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Abstract: The stochastic nature of renewable energy resources and consumption has the potential 

to threaten the balance between generation and consumption as well as to cause instability in power 

systems. The microgrid operators (MGOs) are financially responsible for compensating for the im-

balance of power within their portfolio. The imbalance of power can be supplied by rescheduling 

flexible resources or participating in the balancing market. This paper presents a robust optimiza-

tion (RO)-based model to maintain the balance of a portfolio according to uncertainties in renewable 

power generation and consumption. Furthermore, load reduction (LR) and battery energy storage 

(BES) are considered flexible resources of the MGO on the consumption side. The model is formu-

lated based on the minimax decision rule that determines the minimum cost of balancing based on 

the worst-case realizations of uncertain parameters. Through the strong duality theory and big-M 

theory, the proposed minimax model is transformed into a single-level linear maximization prob-

lem. The proposed model is tested on a six-node microgrid test system. The main contributions of 

the proposed model are presenting a robust model for portfolio management of MGO and using 

BES and LR to improve the flexibility of microgrid. Simulation results demonstrate that using LR 

and BES could decrease the balancing cost. However, the optimal portfolio management to com-

pensate for the imbalance of power is highly dependent on the risk preferences of MGO. 

Keywords: battery energy storage; load reduction; microgrid operator; robust optimization; uncer-

tainty 

 

1. Introduction 

The imbalance of power is usually caused by fluctuations in consumption or renewable 

energy generation and unexpected outages of transmission lines or generating units. In power 

systems, an imbalance of power can result in frequency excursions that could endanger the 

stability of power systems. Therefore, grid operators try to maintain the balance between gen-

eration and consumption by deploying flexible and fast response resources. The microgrid 

consists of different types of distributed generation resources, and the MGO is financially re-

sponsible for the compensation and settlement of imbalance of power within its generation 

and consumption portfolio [1]. As shown in Figure 1, after the gate closure for the day-ahead 

(DA) market, the MGO receives the increasing (decreasing) generation (consumption) or de-

creasing (increasing) generation (consumption) proposals via upward offers and downward 

bids of microgrid agents, respectively. Based on the forecasted values of renewable generating 

power and consumption and received upward offers and downward bids, MGO tries to com-

pensate for the imbalance of power by participating in the balancing market or rescheduling 

the available flexible resources of its portfolio. The settlement period varies depending on the 

market design, ranging from 15 min (Austria, Switzerland, and Germany) to 30 min (France 

and United Kingdom) [2]. 
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Figure 1. Providing the balancing service by MGO. 

1.1. Literature Review 

MGOs need a balance-planning model to determine the optimal strategy for com-

pensating for the imbalance of power over their portfolios. The mechanism of the balanc-

ing market and strategies of participants have been analyzed in different literature. In [3], 

a scheduling model for aggregators who manage the flexible resources of consumers in 

the balancing market is evaluated. In this work, effects of network constraints on transac-

tions between the aggregator and the transmission system operator (TSO) have been stud-

ied. The static study of renewable resources participation level in the balancing market 

and their impacts on the frequency of the grid are presented in [4]. The proposed hierar-

chical framework of [5] considers the uncertainty of renewable generating power in the 

bidding strategy of microgrid aggregators. In the proposed model, the mean-variance 

method is used to evaluate the impacts of uncertain parameters. In [6], a two-stage model 

is proposed for the self-scheduling of participants in the balancing market in distribution 

networks. The follower sub-problem that is formulated as a minimization problem calcu-

lates the optimal scheduling of resources. The master sub-problem minimizes the devia-

tion of a scheduled power exchange between the distribution system operator (DSO) and 

TSO. To solve the proposed model, the two-stage problem is transformed into a single-

level optimization problem by Karush–Kuhn–Tucker (KKT) optimality conditions.  

The coordination between stochastic consumption, such as by electric vehicles, and 

the uncertain generation power of wind units to minimize the variations of wind genera-

tion is presented in [7]. The participation of distributed resources in the joint DA and real-

time markets in the distribution network with multiple microgrids is presented in [8]. To 

reduce the solution time and increase the convergence speed, the alternating direction 

method of multipliers (ADMM) approach is proposed to decompose the optimization 

problem. In [9], a decentralized model is proposed for a DSO to provide a flexible service 

with dispersed resources. The willingness of market players to participate in the balancing 

market is studied in the presented model. However, the proposed model only allows the 

DSO to control the total consumption of the grid. The proposed distributed framework of 

[10] uses the price sensitivity of consumption to provide flexibility service. In the balanc-

ing market, different settlement mechanisms can be used, such as single pricing, dual pric-

ing, additive component, total cost-based pricing, and alternative payment direction [11]. 

It shall be noted that dual pricing is the most common approach for clearing the balancing 

market. In this scheme, the market players who put the system off balance (on balance) 

unintentionally will be penalized (will not be rewarded). Accordingly, the optimal offer-

ing strategy of a virtual power plant in the balancing market with the dual pricing mech-

anism is evaluated in [12]. Based on the presented results [13], the single imbalance pricing 

leads to less cost for the system operators in comparison with the dual pricing scheme. 

However, the single pricing scheme could lead to extra profits for participants who devi-

ate from their scheduled values, but their deviations are in the opposite direction of power 
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system imbalances. To maintain the balance of generation and consumption, a demand 

response program is proposed in [14,15]. According to the presented results, demand re-

sponse programs decrease the imbalance of power, increase the profit of consumers, and 

reduce the bills of utilities. In [16], the uncertainty of market price, as well as the degrada-

tion cost of energy storage, is considered in the balancing strategy of microgrids.  

According to the literature review, there has not been sufficient attention given to the 

optimal strategy of the MGO for compensating for the imbalance in power. The compari-

son between the proposed model and the presented model in the literature is demonstrated 

in Table 1. This work presents a scheduling strategy for the portfolio management of the 

MGO. The balancing market, battery energy storage (BES), and load reduction (LR) are 

considered available resources to supply the imbalance of power. It shall be noted that 

uncertainty modeling and risk management as well as deploying flexible resources are 

the main challenging issues in the balancing market. Accordingly, stochastic program-

ming [17–19] and robust optimization (RO) [20,21] approaches are proposed in different 

technical references. In the stochastic approach, the uncertain parameter is modeled by a 

probabilistic function. A major disadvantage of this approach is that it depends on as-

sumptions and approximations, which are used to derive the probability function. In the 

RO, uncertain parameters are modeled by variation intervals and the answer is deter-

mined based on the worst-case realization of uncertainties. The risk preference of deci-

sion-makers or the level of confidence is specified by the budget of uncertainty. Within 

the confidence level, the determined strategy is robust against variations in uncertain pa-

rameters. RO technique has been used for risk management in different power system 

problems, e.g., distribution network planning [22], unit commitment [23], self-scheduling 

of wind producers [24], etc. To the best of our knowledge, this method has not been used 

for the portfolio management of the MGO in the balancing market. 

Table 1. Comparison Between the Proposed Model and Literature. 

 
MG Portfolio 

Management 
Balance Service 

Robust 

Optimization 

Flexible 

Resources 

[3,5,6,13–15] x ✔ x ✔ 

[4,20,21] x ✔ ✔ ✔ 

[7] x ✔ x x 

[8] ✔ x ✔ x 

[9–12,18] ✔ ✔ x x 

[16] ✔ ✔ ✔ x 

[17] x ✔ x x 

[25] x ✔ ✔ x 

Proposed model ✔ ✔ ✔ ✔ 

1.2. Proposed Model 

In this work, the RO is used to model variations of consumption and renewable gen-

eration in the portfolio management of MGO in the balancing market. The risk preference 

of MGO is controlled by the budget of uncertainty. According to the defined budget of 

uncertainty, the strategy of MGO is calculated based on the minimization of the total op-

erational cost under the worst-case scenario. Therefore, the decision-making problem is 

developed as a min–max problem. The inner maximization and outer minimization prob-

lems determine worst-case realizations of uncertain parameters (that maximize the total 

operational cost) and optimal values of decision variables to minimize balancing cost, re-

spectively. The inner problem is a convex, linear, and continuous function. In this way, 

the theory of strong duality is addressed to recast the inner maximization problem as a 

minimization problem. Accordingly, the min–max problem is rewritten as a MILP that 

can be solved by commercial solvers. The main contributions of this work are: 

− This work presents an innovative mathematical model for the portfolio management 

of MGO in the balancing market. According to the defined procedure, the optimal 
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strategy of a MGO is represented by a min–max problem that is recast as a minimi-

zation problem by the strong duality theorem.  

− In the RO-based model, the BES and LR are proposed for MGO to provide the re-

quired flexibility of the grid. Moreover, the related technical constraints are modeled 

in portfolio management. The proposed model enables MGO to use these flexible 

resources to provide upward and downward balancing services.  

The rest of the paper is organized as follows. The deterministic formulations are pre-

sented in Section 2. The modeling of uncertain parameters and the RO-based objective 

function are provided in Section 3. Section 4 presents the dual function and the solution 

procedure. Numerical simulations and discussions are provided in Section 5. Finally, con-

clusions and future works are presented in Section 6. 

2. Deterministic Model for MGO 

The MGO can supply the imbalance of power by generation and consumption side 

resources, as follows: 

/
, , /

, , , , , , , , , , , , , , , ,
, , , ,
min . . . .

U D
t n i j

T N G C

U U D D U U D D

t n i t n i t n i t n i t n j t n j t n j t n j
I t n i j

t n i j

I I I I   
   

   

 
− + −  

 
     (1) 

In (1), the upward offers and downward bids on the generation and consumption 

sides are represented by first and second terms, respectively. The main constraints of the 

balancing market problem are represented as follows: 

, , , , , , , , , , , , , , ,( ) ( ) .( ) P : ,
G C n m

U D D U imb

t n i t n i t n i t n j t n j t n j nm t n t m t n

i j m

P I I P I I B t n 
  

+ − − + − − − =      
(2) 

,max

, , , ,0 : , ,U U

t n i t n iI I t n i      (3) 

,max

, , , ,0 : , ,D D

t n i t n iI I t n i      (4) 

,max

, , , ,0 : , ,U U

t n j t n jI I t n j      (5) 

,max

, , , ,0 : , ,D D

t n j t n jI I t n j      (6) 

, ,.( ) : , ,nm nm t n t m nmC B C t n m−  −       (7) 

, : ,t n t n−        (8) 

, 1 0 :t n t= =   (9) 

The equality constraint (2) provides nodal balancing. In the proposed model, the 

nodal imbalance power ( Pimb

n ) is considered a parameter, which is determined by the 

MGO. Constraints (3)–(6) demonstrate the maximum power of upward offers and down-

ward bids on the generation and consumption sides, respectively. Constraint (7) limits the 

power flow of lines. The maximum and minimum limitations of nodal voltage angles are 

represented by (8). The equality constraint (9) demonstrates that the voltage angle of the 

reference node is set to zero. As mentioned before, the MGO can compensate for the im-

balance of power by utilizing flexible resources on the generation and consumption sides. 

In this work, BES and LR are considered flexible resources on the consumption side. BES 

can provide the flexibility service by increasing or decreasing the charging and discharg-

ing power. The performance of BES is modeled as follows: 

1, , , , 1, , 1, , 1, , 1, , 1, , 1, ,.(( ) ( )) : , ,ch ch ch dch dch dch

t n j ini n j t n j t n j t n j t n j t n j t n jE E t P P P P P P t n j+ − + −

= = = = = = == +  + − − + −     (10) 

, , 1, , , , , , , , , , , , , ,.(( ) ( )) : , ,ch ch ch dch dch dch

t n j t n j t n j t n j t n j t n j t n j t n jE E t P P P P P P t n j+ − + −

−= +  + − − + −     (11) 
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max B

, , , , ,0 . : , ,t n j n j t n jE E A t n j      (12) 

B,max B

, , , , , , ,0 . . : , ,dch

t n j n j t n j t n jP P A t n j+      (13) 

B,max B

, , , , , , ,0 . . : , ,dch

t n j n j t n j t n jP P A t n j−      (14) 

B,max B

, , , , , , ,0 . .(1 ) : , ,ch

t n j n j t n j t n jP P A t n j+  −     (15) 

B,max B

, , , , , , ,0 . .(1 ) : , ,ch

t n j n j t n j t n jP P A t n j−  −     (16) 

B,max B

, , , , , , , , , , ,0 . . : , ,dch dch dch

t n j t n j t n j n j t n j t n jP P P P A t n j+ − + −      (17) 

B,max B

, , , , , , , , , , ,0 . .(1 ) : , ,ch ch ch

t n j t n j t n j n j t n j t n jP P P P A t n j+ − + −  −     (18) 

Equations (10)–(12) represent the state of energy and energy capacity of batteries, 

respectively. It shall be noted that the availability of BES on the consumption side is mod-

eled by the binary parameter BA . Constraints (13)–(18) enforce the upper capacities of 

upward offers and downward bids in different operational modes, respectively. BES sup-

plies the upward balancing service by increasing/decreasing discharging/charging power. 

Similarly, the downward balancing service can be provided by decreasing discharging 

power or increasing the charging power. In the proposed model, it is supposed that the 

operation mode of BES in the DA market is not changed within the balancing period. 

Therefore, the status binary variable of BES ( ) is considered a parameter.  

The LR is another demand-side resource that can be used by MGO to provide the 

balancing service. The LR can be represented, as follows: 

max

, , , , ,0 . : , ,L

t n j n j t n jL L A t n j        (19) 

Constraint (19) limits the maximum capacity of the deployed LR. Moreover, the avail-

ability of LR on the consumption side is modeled by the binary parameter LA . 

On the consumption side, the MGO can provide an upward balance service by in-

creasing the discharging power, decreasing the charging power, and deploying LR. Simi-

larly, the downward balance can be provided by decreasing the discharging power or 

increasing the charging power. Accordingly, , ,

U

t n jI and , ,

D

t n jI in (1), (2), (5), and (6) are replaced 

by (20) and (21), as follows: 

, , , , , , , , : , ,U dch ch

t n j t n j t n j t n jI P P L t n j+ −= + +      (20) 

, , , , , , : , ,D dch ch

t n j t n j t n jI P P t n j− += +     (21) 

Accordingly, the optimal deterministic strategy of MGO is represented by a linear 

problem that the decision variables of optimization problem are represented by DE ={

, ,

U

t n iI , , ,

D

t n iI , , ,

dch

t n jP +
, , ,

dch

t n jP −
, , ,

ch

t n jP +
, , ,

ch

t n jP −
, , ,t n jL , ,t n , , ,t n jE : , , ,t n i j    }. In the next section, the un-

certain parameters are formulated, and the RO-based model is presented. 
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3. Robust Scheduling Model for Portfolio Management of MGO 

The generating power of renewable resources and demand are two main sources of 

uncertainty that are considered in this study. In other words, variations of consumption 

and generating power of renewable resources lead to the nodal imbalance of power, as 

follows: 

, , , , , ,nP : , ,
D R

imb

t n d t n r t n t

d r

P P t n
 

− =      (22) 

In the RO, the possible realizations of an uncertain parameter are modeled by the 

variation interval. Therefore, the realization sets of uncertain renewable generating power 

and consumption are defined by (23) and (24), respectively. 

max min

, , , , , , , , , , , ,: , , , ,t n r t n r t n r t n r t n r t n rP P P P t n r−  −        (23) 

max min

, , , , , , , , , , , ,: , , , ,t n d t n d t n d t n d t n d t n dP P P P t n d−  −        (24) 

where P and P  are the expected and maximum variation interval of uncertain power. 

The value of the budget of uncertainty determines the total variation intervals of un-

certain parameters. This parameter represents the conservativeness of the decision-maker 

based on the normalized values of uncertain parameters. Accordingly, the uncertainty set 

is represented as follows: 

, , , , , , , , max min

. .

, , , ,

{ , } ( ) B.U. : ,
T N R D

t n r t n r t n d t n d

UV R D B U B U

t n r dt n r t n d

P P P P

P P   

 − − 
 =    +  

   
       (25) 

The risk-averse MGOs choose a higher budget of uncertainty to consider more reali-

zations of uncertain parameters in the decision-making problem and vice versa. In other 

words, for B.U. 0= the risk of uncertainty is neglected, and the optimal strategy is deter-

mined based on the expected values of renewable generating power and demand [25]. In 

the RO approach, the decision is determined based on the worst-case realizations of un-

certainties. Accordingly, in real-time operation, it can be guaranteed that the results of the 

determined strategy are not worse than the expected values. That is the reason that the 

results of RO are more conservative in comparison with stochastic programming. The ob-

jective function (1) is reformulated as a min–max problem, as follows: 

, , , , , , , , , , , , , , , ,min max . . . .

. : (2) (25)

DE UV
T N G C

U U D D U U D D

t n i t n i t n i t n i t n j t n j t n j t n j

t n i j

I I I I

s t

 
   

 
− + −  

 

−

      
 (26) 

According to the worst-case realizations of uncertainty in (26), the set of primal deci-

sion variables is determined in a way that minimizes the balancing cost. In (22)-(25), 
max min max min max min

,n , , , , , , , , . .{ , , , , , , }UV t t n r t n r t n d t n d B U B U =         is the set of dual variables, which is used to 

recast the min–max problem as a min–min problem. The solution procedure is repre-

sented in the next section. 

4. Solution Procedure 

As seen in (26), the inner optimization sub-problem is linear and convex. According 

to the strong duality theorem, the dual gap is equal to zero and the optimal value of the 

dual function (minimization) is the lower bound of the primal function (maximization). 

Therefore, the min–max problem is transformed into a min–min (minimization) problem 

by substituting the inner minimization problem with its dual problem. The objective func-

tion of the MGO is reformulated as a minimization problem, as follows: 
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,

, , , , , , , , , , , , , , , ,

max min

, , , , , , , , , , , ,

, ,

Objective function min

. . . .

( ). ( ).

(

DE DV

T N G C

T N R

U U D D U U D D

t n i t n i t n i t n i t n j t n j t n j t n j

t n i j

t n r t n r t n r t n r t n r t n r

t n r

t n d

I I I I

P P P P

P

 

   

  

=

 
− + − +  

 

 − + −  +

−

   

  

   

 

max min

, , , , , , , , , , , ,n

, , , , max

.

, , , ,

, , , ,

, , , ,

). ( ). P .

( B.U. ( )).

( B.U. (

T N D T N

T N R D

R D

imb

t n d t n d t n d t n d t n d t n t

t n d t n

t n r t n d

B U

t n r dt n r t n d

t n r t n d

r dt n r t n d

P P P

P P

P P

P P

P P

    

   

 

− + −  +

− − + +
 

− + +
 

    

   

 

  



min

.)).
T N

B U

t n 

  

 (27) 

Subject to the following constraints: 

max min

max min . .

,n , , , ,

, , , ,

0 : , ,B U B U

t t n r t n r

t n r t n r

t n r
P P

− − + − +    
 

 
    (28) 

max min

max min . .

,n , , , ,

, , , ,

0 , ,B U B U

t t n d t n d

t n d t n d

t n d
P P

 
  − + − +    

 
 (29) 

The dual constraints are represented by Equations (28) and (29). The final model is a 

MILP problem that is solved by available linear solvers. 

5. Numerical Results 

In this section, the proposed model is tested on a six-node microgrid test system that 

is shown in Figure 2 [26]. All lines except the line between nodes 2 and 4 have a reactance 

and capacity of 0.13 p.u. and 100 MW, respectively. The reactance and capacity of line 2–

4 are 0.20 p.u. and 15 MW, respectively. Moreover, the expected values of two loads D3 

and D6, generation of the wind unit, and amount of reducible loads LR3 and LR6 are 170, 

190, 50, 15, and 20 MW, respectively. The upward offers of LR3 and LR6 are 33 and 37 

$/MWh, respectively. In this work, the test system has been extended to include demand-

side flexibility resources. The scheduled generating power, upward offers, and down-

ward bids are provided in Table 2 [26]. The data of BESs are presented in Table 3 [27]. For 

BES 2, the day-ahead offer price 27 $/MWh is considered. 

G1

G4

D3

n1 n2

n3

n4 n5

n6

G3

G2

G5

G6 D6

WP

BES2

BES5

LR3 LR6
 

Figure 2. Six-node test system. 
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Table 2. DA schedule, upward offers and downward bids of generating units. 

i 1 2 3 4 5 6 

(MW)P  70 50 50 100 15 100 

(MW)UI  0 20 0 20 20 0 

(MW)DI  0 30 0 30 40 0 

($/MWh)U  - 35 - 38 40 - 

($/MWh)D  - 27 - 28 34 - 

DA offer ($/MWh) 30 25 10 20 35 31 

Table 3. Data of BES. 

i max (MWh)E  ,max (MW)BP  (MW)P  Mode 

BES2 50 50 30 Discharging 

BES5 50 50 20 Charging 

(MW)UI  (MW)DI  ($/MWh)U  ($/MWh)D  (MW)UI  

BES2 15 15 32 29 

BES5 10 10 36 32 

The capacity limitation of the line between nodes 2 and 4 leads to different nodal 

prices in the test system. Simulation results demonstrate that the marginal prices for Area1 

(n1, n2, and n3) and Area2 (n4, n5, and n6) are 30 and 35 $/MWh, respectively. Figure 3 

shows realizations of wind generating power, D3, and D6 in real-time for the settlement 

period of 15 min. It shall be noted that the variation intervals of W.P., D3, and D6 are 20, 

15, and 20 MW, respectively. 

  

Figure 3. Variations of wind power and demand. 

Participation levels of flexible resources in the balancing service are presented in Ta-

ble 4. According to Table 3, the operation modes of BES 2 and BES 5 are discharging and 

charging, respectively. Therefore, the positive/negative power values for BES2 represent 

increasing/decreasing the discharging power. Similarly, for BES5 the positive/negative 

values show decreasing/increasing the charging power. Additionally, the balancing prices 

in Area1 and Area2 are shown in Figure 4. The presented results demonstrate that the 

capacity limitation of the line between n2 and n4 increases the balancing cost in Area 2 

significantly. 
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Table 4. Scheduling of flexible resources in balancing market (MW). 

𝜟𝒕 (𝒎𝒊𝒏) G2 G4 G5 LR3 LR6 BES2(Dch) BES5(Ch) 

0–15 0 0 −20 0 0 5 0 

15–30 −20 0 −20 0 0 −15 0 

30–45 5 0 0 15 10 15 10 

45–60 0 0 0 0 10 −5 10 

  

Figure 4. Balancing prices in Area1 (n1,n2,n3) and Area2 (n4,n4,n6). 

To evaluate the impact of line capacity on balancing settlement, the balance prices for 

different capacities of line n2-n4 are presented in Figure 5. In this work, clearing the day-

ahead market is not considered. Simulation results show that by increasing the capacity 

of the tie line between n2 and n4, the MGO can utilize flexible resources more effectively 

and, consequently, reduce balancing costs. 

  

Figure 5. Impact of tie-line capacity on balance price. 

This study uses a dual pricing scheme to calculate the cost and payment to each par-

ticipant, which is provided in Table 5. The upward/downward balance price is 

higher/lower than the day-ahead price. Therefore, participation in the balancing market 

leads to a higher profit for flexible resources. For example, within the period (15–30), G2 
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sells back 5 MWh to the MGO. The income of G2 in this period is $150. In other words, G2 

gains more profit. Simulation results demonstrate that, in the dual pricing scheme, in-

creasing the uncertain demand and decreasing the renewable generation leads to the 

worst-case situation for the MGO (period 30–45). 

Table 5. Cost and payment of resources in the balancing market ($). 

 0–15 (min) 15–30 (min) 30–45 (min) 45–60 (min) 

G2 0 −135 0 0 

G4 0 0 0 0 

G5 −170 −170 0 0 

LR3 0 0 131.25 0 

LR6 0 0 92.5 92.5 

BES2 40 −101.25 131.25 0 

BES5 0 0 92.5 92.5 

D3 112.5 101.25 −131.25 −108.75 

D6 160 160 185 185 

WP −160 135 −175 145 

Impacts of the budget of uncertainty variations (B.U.) on the balancing cost and price 

are demonstrated in Figure 6. As discussed previously, by increasing the budget of uncer-

tainty, more realizations of uncertain parameters are considered in the optimization prob-

lem. To compensate for real-time variations of uncertain parameters, MGO will use more 

expensive flexible units. As shown in Figure 6, a higher budget of uncertainty leads to a 

higher balancing price and cost. It shall be noted that in the proposed model, the central-

ized optimization approach is used. Accordingly, increasing the solution time is the main 

limitation of the model that could happen in large-scale problems. Comparison with 

[18,19] demonstrates that the simulation results are independent of the approximations 

and assumptions which are used to model the uncertain parameters. In other words, the 

results are robust against the forecasting scenarios. However, in the presented model, the 

impacts of the conservativeness of the decision-maker or B.U. shall be considered in 

choosing the optimal strategy. Additionally, comparing the results of the proposed port-

folio-management strategy with the individual participation of flexible resources [25] 

demonstrates that the proposed model decreases the operational cost of a microgrid by 

11.2%. The main reason for the cost reduction is the supplying of the required flexibility 

of microgrids by the local resources. 

  

Figure 6. Impact of budget of uncertainty (MW) on balancing cost and price. 
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6. Conclusions 

This paper presents an RO-based model for MGO to manage its portfolio in the bal-

ancing market. In this model, demand and renewable generating power are considered 

uncertain resources. Furthermore, LRs and BESs are proposed as demand-side flexible 

resources that can be used by the MGO to compensate for the imbalance of power. In this 

paper, the optimal scheduling of resources is determined based on the worst-case scenario 

of uncertainties. Accordingly, the objective function is represented by a min–max prob-

lem. To solve the proposed problem, the strong duality theorem is used to recast the inner 

maximization problem as a minimization problem. Moreover, the budget of uncertainty 

is addressed to control the conservativeness of MGO. Numerical simulations show that 

increasing the conservativeness of MGO leads to a higher balancing cost. Moreover, the 

limitations of microgrids, such as the capacity of lines, increase the balancing cost signifi-

cantly. However, the MGO can relieve the negative impacts of line congestion by deploy-

ing the LR resources. Moreover, the BES can participate in the balancing market in both 

charging and discharging modes that improve the flexibility of the grid. Comparison with 

the available stochastic models demonstrates that the results of the presented robust 

model are independent of initial approximations and assumptions which are used to 

model the uncertain parameters. Moreover, deploying flexible resources such as LR and 

BES decreases the flexibility cost of microgrids. In future works, to improve the accuracy 

of the results, the authors will consider AC economic dispatch constraints and limitations 

of reactive power in the robust portfolio management problem. 
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Nomenclature 

Index and set 

, Gi   Index and set of generation resources. 

, Cj   Index and set of consumption resources. 

( '), Rr r   Index and set of uncertain renewable generation. 

( '), Dd d   Index and set of uncertain demand. 

, Nn   Index and set of nodes. 
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, n mm   Index and set of nodes which are connected to n. 

, Tt   Index and set of time. 

UV  Set of uncertain variables. 

DE  Set of decision variables. 

DV  Set of dual variables. 

Parameter 

/U D  Up/down balance price ($/MWh). 

 𝑃̃𝑟 Expected value of renewable power (MW). 

 𝑃̃𝑑 Expected value of demand (MW). 

rP  Maximum variation intervals of renewable power (MW). 

dP  Maximum variation intervals of demand (MW). 

t  Time interval (min). 

P  Scheduled value of power (MW). 

Pimb

n  Expected nodal imbalance power (MW). 

nmB  Susceptance between n and m (siemens). 

C  Capacity of line (MW). 

/B LA  Binary parameter that represents availability of battery/reducible load (1: available, 0: 

else). 

  Binary parameter that represents operation mode of battery (1: discharging, 0: charging). 

B.U.  Budget of uncertainty. 

/ ,maxU DI  Maximum upward offer/downward bids (MW). 

,maxBP  Power capacity of battery (MW). 

maxE  Energy capacity of battery (MWh). 

Variable 

/U DI  Upward offer/downward bid (MW). 

  Angle of voltage (rad). 

rP  Realization of renewable power (MW). 

dP  Realization of renewable power/demand (MW). 

E  Energy level of battery (MWh). 

/chP + −  Increased/decreased charging power (MW). 

/dchP + −  Increased/decreased discharging power (MW). 

L  Flexible consumption (MW). 

𝜆, 𝜇 Dual variables. 
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Abbreviation 

ADMM Alternating direction method of multipliers 

BES Battery energy storage 

DA Day ahead 

MGO Microgrid operator 

LR Load reduction 

MILP Mixed integer linear programming 

KKT Karush–Kuhn–Tucker 

RO Robust optimization 

TSO Transmission system operator 
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