; and (v) if R = 0, it means that it is not possible to determine any
sense of covariation.

So, as close as the values of R are to the extremes, the stronger is the correlation.
As further the values are to the middle, or the closer to zero, the weaker it becomes
(no correlation).

Thus, in possession of these two powerful tools, the proposed method for event
detection in ESP is described step by step, and are repeated (from step 1 to step 8) for
each tumbling window of 1800 samples (for example) and for each datapoint of the PMU
being considered.

The data from the PMUs are basically composed of:

• Timestamps: date (day, month, year) and time (hour, minute, second and thousandth
of a second).

• Meter status: data error, GPS signal, ordering, triggers, configuration change, modified
data, timing quality, synchronism.

• Electrical system data: frequency, rate of change of frequency, voltage phasors (magni-
tude and angle), current phasors (magnitude and angle), analogue and digital channels.

This information is present in all PMUs and is transmitted through frames following
the IEEE C37.118 protocol. The frames are vectors which bring information about the com-
munication and also carry the data mentioned above. PMUs send up to 60 frames per second
and non-stop. Therefore, featuring a stream of data updated once every 16.6 milliseconds.
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So, for each tumbling window of 1800 samples, for example, captured by the client-
server communication architecture foreseen in the IEEE C37.118.2 protocol for each PMU,
the follow steps are described:

Step 1: treatment of the measured data for each of the quantities made provide by
the PMU. It consists of removing columns referring to date and time and applying IEEE
C37.118 protocol, using bits 14 and 15, to detect if the measured data is valid or not.

These detections identify numerical problems such as absence of values (Not a
Number—NaN), null values, poor data quality, which are reporting by rates less than
60 frames per second. This functionality also generates a report reporting problems identi-
fied in each measurement channel.

When invalid data is detected, it is replaced by the previous sample, to ensure syn-
chronization in the timestamp of all PMUs.

The Figure 2 illustrates the capture of the m = six measurements (frequency, rate of
change of frequency, magnitude, and angle of voltage and current of phase A) during
100 samples of a PMU.
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current of phase A).

Step 2: identification of measurements outside the operational limits normalized by
the operator system (ONS). In this way, when frequency quantities or voltage magnitudes
are outside their normative limits, the recording of the event begins regardless of the
application of the PCA technique.

The data are stored for frequency signals with values above 60.5 Hz and below 59.5 Hz
and for voltage magnitude values outside the limits of 0.95 pu and 1.05 pu.

Step 3: selection of the normal operating range. For the tumbling window being
analyzed (1800 samples) and each monitored quantity, mean and standard deviation are
calculated for this range.

The mean and standard deviation values are calculated for each operating period
(for example, 1800 data or 30 s). This strategy is adopted to learn what is a normal
or not operation comportment. If larger interval of data that could contain an event is
considered, these mean and standard deviation would not represent a reference to a normal
operating pattern, because the deviations caused by the event would be embedded inside
the measurement window.

Step 4: standardization of the data contained (for the tumbling window and for each
measurement of the PMU being analyzed, represented by X) inside the pre-selected range
from Step 3, according to the previously calculated average and standard deviation.

X =
average

standard deviation
(1)

Figure 3 illustrates the normalization of the six measurements (frequency, rate of
change of frequency, magnitude, and angle of voltage and current of phase A) during
100 instances of time of a PMU from Figure 2.
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Step 5: calculation of PCA [21], based on the standardized values (X) of all measured
quantities (from Step 4), for each PMU of the tumbling window considered.

Regarding the calculation of the PCA, firstly it is calculated for each instance (for
example, 100 instances of Figure 2) of the covariance matrix C (with dimension m × m,
or 6 × 6, as Figure 2). After having obtained the covariance matrix, the eigenvalues
(λ1, λ2, . . . , λm) and the eigenvectors (a1, a2, . . . , am) must be identified.

Having identified the eigenvalues and eigenvectors, the calculation of the princi-
pal components itself is carried out. It is made by a linear combination of the m mea-
surements being weigh by the eigenvectors, providing the principal component values,
(P1, P2, . . . , Pm), for each of the instances of the data set. Thus, a list of m principal compo-
nents, for each instance is obtained.

Finally, to reduce the number of PCAs, this work uses only one PCA, that includes the
one with the greater eigenvalues.

Step 6: for the PCA calculated (that includes information about all the measurements
of the PMU for each instance), the mean and standard deviation are again obtained, and
the Z-score is calculated (Equation (1)). This is performed so the larger scale quantities do
not dominate the process over the others; in this way they can be observed within the same
scale range. Thus, a standardized vector is assembled, whose columns are the PCA for
each instance.

Step 7: after obtaining the z-score values, all peaks of the PCA quantity that are
above pre-specified values are detected as events. The limits used for the Z-core values are
±3 deviation above the mean of the PCA. That is, values outside the limits of ±3 deviation
are detected as events and they are considered as unitary values, while the values inside
the limits are considered as null values.

Steps 1 to 7 are repeated for each one of the PMUs, then Step 8 correlates the detection
of all the PMUS obtained.

Step 8: application of Pearson’s correlation, considering all quantities treated from
Steps 1 to Step 7. That is, the quantities detected as events individually to each PMU are
now correlated between all of them to definitively conclude about the event occurrence.

In this article, the values suggested in [21] are used to classify the correlations between
the quantities monitored by the PMUs, after applying the PCA of each detected value
inside the interval the tumbling window. The classification rule is [22]: if R = |0.30|there is
a weak correlation; if R = |0.50|there is a moderate correlation; and if R = |0.70|there is a
strong correlation.

Step 9: for all the interval monitored, all the measurements contained inside the
interval composed by the union of events detected by the PMUs (according to Step 8)
are stored.

The flowchart in Figure 4 illustrates the sequence from Steps 1 to 9 that were described.
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Figure 4. Method to detect electrical events.

The standardization is realized by Steps 1 to 4; the PCA is applied by the Step 5; the
Z-score application by Steps 6; the application of the limit of 3 is realized by Step 7 and the
Pearson correlation by Step 8.

After the detection points, they are stored by Step 9.

4. Results

The method described in the previous section was tested using data from two
electrical events:

Event 1: the event took place on 28 May 2021, caused by automatic disconnection of
pole 1 of the Direct Current Link (DCL). This event had a great impact on the Brazilian
network; more details will be described.
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Event 2: the event took place on 23 October 2021, caused by a strong storm in the
western region of Paraná, which caused the shutdown of the 750 kV Transmission Lines
that connects the Itaipu Binacional.

4.1. Study of Event 1

On 28 May 2021, at 11:06 a.m., pole 1 of DLC 800 kV Xingu/Estreito with 1996 MW
was automatically switched off, with this power being taken over by the remaining poles,
without major consequences for the NIS (National Interconnected System).

At 11:26 a.m., pole 2 of DLC 800 kV Xingu/Estreito and seven generating units at
UHE Belo Monte (Norte Energia S.A.), which were currently generating an amount of
approximately 4050 MW, were automatically shut down.

As a result, there was a reduction in the frequency of the NIS, causing the operation of
first stage of the ERAC (Regional Load Relief Scheme), which interrupted about 3400 MW
of loads in the NIS.

At 11:31 a.m., the NIS released the recomposition of the interrupted loads, which
started at the same time and ended at 11:45 a.m.

This subsection will present the results obtained from the proposed method to detect
anomalys. It is applied using the measurements of frequency of PMUs located in Apucarana,
Cascavel and Bateias substations (Figures 5–7, respectively) in the state of Paraná over a
duration of 1 h, starting at 11:00 p.m. These data were captured during Event 1, which
described Apucarana, Cascavel and Bateias substations in the North, West and East of state
do Paraná, respectively [1].
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Figure 7. Event 1: frequency of PMU Bateias (in the east of Parana State).

Steps 1 to 7 are applied to the measurements of these three PMUs, that is: remotion of
measurements not valid (Step 1); identification of measurements outside the operational
limits normalized by the operator system (ONS) (Step 2); calculation of mean and stan-
dard deviation for each tumbling window (900 samples) (Step 3); standardization of data
contained inside the tumbling window (Step 4); calculation of PCA (Step 5); calculation of
mean, standard deviation and Z-score (Step 6) and applications of the limits of ±3 deviation
to the Z-core (Step 7). That is, values outside the limits of ±3 deviation are detected as
events and they are considered as unitary values, while the values inside the limits are
considered as null values.

After the application of Steps 1 to 7, Figures 8–10 present the signal of frequency,
PCA standardized and the points of detection (unit bars) of PMUs located in Apucarana,
Cascavel and Bateias substations, respectively.
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Figure 10. Event 1: detector event of PMU Bateias (located at Parana State).

The PCAs standardized are calculation including measures of frequency, rate of change
of frequency, magnitude and angle of voltage and current of each PMU.

From these Figures, the PMU Apucarana has two points of detection, Cascavel has
seven point of detections and Bateias has 12 points of detection.

The number of points detected depends on the geographic location of the PMUs. For
example, Bateias Substation is strategically located in the Paraná network because it is a
point of connection with other regions of the state. This fact justifies why its greater reaction
to events.

After the application of Step 8, Figure 11 shows the points detections of each PMUs
after the application of Pearson correlation (R). Remembering that the classification rule is:
if R = |0.70|there is a strong correlation, so there is an event.
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Figure 11. Event 1: PMUS detectors and final detector.

At Step 9, it is realized the union of all the events detected by the PMUs (according to
Step 8) and they are stored.

The Figure 12 shows the final detection (Step 9) together with the signal of frequency
to facilitate the comparations and analysis.

According to Figure 12, the first detection point corresponds to the switched off DLC
that occurred at 11:06 a.m., the second one, corresponds to the shutdown generation of
4050 MW at 11:26 a.m., and at 11:31 p.m. begin the recompositing of the system (third point
detection. However, an event was detected before, at 11:28 p.m.

So, the technique detects successfully the first two events and detects the third one
precociously. The last three points detected are false detections. If only Step 2 was imple-
mented (identification of measurements outside the operational limits), only the event at
11:26 p.m. will be detected and a smaller window of samples could be stored.
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The method proposed in [15], which uses the isolation forest, K-means and LoOP
techniques was implemented, and it was also able to detect the event illustrated in this work.
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4.2. Study of Event 2

The event took place on 23 October 2021 at 1:42 p.m. on the power grid of the state of
Paraná, Brazil.

This event occurred due to a strong storm in the western region of Paraná, which
caused the shutdown of the 750 kV Transmission Lines that connect the Itaipu Binacional
plant (with 20 generators) to the rest of the system, and temporary shutdown of five of
the ten generating units power plant in the 60 Hz sector and 1635 MW cut-off in units 10,
11 and 17 due to activation of the 765 kV trunk emergency control scheme.

Then, at 1:59 p.m., the 525 kV Cascavel Oeste/Foz do Iguaçu 60 Hz Transmission Line
was automatically shut off, leading to the cut of 1200 MW in units 18 and 19. At 2:28 p.m.,
another automatic shutdown of the 765 kV Line Foz Line occurred. Iguaçu/Ivaiporã cut
900 MW from generating units 14 and 15.

This subsection will present the results obtained from the proposed method to detect
the anomaly. It is applied using the measurements of PMUs located:

- in the substations of Copel GeT: Apucarana (in the north of Parana State), Cascavel
(in the west of Parana State), Bateias (in the east of Parana State) and Maringa (in the
north of Parana State are substations of Copel GeT [1]

- in the Power Station of Copel GeT: José Richa, Ney Braga and Salto Santiago (Paraná) [1]
- in the substations of São Paulo: Araraquara (in the north of São Paulo State), and

Itatiba (in the east of São Paulo) [1]

Figures 13–21 show the signal of frequency of the PMUs described, the PCA values
and the points detections of each PMU cited, along more than 2 h, starting at 1:20 p.m.
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Figure 21. Event 2: detector event of PMU hydroelectric power station Salto Santiago.

The PCAs standardized are calculated including measures of frequency, rate of change
of frequency, magnitude and angle of voltage and current of each PMU.

After the application of Step 1 to 8 (as described for Event 1), Figure 22 shows the
already-detected points of each PMU (Step 7) and the final points detection after the
application of the Pearson correlation (Step 8).
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Figure 23 shows the final detection (Step 9) together with a signal of frequency to
facilitate the comparations and analysis.
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5. Conclusions 

This work is result of a research and development project focused on the use of syn-

chronized phasor measurement data. 
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Figure 23. Event 2: final detector.

Figure 22 shows the detections realized by each of the nine PMUs of Apucarana,
Cascavel, Bateias and Maringa, Itatiba, Araraquara, José Richa, Ney Braga and Salto
Santiago captured during Event 2 (data from 1:20 p.m. until 3:34 p.m.).

According to Figure 22, the first anomaly, that occurred at 1:42 p.m., was detected
by seven PMUs (Bateias, Cascavel, Apucarana, Fernão Dias, Itatiba, Maringá and Salto
Santiago) that are installed inside the western region of Paraná, where Event 2 began. The
PMU Apucarana was more sensible because it is in the western region of Paraná, where the
anomaly began. In Figure 23, can be observed the final detection was found at 13:42 p.m.

The second anomaly occurred at 1:59 p.m. According to Figure 22, it was detected
by seven PMUs (Cascavel, Apucarana, Fernão Dias, Itatiba, José Richa, Maringá and Salto
Santiago). In Figure 23, it can be observed that the final detection was found at 13:59 p.m.

At 2:28 p.m., it was not detected anomalous at any of the PMUs neither by the final
detection (Figure 23). After this time, ten false detections occurred.

If only Step 2 was implemented (identification of measurements outside the opera-
tional limits), none of the anomalies in the second event would have been detected and
stored. The method proposed in [15], which uses the isolation forest, K-means and LoOP
techniques, was not able to detect the event illustrated in this work.

The threshold settings of three deviations of Step 7 can be changed and optimized
depending on the characteristics of the electrical power system. These were configured
as the literature suggests, so the detection sensitivity can be increased as a function of
fine tuning.

5. Conclusions

This work is result of a research and development project focused on the use of
synchronized phasor measurement data.

The solution developed involves the combination of technologies and software engi-
neering to handle large volumes of data. The platform used integrates several function-
alities and supports the operation of the electrical network and the maintenance of the
synchronized phasor measurement system.

To create a database with a history of occurrences of the national interconnected
system of Brazil, and to keep records for long periods of time (years), a method was
implemented to detect and store only the events. It uses principal component analysis and
Pearson correlation.
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The method implemented was able to detect and store important events that oc-
curred during the operation of the national interconnected system of Brazil with good
results and includes:

- status detection made possible by algorithm embedded at PMUs that generates infor-
mation about the device’s status, which may indicate data error, PMU error, modified
data, loss of satellite communication, identify numerical problems such as absence
of values (Not a Number—NaN), null values among others. The purpose of this
functionality is to monitor the status of the devices, account for reported situations
and generate a report indicating potential PMUs for maintenance

- detection of numerical non-conformities as values outside the range of operation
- systemic event detection: a set of techniques to monitor measurement values and

detect violations of operational thresholds.

These set detections automatically trigger data storage, enabling the maintenance of a
history of electrical network occurrences.

Observing the results of the two events, Event 1 (which was much more impactful
than Event 2) was well detected both by the technique proposed in [13] and by the one
described in this article. While for Event 2, only the PCA technique was able to detect the
event, suggesting that PCA can be robust enough to detect electrodynamic events from
different PMUs.
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