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Abstract: Geological CO2 sequestration (GCS) has been proposed as an effective approach to mitigate
carbon emissions in the atmosphere. Uncertainty and sensitivity analysis of the fate of CO2 dynamics
and storage are essential aspects of large-scale reservoir simulations. This work presents a rigorous
machine learning-assisted (ML) workflow for the uncertainty and global sensitivity analysis of CO2

storage prediction in deep saline aquifers. The proposed workflow comprises three main steps: The
first step concerns dataset generation, in which we identify the uncertainty parameters impacting
CO2 flow and transport and then determine their corresponding ranges and distributions. The
training data samples are generated by combining the Latin Hypercube Sampling (LHS) technique
with high-resolution simulations. The second step involves ML model development based on a
data-driven ML model, which is generated to map the nonlinear relationship between the input
parameters and corresponding output interests from the previous step. We show that using Bayesian
optimization significantly accelerates the tuning process of hyper-parameters, which is vastly superior
to a traditional trial–error analysis. In the third step, uncertainty and global sensitivity analysis are
performed using Monte Carlo simulations applied to the optimized surrogate. This step is performed
to explore the time-dependent uncertainty propagation of model outputs. The key uncertainty
parameters are then identified by calculating the Sobol indices based on the global sensitivity analysis.
The proposed workflow is accurate and efficient and could be readily implemented in field-scale CO2

sequestration in deep saline aquifers.

Keywords: reservoir simulation; geological CO2 sequestration; Bayesian optimization; design of
experiments; proxy modeling; machine learning

1. Introduction

The current increase in the global average temperature is believed to be attributed
to the high concentration of carbon dioxide (CO2) in the atmosphere, which is mostly
caused by fueling the world’s economies with fossil fuels [1–4]. One practical approach to
mitigating global climate change and reducing CO2 emissions is CO2 capture and storage
(CCS) in the Earth’s subsurface and storing it permanently in an underground geological
formation [5,6]. CO2 geological storage sites include deep saline aquifers, depleted oil and
gas reservoirs, coal beds, and mineralization in reactive formations such as basalt [3,5,7–13].
CO2 utilization for enhanced oil recovery and sequestration into aquifers has been practiced
for several decades [3], where the focus has been on deep saline aquifers due to their
superior storage capacity [14]. In addition, saline aquifers are ubiquitous in many parts of
the world, making them available for most existing CO2 sources [15,16].

When injecting CO2 into a deep saline aquifer formation, typically below a depth
of 800 m (2600 ft), CO2 will be in its supercritical state [5]. The density of supercritical
CO2 is usually less than that of resident brine, leading to upward migration of buoyant
CO2 and creating a CO2 plume that spreads laterally below the impermeable cap rock.
The free “mobile” CO2 plume trapped by the sealing caprock is referred to as structural
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trapping [7,8,17,18]. As the free CO2 phase percolates upward through the formation, a
significant amount of CO2 can be entrapped by capillary forces, which is referred to as
residual trapping [19–21]. In addition, the free CO2 phase at the CO2-brine interface will mix
with the formation brine and slowly dissolve in it, leading to solubility trapping. Mineral
trapping is another type of trapping mechanism in which chemical interactions between
dissolved CO2 and rock minerals will occur, resulting in mineral precipitation [3,22,23].
These physical and geochemical trapping mechanisms determine the effectiveness of the
storage capacity and the fate of CO2 migration [24–28].

Different methods have been developed to model the storage capacity, including
analytical or semi-analytical studies and numerical approaches. For instance, the analyti-
cal study of quantifying leakage rates and storage used analytical models in the Laplace
domain for CO2 sequestration methods [29]. In addition, a semi-analytical solution was
developed to provide a simple and practical approach to evaluating the potential of CO2
leakage through abandoned wells in the subsurface storage site [30]. Moreover, several
research studies used numerical-based solutions to explore storage mechanisms and assess
the impact of various physical properties and constraints on storage potential [20,31–33].
Overall, analytical and semi-analytical solutions typically work under simplified and
ideal assumptions and can be utilized for specific cases. On the other hand, numeri-
cal reservoir simulations are computationally costly and time consuming, and thus im-
practical for large-scale applications when multiple computations are needed, such as
Monte Carlo simulations.

To address this challenge, machine learning (ML) techniques have gained signifi-
cant attention in various applications, including CCS and geoscience fields, in recent
years [34,35]. For instance, ML has been adapted for predicting oil production and CO2
storage in CO2-WAG injection using machine learning-assisted models [36]. Additionally,
different ML methods have been utilized to investigate the potential storage and incre-
mental oil recovery of CO2-enhanced oil recovery (CO2-EOR) projects [37–39]. Multiple
ML models were developed to assess and predict residual and solubility trapping in deep
saline aquifers [40]. These successful applications demonstrate ML’s robust capabilities
to establish fast and highly accurate predictive models and offer a competitive advantage
over traditional numerical simulations.

Due to the nature of the subsurface, there is always uncertainty associated with storage
capacity estimates in saline aquifers. Therefore, before embarking on a large-scale CO2
geological sequestration project, an extensive assessment of the uncertainty parameters
must be performed upfront to determine the long-term fate of CO2 migration and the
corresponding dominant physical mechanisms. Therefore, this study proposes a rigorous
workflow to perform uncertainty quantification (UQ) and global sensitivity analysis of CO2
storage capacity prediction based on a novel data-driven ML model. This study provides
a robust ML-based model to predict the capacities of different trapping mechanisms in
deep saline aquifers. Furthermore, it explores the uncertainty propagation using Monte
Carlo simulations and conducts global sensitivity analysis by calculating the Sobol indices.
Hence, to the best of our knowledge, this workflow is the first to integrate ML with Bayesian
optimization, UQ, and global sensitivity analysis for CO2 storage prediction in a deep saline
aquifer, corresponding to an actual field case Johansen aquifer [41]. The workflow consists
of three steps: (1) perform numerical simulations to generate the required output dataset
based on the input dataset designed using a specific sampling technique, (2) develop a
robust predictive ML model to evaluate the trapping capacity, and (3) conduct uncertainty
quantification and global sensitivity analysis using Monte Carlo simulations.

The paper is organized as follows: In Section 2, we present the governing equations
of two-phase flow in porous media. The ML approach is then explained, followed by
an introduction of the Johansen aquifer model. In the last part of Section 2, a detailed
description of the proposed workflow is presented with a thorough explanation of each
step. In Section 3, the Results and Discussion section provides the study’s outcome and
justifications, followed by the main conclusions in Section 4.



Energies 2023, 16, 1684 3 of 16

2. Materials and Methods
2.1. Governing Model

In this study, we consider injecting CO2 into a saline aquifer in a supercritical phase
that is less dense than the resident brine. Thus, CO2 mainly migrates via buoyancy. This
work focuses primarily on structural and residual trapping mechanisms; hence, dissolution
and mineral trappings are neglected. The open-source MATLAB Reservoir Simulation
Toolbox (MRST) [42,43] is used to investigate CO2 flow and transport, which are governed
by the conservation equation and the extended Darcy’s law, such that

∂(φραSα)

∂t
+∇(ρα

⇀
uα) = Qα, α = CO2, (1)

⇀
uα = − kra

µα

↔
K(∇pα + ραg ∇z) (2)

where φ is the porosity and t is the time; ρα, Sα,
⇀
uα, Qα, kra, µα, and pα are the density, phase

saturation, velocity, sink/source term (volumetric rate), relative permeability, viscosity, and
pressure for phase α, respectively; subscription α represents the phases for CO2 and water,

respectively;
↔
K is the absolute permeability tensor, g is the gravity acceleration, and z is the

depth. The two-phase saturations are constrained as follows:

SCO2 + Sw = 1 (3)

We relate the two pressures via capillary pressure (denoted by pc):

pc(Sw) = pCO2 − pw (4)

Fluid segregation is almost instantaneous compared to the lateral movement of the
CO2 plume due to the density difference between the supercritical CO2 and brine [27,44].
Therefore, a high vertical resolution is needed to capture the plume shape and resolve
the vertical segregation within. Therefore, using standard 3D simulation tools for large-
scale, long-term CO2 migration can be challenging and computationally expensive [8,45].
For instance, 3D simulators tend to underestimate CO2 migration velocities in simple
conceptual models [45]. Therefore, in this study, we adopt a simulation approach based on
the assumption of vertical equilibrium (VE), which reduces the model’s dimensionality to
2D while capturing the 3D model’s performance via the upscaled variables. The primary
assumption underlying VE models is the existence of equilibrium in the vertical direction.
The CO2-brine system is always segregated and in vertical equilibrium and the vertical flow
constitutes a small component in the overall flow, especially for laterally extended aquifers.
In fact, the strong buoyant segregation that characterizes the CO2-brine system makes
VE modeling an efficient approach [46,47]. Furthermore, studies have shown how a 3D
simulation gradually converges to the corresponding VE simulation as the grid resolution in
the vertical direction is increased. One can find a detailed description and more information
about the concept of VE-based simulation modeling and a comparison of the accuracy of
VE simulation to a 3D simulation in the literature [8,46,47].

The thermodynamic properties of CO2 are calculated using the Span and Wager
equation of state [48,49]. In this work, CO2 mineralization is not considered.

2.2. Machine Learning Approach

Machine learning (ML), sometimes called statistical learning, is an automated data
analysis process aiming to understand the data and detect possible relationships between
the data features [50]. Within ML, there are two basic approaches: supervised and un-
supervised learning. Supervised learning is the learning process based on labeled input-
output pairs that correlates input to output [51]. In this study, the type of learning task
is supervised learning, as the input data are labeled, and the output is supplied by the
numerical simulator.
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Among the various machine learning techniques, the decision to select which tech-
nique would ultimately provide the most accurate prediction is a challenging task. Gener-
ally, some sophisticated ML models, such as Artificial Neural Networks (ANN), can offer
satisfactory results but require extensive effort to construct and fine-tune the algorithm.
Nevertheless, the same problem can be handled by a simpler machine learning technique
and still provide an acceptable result. Therefore, a thorough understanding of the prob-
lem’s complexity and adequate education about the different ML techniques are inevitably
needed for optimum model selection.

2.3. Johansen Aquifer Model: A Real Case Example

We demonstrate the proposed approach to modeling the fate of CO2 migration for the
Johansen CO2 sequestration project [41]. The Johansen aquifer is located in the North Sea,
offshore of Norway’s west coast, as shown on the map in Figure 1. The geological model
with one CO2 injector, adopted from the CO2 Storage Atlas of the Norwegian Continental
Shelf [41], is shown in Figure 1 (left). We used MRST-CO2lab to model and simulate CO2
storage from a large-scale, long-term perspective [52].

Energies 2023, 16, x FOR PEER REVIEW 4 of 17 
 

 

input-output pairs that correlates input to output [51]. In this study, the type of learning 

task is supervised learning, as the input data are labeled, and the output is supplied by 

the numerical simulator. 

Among the various machine learning techniques, the decision to select which 

technique would ultimately provide the most accurate prediction is a challenging task. 

Generally, some sophisticated ML models, such as Artificial Neural Networks (ANN), can 

offer satisfactory results but require extensive effort to construct and fine-tune the 

algorithm. Nevertheless, the same problem can be handled by a simpler machine learning 

technique and still provide an acceptable result. Therefore, a thorough understanding of 

the problem’s complexity and adequate education about the different ML techniques are 

inevitably needed for optimum model selection. 

2.3. Johansen Aquifer Model: A Real Case Example 

We demonstrate the proposed approach to modeling the fate of CO2 migration for 

the Johansen CO2 sequestration project [41]. The Johansen aquifer is located in the North 

Sea, offshore of Norway’s west coast, as shown on the map in Figure 1. The geological 

model with one CO2 injector, adopted from the CO2 Storage Atlas of the Norwegian 

Continental Shelf [41], is shown in Figure 1 (left). We used MRST-CO2lab to model and 

simulate CO2 storage from a large-scale, long-term perspective [52]. 

 

Figure 1. The location and the geological model of the Johansen aquifer with the well location [53]. 

The simulation model consists of 29,128 grid cells. The CO2 injection point was placed 

in a location where a succession of traps is connected and has a significant trap volume to 

maximize structural trapping capacity. The formation rock is sandstone with 

heterogeneous reservoir properties and features a major sealing fault. The fluid and rock 

properties and the other relevant parameters are listed in Table 1. Figure 2 demonstrates 

the heterogeneous permeability and porosity models of the Johansen aquifer. 

Figure 1. The location and the geological model of the Johansen aquifer with the well location [53].

The simulation model consists of 29,128 grid cells. The CO2 injection point was placed
in a location where a succession of traps is connected and has a significant trap volume to
maximize structural trapping capacity. The formation rock is sandstone with heterogeneous
reservoir properties and features a major sealing fault. The fluid and rock properties and
the other relevant parameters are listed in Table 1. Figure 2 demonstrates the heterogeneous
permeability and porosity models of the Johansen aquifer.

Table 1. The simulation parameters and corresponding values for the base case.

Parameter Base Case Value

CO2 injection rate Q 8000 m3/day
Residual CO2 saturation Srco2 0.2
Residual water saturation Srw 0.1

Permeability K 233 mD (Avg.)
Porosity φ 22% (Avg.)

Fluid properties ρco2 = 686.54 ρw = 975.86 kg/m3

µco2 = 0.056641 µw = 0.30860 cp
Injection period 50 years

Post-injection (migration) period 450 years
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Figure 2. The permeability (left) and porosity (right) 3D maps of the Johansen aquifer.

2.4. Proposed Workflow

A ML-based workflow is proposed for modeling field-scale CO2 storage, which over-
comes the limitations of extensive simulations of physics-based models. Figure 3 shows
the proposed workflow, which includes three steps consisting of (1) dataset generation,
(2) ML model development, and (3) uncertainty quantification and global sensitivity analy-
sis, which are detailed as follows.
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Storage in a saline aquifer.

2.4.1. Step 1: Dataset Generation

First, we identify the uncertainty variables that impact the CO2 trapping capacities
and determine their corresponding ranges [54,55]. The Latin Hypercube Sampling (LHS)
technique is conducted to create various designs of input samples. LHS assures the sample
points are evenly distributed in a space-filling manner across all possible values and avoids
bios from data clustering [33,56–59]. Data clustering may lead to inconsistent accuracy in
the model when sampled data points are insufficient for some data intervals and could
be oversampled from others. Table 2 summarizes the identified uncertainty parameters
and their corresponding ranges. We assume each parameter to be uniformly distributed
and independent of the other parameters. In each simulation run, the sampled input data,
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which comprise the identified uncertainty parameters and the objective outcomes, i.e.,
trapping capacities, are collected as a training dataset for the next step. The percentages
of CO2 entrapments of different mechanisms are calculated by the simulator based on the
mobile and residual CO2 saturations.

Table 2. The uncertainty parameters considered for this study with corresponding ranges.

Uncertainty Parameters Lower Bound Upper Bound

CO2 injection rate Q 8000 m3/day 14,000 m3/day
Residual CO2 saturation Srco2 0.1 0.4
Residual water saturation Srw 0.1 0.4

Permeability coefficient αK 0.8 1.4
Porosity coefficient αφ 0.8 1.4

2.4.2. Step 2: Generate a ML-Based Predictive Model

In this step, we developed a data-driven ML model to estimate the nonlinear rela-
tionship between the output parameters, i.e., CO2 trapping capacities, and the identified
uncertainty variables. This study implemented an Artificial Neural Network (ANN), con-
sisting of three main elements: an input layer, hidden layer(s), and an output layer. The
input layer holds a number of neurons corresponding to the number of input features of
the problem, i.e., the uncertainty variables and time. ANN with the time term (Figure 4), as
an input, can also describe time series problems compared to Long-Short Term Memory
(LSTM), yet it honors the simplicity and efficiency of the architecture [57,60]. The output
layer contains neurons equal to the number of expected outputs, i.e., the trapping capacities.
The hidden layers may have as many layers as the problem dictates. In this problem, we
used 3 hidden layers. The ANN model was trained in MATLAB R2022a environment
running on an Intel® Xeon® W-2245 CPU 3.91 GHz with 64 GB RAM.
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Figure 4. Schematic showing our ANN model architecture, including input, hidden, and output layers.

The building and training procedure for the coupled ANN model with Bayesian
optimization is illustrated in Figure 5. First, we determine the optimum hyper-parameters
of the ANN algorithm, namely the number of hidden layers, the number of neurons in each
hidden layer, the type of activation function, and the training–validation–testing ratio.
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Figure 5. The process of ANN training with Bayesian optimization.

The training and validation process is then conducted with a target to reach an accuracy
of a minimum R2 of 95% for the training and validation steps. To avoid the inefficien-
cies of manual trial-and-error procedures, we deploy a Bayesian optimization workflow
to ensure proper and fast hyper-parameter tuning. With this approach, we update the
Gaussian process model and sample the hyper-parameters using the acquisition function.
We then reiterate the ANN training process with the updated hyper-parameters until
the desired accuracy is achieved. Unlike the traditional trial-and-error process, Bayesian
optimization helps automate the hyper-parameter tuning and significantly accelerates the
convergence procedure.

There are several statistical indicators used to assess the performance of the developed
ML models [51], from which we adopted two evaluation indicators as follows:

• Root-mean-square Error (RMSE) is the standard deviation of the residuals (prediction
errors), which is a measure of the distance of the regression line from the data points.
RMSE is given by:

RMSE =

√
∑N

i=1(yi − y)2

N
(5)

• Coefficient of determination (R2) is a statistical measure of fit that indicates the
amount of variation between actual and predicted values. R2 of 1 means the data are
perfectly matched. R2 is calculated using the following equation:

R2 = 1− ∑N
i=1(yi − f (xi))

2

∑N
i=1(yi − y)2 (6)

2.4.3. Step 3: Uncertainty Quantification and Global Sensitivity Analysis

In this step, we perform Monte Carlo simulations based on the optimized ML model
developed in step 2 to explore the uncertainty propagation of time-series outputs for
each storage mechanism. The sampled results are collected to quantify the probabilistic
percentiles P10, P50, and P90. Eventually, global sensitivity analysis is performed to identify
the critical uncertain parameters by calculating the Sobol indices [61,62].
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3. Results and Discussion
3.1. Base Case Simulation Result

The base case study consists of a 50-year injection of CO2 followed by a shut-in stage of
450 years of CO2 migration. For a more detailed comparison between different operational
scenarios, the conducted simulations quantified CO2 entrapments in six categories, as
described below:

1 Structural—CO2 residually trapped inside a structural trap.
2 Residual—CO2 residually trapped outside any structural traps.
3 Residual in the plume fraction of the CO2 plume outside any structural traps will be

left behind as residually trapped droplets when the plume migrates away from its
current position.

4 Structural plume—mobile CO2 volume that is currently contained within a residual
trap; if the containing structure is breached, this volume is free to migrate upward.

5 Free plume—the fraction of the CO2 plume outside of structural traps that is free to
migrate upward and/or be displaced by imbibing brine.

6 Exited “leaked”—the volume of CO2 that has leaked out of the domain through its
lateral boundaries.

Figure 6 shows the simulation results at the end of the injection period (50 years)
and after 500 years, which illustrate the migration of CO2 in the post-injection period and
the corresponding evolution of different storage capacities. We notice that the free plume
is significantly reduced from 77% to 55%, and the structural residual trap increases by
around 28%. Additionally, the residual plume decreases from 22% to 16%. This model has
a small contribution from structural traps, while residual trapping is the main entrapping
mechanism. Within this simulation time, a small amount of CO2 reaches the top of the
structure during the migration timeframe. It should be noted that simulation over a longer
period of time could be needed to assess the long-term fate of CO2 migration.
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3.2. Generating Training Dataset for the ML Model

Following the base case, a series of simulation scenarios were conducted to generate
training data for the ML model. We conducted a total of 100 simulation jobs, each with
95 time steps, using the MRST-CO2lab module. Thus, a total of 9500 input data points
were obtained and used to calibrate the ML-ANN model. The data were split into three
distinct subgroups according to the train–validation–test ratio. The train split is the set of
data on which the actual training takes place. A validation split helps improve the model’s
performance by fine-tuning the model. The test split was used to evaluate the model’s
performance in terms of accuracy after completing the training phase. The train–validation–
test ratio is a critical factor for virtually any ML training process. Generally, the larger
the training data split, the more accurate the ML can be. However, the optimum ratio
relies upon factors such as the size of the whole dataset, the structure of the model, and
the dimension of the data. In this study, the optimized ratio is selected at 0.7:0.15:0.15 for
the train, validate, and test splits, respectively, meaning that 70% of the data are used for
training, 15% for validating, and the remaining 15% are reserved for testing the model
once trained.

Subsequently, our ANN model was trained with the generated data according to
the selected ratio. The ANN fitting function in MATLAB was used to train the model.
The Bayesian-optimized hyper-parameters are summarized in Table 3. The optimized
ANN architecture consists of three hidden layers with the optimized neurons of 8, 6, and 5,
respectively, on each layer. The Sigmoid activation function was found to be the best
activation function compared to ReLu and Tanh. Figure 7 shows the computation time
for the numerical simulator and the developed ANN model. The reported time is in
seconds, and it covers the prediction of CO2 migration mechanisms for 500 years. As
can be observed, the ANN outperforms the numerical simulator model by approximately
fivefold. This demonstrates the efficiency of the ANN model in accurately reproducing the
physics-based model (see Figure 8).

Table 3. The optimized hyper-parameters for the ANN model.

Tuned Hyper-Parameter ANN

Number of hidden layers 3
Neurons per hidden layer [8 6 5]

Activation Function Sigmoid
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Figure 7. Computation time of numerical simulator and ANN model.

Figure 8 shows the performance of the training, validation, and testing dataset. The di-
agonal plots compare the normalized ANN predicted results and the ground truth solution.
Table 4 shows the statistical indicator of the ANN model. This optimized ANN model is
then considered to perform Monte Carlo runs and, eventually, global sensitivity analysis.
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Figure 8. Parity plots show the performance of the ANN model, which compares the prediction
results with the ground-truth (simulation) results. The first row of plots corresponds to structural
residual trapping, the second row to residual trapping, the third row to residual trapping in the
plume, the fourth to structural trapping in the plume, and the last row to the free plume.

Table 4. The statistical indicator shows the performance of the ANN model.

Indicator Train Validation Test

RMSE 0.00797 0.00808 0.00783
R2 0.9988 0.9988 0.9988

3.3. Monte Carlo Simulations

We conducted 5000 Monte Carlo simulations using the trained ANN model to evaluate
the uncertainty propagation of the time-series output variations for each type of storage
format. The 5000 runs were found to be sufficient to capture the probabilistic distribution.
We then grouped the resulting time-series outputs to highlight the percentiles of P10, P50,
and P90, as shown in Figure 9.
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We observe in the residual plot (second plot) that CO2 storage capacity exhibits two-
segment trends—it hardly increases during the first 50-year period (i.e., the injection period)
but substantially increases in the post-injection (i.e., the migration) period. In other words,
this type of storage capacity does not dominate storage mechanisms in the injection period,
yet it starts to play an increasingly important role in the migration period. The residual in
the plume (third plot) and free plume (fifth plot) show a different trend, in which the trend
increases to reach a peak at or before the injection-stop year during the injection period
and then decreases afterward. These trends, based on various Monte Carlo runs, provide
guidance for the importance of each storage capacity in different periods.
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We then conducted a global sensitivity analysis to determine the most significant
influential parameters on the investigated outputs by calculating the first-order Sobol
indices. The sensitivity analysis was performed within the UQLAB framework [63]. We
took the results at 50 and 500 years as references to illustrate the time-series sensitivity
analysis. We observe in Figure 10 that in that the permeability and porosity do not show a
major influence on the final behavior of CO2 trapping. In the structural (trap) residual (the
first row in Figure 9), the CO2 injection rate (Q) significantly influences the storage capacity
in the structural residual format at both 50 and 500 years. On the other hand, the residual
CO2 saturation (SrCO2) and residual water saturation (Srw) increase to some extent over
time. However, in the residual trapping (the second row in Figure 10), Srw dominates the
storage mechanism, and its impact slightly decreases within the migration period. Q and
Srw showed a weak contribution toward the end of the migration period. The others (third,
fourth, and fifth rows) could be observed and summarized in Figure 10. The remaining
storage formats (third, fourth, and fifth rows in Figure 10) showed mixed effects in relation
to the parameters.
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4. Conclusions

This work presents a rigorous machine learning-based workflow for predicting CO2
storage capacity and mechanisms in deep saline aquifers and further conducting uncertainty
and global sensitivity analysis. The main findings of this study are summarized as follows:
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• High-resolution numerical simulations (open-source MATLAB package: MRST-CO2lab)
are conducted to investigate the various trapping mechanisms and total CO2 storage
capacity, where the Johansen Aquifer is used as a real case application in this study.
The simulation results are then used as a sample input in the ML model.

• The ML model, Artificial Neural Network (ANN), with time term as an input coupled
with Bayesian optimization, was trained and used to predict the contribution of
different trapping mechanisms.

• The accuracy achieved with the ANN corresponds to RMSE and R2 values of 0.00783
and 0.9988, respectively. Thus, the proposed ML model demonstrates robustness and
accuracy in comparison with the numerical reservoir simulator.

• Monte Carlo simulations with 5000 runs, based on the optimized ML, are performed
to explore the uncertainty propagation of time-series model outputs for each storage
mechanism. Two distinct trends among the five investigated storage mechanisms are
identified, namely residual and free plume mechanisms. The observed trends offer
quantitative evaluations for each storage mechanism over different periods.

• First-order Sobol indices are used to identify the most influential paraments in the
model’s predictions. The top three crucial input parameters are injection rate (Q),
residual CO2 saturation (SCO2), and water saturation (Srw). Their order of significance
varies depending on the specific storage mechanisms. Note that the injection rate is
typically a major uncertainty parameter.

• The conclusions obtained by the global sensitivity analysis offer insights into the most
influential time-series contributors, which could ensure better management during
large-scale CO2 sequestration.
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