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Abstract: This paper describes the scheme and algorithm for controlling a laboratory setup that result
in low uncertainty and high convergence with respect to the characteristics of electric discharges
under the conditions of variable parameters of a reaction medium. The article presents current
and voltage oscillograms when processing hydrocarbon raw materials. Methods for calculating the
energy impact of electrical discharge are described. A comparison is made between the parameters of
electric discharge with current pulse limitations and those without current pulse duration limitations.
The proposed approach to controlling the characteristics of electric discharges provides the same
parameters of nonthermal nonequilibrium plasma and, as a result, a regular composition of the
products of plasma pyrolysis of hydrocarbon raw materials.

Keywords: control systems; energy impact; laboratory setup; nonthermal plasma; electric discharges;
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1. Introduction

With the increasing demand for energy and accompanying greenhouse gas emissions,
all of which reduce readily available fossil fuels, it is necessary to develop technologies
for processing heavy hydrocarbon raw materials and renewable energy sources such as
biofuels, modernize current technological schemes in the chemical industry, and switch to
carbon-free electricity [1–3]. About 25% of greenhouse gas emissions worldwide resulted
from industrial activities, with CO2 being the most common greenhouse gas. In the chemical
industry, significant CO2 emissions are associated with oil refineries and the production of
ethylene, which accounts for about 10% of the greenhouse gases of the chemical industry [4].
The development of new technologies in the field of chemical production can lead to a
decrease in energy intensity by 25% and the decarbonization of the chemical industry [5,6].

Depending on ethylene production technology, the process of cracking crude oil is
carried out at a temperature of 550–1100 ◦C, which requires the combustion of hydrocarbon
fuels to maintain the required temperatures; this, in turn, leads to CO2 emissions [7,8]. The
transition from high-temperature pyrolytic furnaces to plasma reactors operating using
carbon-free electricity will significantly reduce CO2 emissions.

Plasma processes are already widely used in the chemical industry, that is, in metal-
lurgy, hydrocarbon cracking, biomass gasification, and air purification [2,9–11]. Plasma
technologies can be used for refining heavy oil to reduce the use of hydrogen and avoid
the need for using expensive catalysts in conventional hydroprocessing methods [12–14].
Plasma can be divided into thermal and nonthermal types [15]. The amount of power
consumption required to create thermal plasma is relatively high (tens of kilowatts). The
temperature of thermal plasma is usually above 10,000 ◦C [16,17]. Part of the input power
for generating thermal plasma is lost due to an increase in the system’s temperature. Al-
though high temperatures are required for the reaction, consuming a large amount of
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electricity to heat a system is not economically feasible. In contrast, the input power
required to generate nonthermal plasma is relatively small and does not cause a clear
increase in the system’s temperature. Nonthermal plasma generates high-energy electro-
magnetic fields, energetic electrons, free radicals, an excited state, and many other active
particles [18,19].

The use of nonequilibrium plasma for chemical processes allows highly endothermic
reactions at moderate temperatures, limiting the effect of Joule heating and thereby mini-
mizing the energy loss observed when heating gases. Typical products of plasma-chemical
pyrolysis are hydrogen, shorter-chain hydrocarbons, alkenes, condensation products, and
various forms of carbon. Effective control of plasma-chemical pyrolysis is provided by
the regulation of three processes: (1) initiation reactions with the formation of radicals,
(2) generation of secondary radicals to maintain the process, and (3) termination of chain
reactions by the recombination of radicals to form target products. Nonequilibrium low-
temperature plasma allows the regulation of the relative rates of thermal, initiating, and
radical processes to change the composition of the main products. Together, the synergistic
electron thermal effect enhances the chemical activity of the plasma, making it a promising
alternative to low-throughput, high-temperature chemical processes. The activation of
organic substances occurs due to the impact of pulsed electrical discharges on the sub-
strate [20]. Inside the reactor, a fixed distance is created between the electrodes using plasma
in the gas phase, which will provide electrical discharges at a certain voltage. During the
process in a liquid medium, products accumulate in the reaction volume, which can cause
a change in the electrical strength of the reaction mixture, and this leads to a change in the
breakdown voltage. A decrease in the breakdown voltage leads to the ignition of an electric
arc. The electric arc is a concentrated source of heat, which increases the temperature inside
the reactor, and a further transformation of the substrate is associated with the effect of
temperature on it [21].

Although some large-scale applications of plasma processes have been demonstrated,
a number of problems still prevent the widespread adoption of plasma in the chemical
industry [22]. The use of pulsed discharges, on the one hand, makes it possible to increase
the energy efficiency of the process; however, on the other hand, it requires significant
costs for the power source, power semiconductors, and control system. In addition, the
pulse technology generates a large amount of electromagnetic interference, which requires
additional measures to ensure electromagnetic compatibility both with other devices and
with the microprocessor control system of the installation. It is not easy to transfer the
plasma process from the laboratory to industrial applications. Designing the entire plasma
system, which includes both the reactor and the power unit, for increased capacities is the
biggest challenge that requires solutions in order to upscale the technology.

During a spark discharge, rapidly disappearing filamentous spark channels filled
with plasma appear. The lifetime of the discharge is short; therefore, heating does not
occur for the entire reaction volume [23]. This makes it possible to predict and stabilize
the effect of plasma on the character of transformations. When conducting research on the
direction of substrate transformations, it is necessary to evaluate the effect of voltages and
the duration of exposure on the intensity of chemical transformations. Therefore, one of
the requirements is the ability to control the parameters of electrical discharges.

This article proposes an algorithm for controlling the characteristics of electrical
discharges under conditions of variable parameters of the reaction medium. The main
purpose of the study is to create conditions for generating identical electrical discharges
to maintain the same parameters of the impact of nonthermal nonequilibrium plasma on
hydrocarbon raw materials and, as a result, the same composition of the products obtained.
The object of the study is vacuum gas oil, which is used for cracking processes to produce
ethylene [24]. The creation of plasma in liquid hydrocarbons can result in the creation of
small-sized reactors with high productivity and selectivity, which differ from the plasma
formed in gaseous hydrocarbons.
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2. Materials and Methods
2.1. Description of the Laboratory Setup

Figure 1 shows the setup of the working reactor (made of Teflon, 40 cm3 volume)
used in this study, where graphite electrodes (6 mm diameter) were mounted inside. A
DC voltage source with variable voltages ranging from 100 to 300 V was used to generate
low-voltage discharges by varying the distance between the electrodes. The temperature
in the reactor ranged from 80 to 120 ◦C. The unit of energy per amount of substance
in low-voltage pulsed discharges reaches 700–900 kJ/mol. Consequently, the generated
energy is much higher than the energy required to break chemical bonds, which leads to
the formation of highly active particles [25,26]. The composition of gas-phase products
was determined by utilizing gas chromatography with flame ionization detection using
a Kristall 5000.2 gas chromatograph. The resulting gas was cooled and trapped in a gas
trap. The reactor was set up such that the pressure was almost constant. As the object of
the study, vacuum gas oil (VGO) with the following characteristics was used: density at
20 ◦C—0.909 g/cm3; kinematic viscosity at 100 ◦C—6.648 mm2/s; sulfur content—1.806%;
initial boiling point—321.1 ◦C; final boiling point—577.6 ◦C.
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Figure 1. Block diagram of the laboratory setup.

Figure 1 shows the following components: P—reactor vessel; E—electrodes; RDC—
regulated DC source; T—trap for gaseous products; V—valve; RC—reflux condenser;
CB—capacitor bank; VS—voltage sensor; M—clutch; SM—stepper motor; D—stepper
motor driver; CS—current sensor; MCS—microprocessor control system; PS—stepper
motor power supply; VT1 and VT2—IGBT transistors.

Two IGBT transistors were used to regulate the discharge time. The first transistor
charges the capacitor bank from a voltage source. In this case, the first transistor is open
and the second is closed. The second transistor ensures the discharge of the capacitor bank
when the electrodes in the reactor are closed. In this case, the first transistor is closed, and
the second is open. The generation of low-voltage discharge is carried out by the automatic
regulation of the distance between the electrodes.

In addition to knowing the currents and voltages generated by pulsed power systems,
it is often desirable to know how much energy they generate. Direct measurement of
energy is generally not necessary, since it can be calculated from the measured values of
the time-dependent current and voltage. The energy of the electric discharge acting on the
substance in the reactor depends on the current voltage, current, and time.
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At a constant voltage value and the same composition of the raw materials loaded into
the reactor, the amplitude of the current pulse changes insignificantly. However, during
plasma pyrolysis, the composition of the raw materials changes due to the formation of
gaseous hydrocarbons and solid products in the form of various forms of carbon. By-
products of pyrolysis, which are in the liquid phase, change the dielectric strength. In
addition, solid carbon particles can enter the interelectrode space and cause secondary
discharges, which differ significantly from primary discharges in their characteristics.
Secondary discharges lead to the acceleration of condensation processes and the growth of
solid particles, which significantly affects the composition of the products. Therefore, it is
necessary to limit the discharge energy in order to increase the convergence of experimental
work. Since the voltage is constant and is set on an external DC source, and the current is a
function of voltage, the way to limit the discharge energy can be to limit the pulse duration.

A block diagram of a duration control electric discharges algorithm is shown in Figure 2.
The major inputs are Tpul—preassigned duration of the discharge, Udis—preassigned dis-
charge voltage, Vf—linear velocity of the electrodes approaching, and Vb—linear velocity of
the electrodes moving away. The measured voltage Uvs is compared with the voltage Udis.
If the voltage Uvs is less than the voltage Udis, then the semiconductor switch VT1 opens,
which charges CB. As soon as the voltage Uvs exceeds the voltage Udis, the semiconductor
switch VT1 closes, and the semiconductor switch VT2 opens. The control system monitors
the discharge current Ics from the current sensor. If the current Ics is less than zero, then
a signal of the approach of the electrodes with the speed Vf is generated. As soon as the
current Ics is greater than zero, the control system compares the discharge time Tdis with the
set duration Tpul. The semiconductor switch VT2 closes under the condition Tdis = Tpul, and
the electrode in the reactor begins to move away from the stationary electrode at the speed
Vb. Then the cycle repeats. The energy of the electric discharge is directly proportional
to the discharge time. Thus, by adjusting the pulse duration, it is possible to control the
energy released in the reactor. The parameters Vf and Vb affect the pulse frequency.
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Figure 3. View of the reactor (a), control system, and DC power source (b).

The regulated power supply allows setting the voltage at which a discharge occurs
between the movable and stationary electrode E. The instantaneous value of the discharge
current measured by the current sensor is processed in the microprocessor control system,
which sets the direction of rotation and the speed of rotation of the shaft of the stepper
motor by means of driver D. The motor shaft is connected by coupling M to the reverse
element of the reactor vessel, into which the electrode is inserted.

The installation operating modes are manual or automatic. In the manual mode, one
can control the rotation of the shaft and set the values of the speed of rotation of the shaft,
voltage, and duration of the discharge, even for the automatic mode.

2.2. Methodology of Experiment

There are four stages [27–30] during liquid breakdown processes (Figure 4):
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Electronic—the generation of charge carriers on metal electrodes by field emission
or field ionization; the formation of the coverage area of the charge. The electronic stage
begins when the electrodes approach a critical distance. Random primary electrons near the
cathode provide a low initial current. Primary electrons drift towards the anode, ionizing
the gas and generating electron avalanches.

Electrothermal—an increase in temperature due to the observation of the movement
of charge carriers, the formation of dynamics with density at the points of the greatest
dissipation of energy, crown photo, potential instability. The electrothermal stage begins
with a further approach of the electrodes. In this case, an unstable glow is observed.

Gas discharge—the formation of a gas discharge channel from the cathode to the
anode, light radiation, heat, breaking molecular bonds, the formation of radicals and ions.
At this stage, a bright glow is observed, and a large number of gas bubbles are formed
(Figure 4).

Physicochemical—discharge quenching, decrease in temperature, the recombination
of ions and radicals, the formation of molecular products. At this stage, there is no plasma
glow, but gas bubbles are still forming.

By controlling each stage, it is possible to influence the rate of chemical transforma-
tions and the qualitative and quantitative composition of the resulting products [31–34].
Changing the speed of the rotation of the reactor electrode leads to a change in the duration
of the discharge. With a long duration (low speed), the discharge can turn into an arc, which
will affect the composition of reaction products and lead to the growth of carbon particles
on the electrode’s surface. It is also necessary to control the frequency of discharges. To
improve the performance of the process, discharges should be as frequent as possible.
However, the gaseous reaction products (Figure 4) must be removed from the discharge
zone; otherwise, they will enter into secondary transformations, and the composition of the
resulting products will change.

In the automatic mode, at the beginning of the operation, when the voltage on the
capacitor bank is lower than the specified one, the first transistor is open and the capacitor
is charged to the specified voltage. After reaching a predetermined voltage level on the
capacitor, the first transistor proceeds into the closed state, and the second one progresses
into the open state. The convergence of the electrodes begins until the discharge current
appears. The discharge current is detected with the current sensor by the control system,
and after a predetermined time value, the control system closes the second key, thereby
regulating the duration of the discharge. After the discharge, the electrodes in the reactors
move away from each other, and a new cycle of work begins when the battery of capacitors
is charged.

A typical oscillogram of the pulse generation process is shown in Figure 5.
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The voltage and current values from voltage and current sensors are also recorded
using a Rigol DS1054Z oscilloscope. The resulting oscillograms are used to calculate the
characteristics of the discharge during the reaction.

The regulation of the duration of the electric discharge is carried out by a microproces-
sor control system. The pulse duration is measured from the rising edge of the current. The
transistor VT2 closes when the set duration is reached. The typical oscillograms of current
and voltage pulses in the process of plasma-chemical cracking of VGO on a laboratory
setup are shown in Figures 6–8.
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3. Results and Discussion
3.1. Method for Determining the Energy Impact of Electric Discharges

During the experiment (120 min), the oscilloscope records instantaneous current
and voltage values. The instantaneous current and voltage values are recorded by the
oscilloscope at intervals of 2 min (600,000 values of the measured value). The measured
current and voltage values are processed in the MATLAB program to obtain graphic images
of transients over time and to determine the parameters of current pulses. The program
calculates the number of pulses at each measurement interval, the duration of each pulse,
and the total time of the impact of discharges on the substance, and then it writes the
amplitude of each pulse (the maximum value of the pulse current) to the array. Next, the
average values are calculated:

The average pulse duration is calculated as

taver =
t∑

n
(1)

where t∑ denotes the total duration of the pulses, and n denotes the number of pulses;
The average pulse frequency is calculated as

faver =
n

trec
(2)

where trec denotes the recording time of the oscillogram;
The average amplitude of the pulses is calculated as

Aaver =
A∑

n
(3)

where A∑ denotes the sum of the amplitudes of each pulse;
The pulse energy is calculated as [35]

E = Ud·Id·Timp (4)

where Ud is the root mean square voltage at the time interval of the discharge, Id is the
root mean square of the current at the time interval of the discharge, and Tipm is the pulse
time. The average pulse energy is defined as the sum of the pulse energies divided by the
number of pulses.

The standard error, u, is estimated as [36]

u =

√
∑(Xi − Xmean)

2

n(n − 1)
(5)

where n denotes the number of values, Xi denotes the i value in the array, and Xmean denotes
the average value in the array.

3.2. Results of Experiment

The control system allows adjusting the pulse time. Table 1 shows the parameters of
the electric discharge during the destruction of VGO under the action of electric discharges
in the liquid phase without controlling the pulse duration.

Table 1. Electric discharge parameters without controlling the pulse duration.

Characteristics of Electrical Discharges Voltage, V
100 200 300

Average pulse duration, ms 0.84 1.139 1.146
Average pulse frequency, Hz 0.65 0.68 0.72
Average pulse amplitude, A 133.42 308.07 323.94

Average pulse energy, J 0.037 0.221 0.227
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Table 2 shows the parameters of the electric discharge during the destruction of VGO
under the action of electric discharges in the liquid phase with the control of the pulse
duration. The set pulse duration is 1 ms.

Table 2. Electric discharge parameters with the control of the pulse duration.

Characteristics of Electrical Discharges Voltage, V
100 200 300

Average pulse duration, ms 0.84 1.01 0.99
Average pulse frequency, Hz 0.65 0.67 0.69
Average pulse amplitude, A 131.14 312.97 326.75

Average pulse energy, J 0.036 0.199 0.201

On one side, the discharge duration is not limited at low voltage since the discharge of
the capacitor during an electric discharge occurs faster than the specified pulse duration.
On the other hand, the minimum pulse time is limited by the turn-off time of transistor
VT2. An additional battery of capacitors can be used when carrying out the destruction of
substances at a low voltage of up to 100 V. This will increase the discharge energy and use
the proposed algorithm for its limitation.

Table 3 shows the characteristics of the process and the results of the analysis of
the composition of the gas formed during the plasma pyrolysis of VGO at a voltage of
100–300 V and an experiment time of 1 h.

Table 3. Characteristics of the plasma pyrolysis of VGO and the composition of gaseous products.

Voltage, V 100 200 300

Energy consumption, kWh 0.04 0.06 0.07

Energy consumption, kWh/kg of gas 235.3 120.0 83.3

Gas flow, ml/h 5.2 13.4 21.5

Gas composition, mol%
Gas yield, wt%

0.8 2.2 3.7

H2 56.0 53.3 51.8

CH4 4.6 5.0 5.6

C2H4 6.9 7.8 8.4

C2H6 0.3 0.4 0.4

C2H2 29.0 29.4 28.6

C3H8 1.1 1.6 2.0

C3H4 1.4 0.8 0.9

1,3-C4H6 0.1 0.4 0.6

C4H10 0.1 0.2 0.2

C5H12 0.5 1.1 1.5

The composition of the gas during the plasma pyrolysis of VGO contains high concen-
trations (mol %) of hydrogen at 51.8–56.0, acetylene at 28.6–29.4, and ethylene at 6.9–8.4.
An increase in the power of electrical discharges from 0.036 to 0.201 J during the pyrolysis
of VGO leads to an increase in the productivity of the installation in terms of gas flow
by four times from 5.2 to 21.5 mL/h and a decrease in energy consumption by 2.8 times
from 235.3 to 83.3 kWh/kg of gas. Such a sharp decrease in energy consumption is due to
the fact that at a higher discharge power, a significant amount of radicals are generated,
which support chain reactions and the formation of secondary radicals. However, it also
leads to a change in the composition of products in the gas phase. The yield of hydrogen is
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reduced from 56.0 to 51.8 mol%, and the ethylene content increases from 6.9 to 8.4 mol%.
with an increase in the energy of electrical discharges. At the same time, it is not necessary
to significantly increase the voltage to increase the productivity of the process, that is,
increase the discharge energy, since ultrahigh pulsed discharges lead to the destruction of
the electrodes due to the electrohydraulic effect. Therefore, further work will be associated
with an increase in the frequency of pulses and a decrease in the time of electrical discharges
during plasma pyrolysis in the liquid phase. The high concentration of hydrogen and
acetylene in the gas makes it possible, if necessary, to carry out the semihydrogenation
process to increase the yield of ethylene [37].

4. Conclusions

The article describes a laboratory setup for regulating the impact of electrical dis-
charges in a liquid phase. An algorithm for the operation of the laboratory setup and a
technique for processing oscillograms were described. The algorithm provides for limiting
the duration of the electric discharge. This is implemented by forcibly turning off the
transistor, which leads to a break in the electrical circuit and the cessation of current in the
reactor. A comparison was made of the parameters of electric discharges with and without
the limitation of the duration of discharges. It is shown that the limitation of the duration
ensures the repeatability and convergence of the results. The developed setup and the
algorithm for generating discharges can be used to ensure the constancy of the composition
of the products obtained during the processing of hydrocarbon raw materials. The authors
plan to continue their research in the following areas:

(a) Search for optimal modes of processing substances to reduce energy costs, increase
the productivity of the installation, and increase the yield of the main products;

(b) Modification of the semiconductor key control circuit to limit the discharge time to
nanosecond ranges, which will reduce the thermal effect of the plasma;

(c) Expanding the scope of the application of plasma-chemical pyrolysis for the process-
ing of renewable bio-raw materials, industrial waste, and carbon dioxide.
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