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Abstract: Around the globe, electric power networks are transforming into complex cyber–physical
energy systems (CPES) due to the accelerating integration of both information and communication
technologies (ICT) and distributed energy resources. While this integration improves power grid
operations, the growing number of Internet-of-Things (IoT) controllers and high-wattage appliances
being connected to the electric grid is creating new attack vectors, largely inherited from the IoT
ecosystem, that could lead to disruptions and potentially energy market manipulation via coordinated
load-altering attacks (LAAs). In this article, we explore the feasibility and effects of a realistic LAA
targeted at IoT high-wattage loads connected at the distribution system level, designed to manipulate
local energy markets and perform energy storage (ES) arbitrage. Realistic integrated transmission
and distribution (T&D) systems are used to demonstrate the effects that LAAs have on locational
marginal prices at the transmission level and in distribution systems adjacent to the targeted network.

Keywords: AC optimal power flow; energy arbitrage; load-altering attack; market manipulation;
nonlinear optimization

1. Introduction

Efforts aimed at modernizing the power grid have accelerated the adoption and in-
tegration of information and communication technologies (ICT) into the modern power
grid infrastructure. This modernization is tailored to improving operational awareness,
providing control and monitoring mechanisms, and facilitating the deployment of dis-
tributed energy resources (DERs) into older, passive power networks, transforming them
into modern cyber–physical energy systems (CPES). However, the large-scale deployment
of these technologies, together with an increasing number of Internet-of-Things (IoT) high-
wattage consumer appliances, are opening new attack vectors, largely inherited from the
IoT ecosystem, that malicious threat actors can leverage to cause disruptions in the power
grid infrastructure [1] or induce energy market price manipulation [2,3].

Cybersecurity is clearly becoming a prerequisite in the modernization of power net-
works. Over the past few years in the US, several executive orders and governmental
reports have focused on addressing concerns related to potential cyberattacks targeted at
the electric grid [4]. For example, the 2021 Annual Threat Assessment of the US Intelligence
Community stated that “foreign states use cyber operations to steal information, influence popula-
tions, and damage industry, including physical and digital critical infrastructure” [5]. Though
successful cyberattacks targeted at either disrupting power network operations or manip-
ulating energy markets are still thought to be rare, i.e., there are just a handful of public
examples, e.g., the 2015 and 2016 Ukraine cyberattacks [6], a successful high-impact, low
probability cyberattack could have catastrophic effects in a nation’s society.

Recent attacks by threat actors attempting to compromise the electric grid are in-
creasingly thought to be motivated by financial gain, in contrast to the traditional type of
cyberattacks led by nation-states, thought to be intended to destabilize the grid [2,7]. For
these malicious actors, money can be obtained by stealing financial information, stealing
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intellectual property, or by extortion via a ransomware attack [8]. One novel way of ob-
taining profits is via the market manipulation of local real-time energy markets [2,9]. The
concept of market manipulation stems from the notion of creating or inducing high prices,
e.g., by artificially manipulating the supply and demand of a commodity. According to
the Federal Energy Regulatory Commission (FERC), the regulatory agency for electricity
markets in the US, in 2018, at least 16 potential energy market manipulation cases were
identified, thus identifying energy market manipulation as a matter of great concern [2].

Energy market manipulation could be realized in many ways, e.g., famously, Enron
traders manipulated the energy market by filing nonexistent transmission schedules, allevi-
ating nonexistent power congestion, and buying artificially price-inflated energy [10,11].
Energy market manipulation can also be accomplished by destabilizing the supply and
demand balance of power, increasing energy prices via artificial load increases or gen-
eration reductions. For example, researchers previously demonstrated that an attacker
could leverage vulnerabilities in IoT high-wattage devices to manipulate energy market
based on a manipulation of market via IoT (MaMIoT) attack with the objective of generat-
ing profits and/or causing major economic damage to a sector of the energy market [11].
Another example is the research in [12], where authors present a zero-day load-altering
attack (LAA) designed to exploit the mutual dependency of the price of electricity and
power consumption in demand response programs by altering the power consumption
of several electric loads. The authors propose a transactive energy framework capable of
mitigating oversupply and undersupply fluctuations caused by the LAA through real-time
energy transactions. Further, in [13], researchers explored the effects of a variety of load-
altering attacks (LAAs) (prior work used other names, such as “load-changing attacks” [14],
“dynamic load-altering attacks” [15], “manipulation of demand via IoT (MadIoT)” [13],
among others) aimed at disrupting power grid operations and causing frequency and
voltage instabilities. Algorithms attempting to find efficient generator operating points
to avoid line overloading during LAAs have even been proposed to defend from these
types of attacks [16]. Similarly, in [17], a transactive energy framework is proposed to
thwart LAAs targeted at disrupting the automatic generation control (AGC) mechanism
to cause frequency fluctuations. The proposed transactive energy framework coordinates
flexible loads and the power grid operator by performing real-time adjustments in the
power consumption of flexible loads in response to the frequency disturbances caused by
the LAAs.

Other research on LAAs has primarily focused on exploring their effects in terms of
frequency and voltage stability and analyzing potential attack vectors. In [14,18], the effects
on frequency stability of LAAs during low loading and low-inertia conditions caused by
pandemic-type events and high penetration of renewable energy resources are explored.
Additionally, in [19], the authors investigate a closed-loop dynamic load-changing attack
specifically tailored to threaten the frequency stability of a power network by controlling
a compromised load based on frequency feedback. Ref. [15] examines the feasibility of
a major blackout in the New York area caused by a load-altering attack (LAA) targeted
at compromising electric vehicle (EV) charging stations. Finally, [20,21] explore other
protection and defense mechanisms using data-driven methods to detect and mitigate
LAAs via the use of energy storage (ES) devices.

Contributions

From the literature examined, we can conclude that an abrupt and stealthy manip-
ulation of load demand, e.g., via a coordinated large-scale Botnet-type attack against
IoT-connected high wattage loads, has the potential to severely affect the balance between
the supply and demand of power. This ‘manipulation’ could lead to situations where
energy suppliers may profiteer due to high operational costs being incurred by the system
operator in order to keep the system stable. In this work, we explore the feasibility of
energy market manipulation based on a realistic LAA targeted at IoT high-wattage loads
connected at the distribution system level, with the main objective being to manipulate the
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locational marginal prices (LMPs) of highly unbalanced systems, thus disrupting the local
energy market for both consumers and energy suppliers in both the targeted distribution
feeder and in adjacent distribution feeders. We also explore the feasibility of implementing
an ES arbitrage strategy that benefits from and generates substantial profits from targeted
LAAs and optimal dispatch schedules. The research contributions are as follows:

• We define the mathematical and threat models of realistic LAAs targeted at compro-
mising IoT-connected high wattage loads (e.g., smart heating, ventilation, and air
conditioning (HVAC) systems, EV charging stations, etc.) in a distribution system.

• We investigate the feasibility of LAA-assisted ES arbitrage performed by energy
suppliers at the distribution-system level.

• We study the effects that a coordinated LAA has in the LMPs at both the transmission
and distribution levels by analyzing the LMPs in the targeted distribution feeder and
exploring how these effects propagate through the transmission system to adjacent
distribution feeders.

The rest of the paper is organized as follows. In Section 2, we present the mathematical
and theoretical models for performing energy market manipulation and ES arbitrage
studies based on the proposed LAA. Section 3 presents the analysis and exploration of
the feasibility of an LAA-assisted energy storage arbitrage strategy. Section 4 explores
the feasibility of energy price manipulation via LAAs based on the effects that these load
increases cause in adjacent distribution feeders. Finally, Section 5 concludes the paper and
provides directions for future work.

2. Feasibility of Load-Altering Attacks in Power Networks
2.1. IoT High-Wattage HVAC Load-Altering Attack Scenario

HVAC systems play a crucial role in our modern society, maintaining indoor air quality
and providing thermal comfort. According to the U.S. Energy Information Administration
(EIA), ∼389 billion kWh were used in the U.S. for residential and commercial space cooling
in 2021, accounting for ∼10% of the total U.S. electricity consumption [22]. The residen-
tial sector alone was responsible for ∼235 billion kWh and ∼207 billion kWh of energy
consumption for cooling and heating, respectively [22].

However, although HVACs are essential for comfort and survival in many regions,
experts claim that the U.S. electric power grid may not be capable of sustaining the si-
multaneous operation of a large amount of HVAC systems in summer months due to a
lack of power capacity [23]. In early 2022 in Texas, for example, a heat wave ‘knocked’
down six power plants [24]. This example could be artificially replicated through an LAA
targeted at modifying the power consumption of IoT-connected HVAC systems. In this
section, we present the details of a plausible LAA scenario performed via the exploitation
of known vulnerabilities in a digital logic controller intended for building automation and
HVAC control.

2.1.1. Description of Potential Vulnerability

On 30 September 2021, a critical authentication bypass vulnerability, CVE-2021-41292
(https://nvd.nist.gov/vuln/detail/CVE-2021-41292 (accessed on 1 June 2022)), was dis-
covered and published on the National Vulnerability Database of the National Institute
of Standards and Technology (NIST). This vulnerability affects ECOA BAS building au-
tomation controllers by allowing unauthenticated attackers the capability of manipulating
HVAC and building automation control signals through network access. The unauthenti-
cated attacker can compromise the controller through cookie poisoning, remotely bypassing
authentication procedures (CWE-288) and circumventing physical access controls, caus-
ing the disclosure of sensitive information. The CVSS v3.x scores assigned by NIST and
TWCERT/CC to this vulnerability were 9.1 critical and 9.8 critical, respectively. The de-
scribed vulnerability is an illustrative example for a potential vulnerability that could be
exploited by threat actors trying to destabilize the system or gain financial benefits by
compromising several IoT devices connected to the electric grid. Other 0-day or unpatched
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vulnerabilities found in similar devices, or in the network devices that connect them, could
enable an equivalent type of attack.

2.1.2. Attack Scenario

Based on the vulnerability described, it is therefore not unreasonable to imagine that a
sufficiently motivated attacker could exploit the CVE-2021-41292 vulnerability, or other yet
undiscovered 0-day vulnerability, and perform the LAA by modifying the operating mode
of all the HVAC units controlled in a commercial building, causing them to consume the
maximum amount of power possible.

Assuming a large residential or commercial building could have on average 10–30 HVAC
units, each rated between 7–16 kW; we could estimate that compromising just one large
building with 30 HVAC units could result in a maximum power consumption of ∼480 kW.
Thus, an attacker capable of coordinating multiple LAAs targeted at large residential and
commercial buildings could significantly increase the power consumption of a zone or
region, triggering a spike of the ‘real-time’ energy prices.

2.2. Mathematical ACP-ACPU OPF Formulation

Here, we present a description of the mathematical optimal power flow (OPF) problem
formulation used to evaluate the feasibility of market manipulation and ES arbitrage in
integrated T&D systems. The problem formulation used herein is based on the AC-polar
ACP-ACPU formulation (ACP-ACPU indicates the transmission system is modeled using a
single-phase AC polar formulation and the distribution system(s) is(are) modeled using the
phase unbalanced AC-polar formulation) presented in detail in [25]. The primary advantage
of using an integrated T&D formulation is that it enables us to analyze the effects of
distribution-level LAAs at the transmission system-level and vice versa. This capability
allows us to identify the potential impact an LAA could have in a real T&D system.

The cost function to minimize in this formulation is:

min
(

∑
k∈GT

C(PTg,k) + ∑
m∈GD

∑
ϕ∈Φ

C(PD,ϕ
g,m )

)
(1)

where C and C represent the cost components for specific generators in the transmission
and distribution networks, respectively. Equation (1) minimizes the total cost of active
power generation subject to constraints presented in [25].

2.3. Locational Marginal Prices

Based on the formulated ACOPF problem, the Lagrangian function of the optimiza-
tion problem can be defined as Equation (2) [26], where λ and ν represent the Lagrange
multipliers related to the active and reactive power balance equations (Equations (10), (11),
(30) and (31) of [25]). For simplicity, let the vectors x and u represent all state variables and
all control variables, respectively. We can then define the transmission and distribution
system(s) inequality constraints as h

T
(x, u) ≤ 0 and h

D
(x, u) ≤ 0, respectively; µ

T
z and µ

D
z

represent the Lagrange multipliers associated with the inequality constraints h
T
z (x, u) and

h
D
z (x, u). HT and HD represent the set of inequality constraints for the transmission and

distribution systems. β represents a boundary bus, i.e., a bus that belongs to B.

L(x, u, λ
T

, ν
T

, µ
T

, λ
D

, ν
D

, µ
D
) = ∑

k∈GT
C(PTg,k)

+ ∑
m∈GD

∑
ϕ∈Φ

C(PD,ϕ
g,m )

−∑
i∈NT

λ
T
i ·
(

∑
k∈GTi

P
T
g,k − P

T
d,i −∑
(i,β)∈Λ

β∈N
D∩N

B

P
T
iβ −<{V

T
i · (Ii

T
)∗}

)
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−∑
i∈NT

ν
T
i ·
(

∑
k∈GTi

Q
T
g,k −Q

T
d,i −∑
(i,β)∈Λ

β∈N
D∩N

B

Q
T
iβ −={V

T
i · (Ii

T
)∗}

)

+ ∑
z∈HT

µ
T
z · h

T
z (x, u) (2)

−∑
i∈ND

∑
ϕ∈Φ

λi
D,ϕ·

(
∑

m∈GDi

∑
ϕ∈Φ

PD,ϕ
g,m −∑

ϕ∈Φ
PD,ϕ

d,i −∑
(i,β)∈Λ

β∈N
T∩N

B

∑
ϕ∈Φ

PD,ϕ
iβ

−<{Vi
D,ϕ · (Ii

D,ϕ
)∗}

)
−∑

i∈ND
∑

ϕ∈Φ
νi
D,ϕ·

(
∑

m∈GDi

∑
ϕ∈Φ

QD,ϕ
g,m −∑

ϕ∈Φ
QD,ϕ

d,i −∑
(i,β)∈Λ

β∈N
T∩N

B

∑
ϕ∈Φ

QD,ϕ
iβ

−={Vi
D,ϕ · (Ii

D,ϕ
)∗}

)
+ ∑

z∈HD
µ
D
z · h

D
z (x, u)

Assuming the formulated ACOPF problem has an optimal (x∗, u∗), the marginal cost
to supply the next increment of load demand can be estimated as [26,27]:

LMPϕ
i =

∂ f
∂Pd,i

∣∣∣∣
x∗ ,u∗

= λ
ϕ
i (3)

where λ
ϕ
i is the Lagrange multiplier related to the active power balance equation at bus

i and phase ϕ. This term represents the locational marginal price (LMP) of the specific
load and phase. Consequently, we can deduce that every bus in the system will have a
different LMP dependent on its location and phase, primarily due to the unbalanced nature
of distribution systems. We note that transmission system buses will have only one LMP
due to the representation of the transmission system being a single-phase positive sequence
model, while distribution system buses will have a maximum of three LMPs due to their
representation as three-phase (kron-reduced) models. Based on the LMPs computed from
the ACOPF solution, we are able to estimate the impact of load variations in a ‘real-time’
energy price, since in a ‘real-time’ energy market, LMPs are the primary drivers behind
energy price variations.

2.4. Energy Storage Arbitrage Optimization

To evaluate the feasibility of LAA-assisted energy storage arbitrage, we modify the
ACOPF formulation to include ES optimization and time-series support. We assume the
optimization of the ES to be optimal from the attacker’s perspective in order to estimate
the maximum profit an attacker could be capable of obtaining.

Equation (1) is modified to account for ES cycling costs, assuming in this case that the
ES is a lithium-ion battery connected at the distribution-system level (i.e., is multi-conductor).

min
T

∑
t=1

(
∑

k∈GT
C(PT ,t

g,k ) +∑
m∈GD

∑
ϕ∈Φ

C(PD,ϕ,t
g,m ) + sdt · rES

)
(4)

where sdt is the active power discharge of the ES at time t, rES is the cost of cycling the ES
battery, and T is the total number of time steps. The cost, or price, for cycling the ES is
estimated by:

rES =
cES

cyc · eu · dod · (ηc · ηd)
(5)
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where cES is the total cost of the ES system, cyc is the number of cycles the ES system has
under warranty at a specific depth-of-discharge (dod), eu is the energy rating, and ηc and
ηd are the charging and discharging efficiencies [28].

The following additional constraints related to the ES system must also be added [29]:

et − es = te
(

ηcsct −
sdt

ηd

)
(6)

sct · sdt = 0 (7)

Ses,t + (sdt − sct) = j · sqct + Sl
es + Zes|Ies,t|2 (8)

ql
es ≤ =(Ses,t) ≤ qu

es (9)

|Ses,t| ≤ su
es (10)

|Ies,t| ≤ iu
es (11)

where Equation (6) represents the ES storage state at time t based on the previous stor-
age state, charge and discharge efficiencies, time elapsed, and charge and/or discharge
active power values. Equation (7) ensures that the charging and discharging opera-
tions are mutually exclusive, and Equation (8) computes the losses of the ES. Lastly,
Equations (9)–(11) enforce the reactive power limits, thermal injection limits, and current
injection limits, respectively.

2.5. Load-Altering Attack Model

In this section, we present the mathematical and threat models for the LAA.

2.5.1. Mathematical Model

In order to mathematically define the LAA, let us consider a simple CPES represented by:

x(t + 1) = Gx(t) + Bu(t) (12)

y(t) = Cx(t) + e(t) (13)

where Equation (12) computes the physical system state at time t + 1 based on the control
variables u(t) ∈ Rl , the physical system states x(t) ∈ Rn at time t, and matrices G ∈ Rn×n

and B ∈ Rn×l that characterize the system. In turn, Equation (13) calculates the physical
system measurements y(t) ∈ Rm from the physical system states x(t), the matrix C ∈ Rm×n,
and the input measurement noise e ∈ Rm. The cyber-layer of the CPES can be expressed as:

u(t + 1) = Hy(t) (14)

where Equation (14) computes the control variables at time t + 1 based on the the sys-
tem’s measurements and the control matrix H ∈ Rl×m [14]. Based on this mathematical
formulation, an LAA can be defined as a data integrity attack (DIA) that compromises the
measurements, y, or the controls, u, of the CPES via modification. In our case, the controls
can be ‘altered’ (ua) by adding a ∆ value that represents the adversary injected control
variations as:

ua = u + ∆u (15)

This modification affects the CPES states and measurements by altering them as:

xa(t + 1) = Gx(t) + Bua(t) (16)

ya(t + 1) = C
(

xa(t + 1)
)
+ e(t + 1) (17)

where xa and ya represent the altered system’s states and measurements. From the
attacker’s perspective, the LAA is performed in the internal control loop of the high-
wattage IoT-connected load. In essence, the power output of the load can be altered as
Piot(t) = Piot(t) + ∆Piot(t). However, from the ACOPF perspective, the LAA is reflected as
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an alteration in the total load demand of the compromised power system bus or node at
time t:

Pd(t) = Pd(t) + ∆Pd(t) (18)

2.5.2. Threat Model

We present the threat model of the LAA considered in this work in Table 1, developed
using the modeling technique presented in [30].

Table 1. Threat model for LAA.

Threat Model \Threat LAA

Knowledge Semi-Oblivious

Access Non-possession

Specificity Targeted

Resources Class II

Frequency Iterative

Reproducibility Multiple-times

Attack Func. Level L1

Asset High-wattage IoT devices

Technique Control logic modification

Premise Cyber: Integrity

As seen in the table, we consider a semi-oblivious attacker, i.e., with partial knowledge of
the operation and loading conditions of the power system. We note that a strong-knowledge
adversary, e.g., an insider threat actor, could alternatively be considered. In our scenario, the
attacker is capable of compromising non-possessed high-wattage IoT-connected appliances
via a coordinated Botnet-type LAA deployed through the cyber-layer of the system. In
terms of specificity, the threat is catalogued as a targeted attack that directly affects the LMPs
of the power system’s buses. The adversary’s resources are classified as Class II due to
the fact that the adversary needs the sufficient motivation and resources to carry out the
LAA without being easily detected. The frequency and reproducibility of the threat are
categorized as iterative and multiple-times considering that the attack must be performed
in an iterative fashion while being undetectable when performed multiple-times, so that
the altered energy prices can last a sufficient amount of time to obtain profits. The LAA is
considered to target the L1 level, where the control logic of the asset is modified via the cyber:
integrity premise of the compromised high-wattage IoT-connected loads.

3. Analysis of Energy Storage Arbitrage via Load Altering Attacks

In this section, we present the experimental setup used for analyzing and exploring
the feasibility of an LAA-assisted ES arbitrage strategy. For this analysis, we only consider
the effects of the LAAs within the scope of a single mixed-voltage distribution system,
i.e., the effects of the LAAs are evaluated within the local energy market of the modeled
distribution system. Results are analyzed and discussed in terms of ES utilization and
potential profits generated by the attacker, who owns the ES system and performs the LAA.

3.1. Test Systems

Our synthetic integrated T&D system, modeled and solved using PowerModelsITD.jl [25],
consists of modified versions of the PJM 5-bus system (transmission), the R1-12.47-3 PNNL
feeder (medium voltage (MV) distribution) [31] and a reduced version of the IEEE European
low voltage test feeder (low voltage (LV) distribution) [32].
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The following modifications are applied to the base data: (1) an additional bus is
added to the transmission system, to which the MV substation is connected, (2) the HV/MV
substation transformer ratings are modified to 230/7.2 kV and 10 MVA, (3) load 18 in the
MV network is replaced with the LV network and the MV/LV substation transformer
ratings are modified to 7.2/0.48 kV and 2000 kVA, and (4) a 720 kWh ES system capable
of charging or discharging 80% of its rated power per time step (1 h) is connected at bus
lv_113.1.2.3. Figure 1 shows the network topology of the test system, which has 519 nodes
and 518 edges. We consider a time horizon of 24 hours, resulting in a total of 12,456 nodes
and 12,432 edges in the overall optimization problem.

       

IEEE LV network

R1-12.47-3 PNNL feeder

PJM 5-bus

3Φ

3Φ

1Φ

LV/MV

MV/HV

Figure 1. Energy arbitrage test system. PJM 5-bus (single-phase) + PNNL feeder (three-phase) +
IEEE LV network (three-phase). The green nodes represent buses where loads are connected, gray
nodes represent connecting buses, and the light blue nodes represent generation buses.

3.2. Case Studies

We consider the following case studies, all of which have a 24 h time horizon with 1 h
time steps:

1. Normal with ES: Load is nominal and ES system is optimized.
2. 20% LAA increase with ES: Compromised loads are increased by 20%, and ES system

is optimized.
3. 50% LAA increase with ES: Compromised loads are increased by 50%, and ES system

is optimized.
4. 70% LAA increase with ES: Compromised loads are increased by 70%, and ES system

is optimized.
5. 100% LAA increase with ES: Compromised loads are increased by 100%, and ES

system is optimized.

The LAA is programmed to be executed between the hours of 5 and 9 pm, targeting
76 community and residential loads in the MV and LV networks. The lower right panel
graph of Figure 2 shows example load profiles for the normal scenario and the 70% LAA
scenario where compromised loads have a 70% increase in power consumption during the
attack hours. The load profiles for the three loads connected at the transmission system
level are based on residential (bus #2), community (bus #3), and commercial (bus #4) base
load profiles derived from [33]. All load profiles, both normal and altered, are generated
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stochastically. The rES, Equation (5), used for the optimization of the ES is USD 0.0870/kWh.
This value is calculated based on cES = USD 216,000, dod = 0.8, cyc = 4400 [34], ηc · ηd = 0.98,
and eu = 720 kWh.

Normal LAA  20% LAA 50%

LAA 70% LAA  100%

Residential
Load Profiles

LAA 
70%

(a) (b) (c)

(d) (e) (f)

Figure 2. Energy storage (ES) charging and discharging operations for the: (a) normal scenario;
(b) 20% LAA increase scenario; (c) 50% LAA increase scenario; (d) 70% LAA increase scenario; and
(e) 100% LAA increase scenario. The blue line represents the discharging operations of the ES system,
the orange line represents the charging operations of the ES system, and the black line represents the
stored energy of the ES system. (f) shows the load profiles for the normal scenario and the 70% LAA
scenario where compromised loads have a 70% increase in power consumption during the attack
hours (i.e., during the 5 to 9 pm period).

3.3. Results

In order to explore the feasibility of an LAA-assisted ES arbitrage strategy, we compare
the profit generated by the optimal operation of the ES in a normal day with the money
generated in days where the LAAs are performed. Figure 2 shows the ES operation in all
the presented scenarios. As seen in the figure, the ES system is charging at times where
loading is low, thus the LMPs are low, and is discharging at times where loading is high.
This operation is designed to generate profits by charging at times where low loading
conditions are predicted and discharging at times where the attacker performs the LAA
that generates artificial high loading conditions, thus selling the ES energy at higher prices.
We importantly note that the act of charging and discharging the ES does modify the LMPs,
per se, so in a real scenario, where not only the LMPs are considered as the buying or selling
prices for energy, the results may deviate. Figure 3 shows the active power dispatch by the
transmission generators (first two graphs) and the active power flowing at the boundary of
the transmission-distribution system. These graphs clearly display the effect of the LAA in
the system in terms of power generation and power flow at the T&D boundary.

In this study, we define profit as the total money received from dispatching the ES
minus the total money paid for charging the ES, computed by multiplying the energy
charged or discharged with the LMP at the ES-connected bus during the corresponding
hour of the day. Based on our test cases, we find that the user in the normal scenario would
generate around $243.37, the attacker that performs the 20% LAA would generate $253.75,
the one that performs the 50% LAA would generate USD 269.89, the one that performs
the 70% LAA would generate USD 279.67, and the attacker that performs the 100% LAA
would generate around USD 317.92. Table 2 presents the profits differences of all the LAA
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scenarios compared to the normal scenario. In this table, we can also observe the profit
generated in 30 days and in 365 days if the LAAs are performed stealthily and persistently.

LAA 100% w/ ESNormal w/ ES

Trans.
Gen.

Boundary

Figure 3. 24 h active power dispatch from transmission generators and active power flowing at the
transmission–distribution boundary. The graphs on the left show the active power for the normal
scenario where the ES system is optimized for energy arbitrage. The graphs on the right show the
scenario where the LAA increases loads in the distribution system by 100%, and the ES system is
optimized for energy arbitrage.

Table 2. Profit difference between normal case study scenario and LAA scenarios.

Profit Difference
(LAA Scenario—Normal Scenario)

30
Days

365
Days

LAA 20% USD 10.38 USD 311.30 USD 3787.49

LAA 50% USD 26.52 USD 765.64 USD 9680.23

LAA 70% USD 36.30 USD 1088.97 USD 13,249.14

LAA 100% USD 74.55 USD 2236.44 USD 27,210.02

The total ES system cost is estimated by using NREL’s 2021 utility-scale battery storage
cost projection of approximately USD 300/kWh (lower bound); so, for a 720 kWh ES
system the total cost would be approximately USD 216,000 [35]. Based on this total ES
cost, the estimated payback period (in months) for someone optimizing this specific ES
system would be ∼29 months for the normal case, while an attacker performing the 20%,
50%, 70%, and 100% LAAs consistently would have payback periods of ∼28 months,
∼26 months, ∼25 months, and ∼22 months, respectively, thus reducing the payback period
by approximately 208 days (∼6 months). These results clearly demonstrate that at current
ES prices, energy arbitrage could become feasible in specific sectors where energy prices
have a high level of fluctuation throughout the day. However, it might be unprofitable for an
attacker to perform ES arbitrage via low-impact LAAs (e.g., 20–50%), where a significant
monetary benefit may not be achievable. Additionally, the risk behind performing this type
of attack (currently) outweighs the potential benefits, and only compromising a significant
number of devices (such as the 100% load increase scenario) for an extended period (at
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least 365 days) may be profitable in terms of energy arbitrage. Notwithstanding, if other
assumptions are considered, such as significant lower total ES system costs, higher energy
dispatch prices, and higher number of loads compromised, LAA-assisted ES arbitrage
could be a possibility.

4. Market Manipulation via Load Altering Attacks

In this section, we now consider the feasibility of energy market manipulation from a
more global perspective. In particular, we focus on analyzing how the effects caused by the
LAA on the LMPs can propagate through the transmission system to neighboring distribu-
tion systems from the targeted distribution system(s). Specifically, we consider statistical
variations of the LMPs obtained at the neighboring distribution systems, which are mod-
eled using the same detailed phase unbalanced models discussed previously, to properly
visualize the effects that the LAAs have in all nodes of the affected distribution systems.

4.1. Test Systems

The test case used in this section, shown in Figure 4 and modeled and solved us-
ing PowerModelsITD.jl [25], consists of the IEEE 24-bus RTS network (transmission) and
4 distribution feeders connected at buses #4, #5, #7, and #10. Connected at bus #4 is Feeder
3: R1-12.47-3 (cktr13), connected at bus #5 is Feeder 7: R2-12.47-2 (cktr22), connected at
bus #7 is Feeder 15: R4-12.47-2 (cktr42), and connected at bus #10 is Feeder 17: R5-12.47-1
(cktr51), all developed by PNNL [31]. The total number of nodes and edges for the problem
are 3921 and 4113, respectively.

21 22

23

18

17

16

15
14

19 20

Synch.
Cond.

24

3 9

11 12

13

10 6

8
4 5

2 71

230 kV

138 kV

cktr13
cktr22

cktr42

cktr51

Figure 4. IEEE RTS 24-bus test system used for market manipulation feasibility studies. The ‘blue’
loads represent the loads that are replaced with the multi-conductor models for the cktr13, cktr22,
cktr42, and cktr51 distribution systems. The ‘red’ loads represent the loads (distribution systems)
that are targeted by LAAs.

4.2. Case Studies

We conduct case studies where load is (a) nominal, (b) 50% LAA-induced load increase,
and (c) 100% LAA-induced load increase. No ES systems are considered, since the primary
objective is to compare the LMPs between the different case studies and analyze the impact
that load increases, at different load buses modeled in the transmission system (representing
other distribution systems), have in the LMPs of the four analyzed distribution systems.
The loads targeted by the 50% and 100% LAAs are located at buses #8, #9, and #19. The first
two loads are in close proximity to the distribution systems, while bus #19 is the farthest.
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4.3. Results

By statistically comparing the LMPs of the four modeled distribution systems based on
load increases performed in adjacent buses, the feasibility of energy market manipulation
is explored. Figure 5 presents box plots for the LMPs of each distribution system based on
the load increase (e.g., 50% or 100% ) in the respective compromised transmission system
bus compared to the nominal case. A 50% load increase in bus #8 translates to a 85.5 MW
increase, in bus #9 to a 87.5 MW increase, and in bus #19 to a 90.5 MW increase. Similarly, a
100% load increase in bus #8 translates to a 171 MW increase, in bus #9 to a 175 MW increase,
and in bus #19 to a 181 MW increase. The cases where all three loads (i.e., #8, #9, and #19) are
altered by 50% and 100% simultaneously yield a total load increase of approximately 263 and
527 MW, respectively. These amounts of load increase may seem too large to be considered
‘stealthy’ LAAs; however, based on the load forecasting error, an LAA that alters a maximum
of 580 MW can still be considered as ‘stealthy’, e.g., in a large system such as the New York
ISO (NYISO) [11]. Thus, massive botnet LAAs (∼200,000 bots) artificially producing these
load variations could be realizable in a highly connected IoT power grid.

Bus 8

Bus 9

Bus 19

LAA 100%

Normal

Bus 8, 
9 & 19

LAA 50%

Figure 5. Box plots for LMPs in the distribution systems (i.e., cktr13, cktr22, cktr42, and cktr51).
Rows indicate the bus targeted by the LAA, and columns represent the percent load increase at that
bus (i.e., 50% or 100%). The red box indicates that in the last graph the y-limits are different, so that
the corresponding LMP values could be visible.

Furthermore, as can be seen in Figure 5, LMPs can be significantly affected when
specific buses are targeted, and by only targeting these three buses, using an LAA that
increases load consumption by 100% in these three buses when compared to the normal
scenario, an attacker is able to increase the LMPs for multiple distribution systems from
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USD 0.016/kWh (USD 16/MWh) to around USD 0.055/kWh (USD 55/MWh). Another
example showcasing the potential sensitivity of LMPs in a real-time energy market can be
observed in the scenario where only bus #8 is targeted by an LAA that increases load by
100% at this bus. For this scenario, the LMPs of cktr42 increase from USD 0.016/kWh (USD
16/MWh) to around USD 0.0198/kWh (USD 19.8/MWh). These LMP variations may cause
a variety of economic disruptions to both energy companies and customers, sometimes
making energy approximately three times more expensive at specific periods (e.g., from
USD 16/MWh to USD 55/MWh).

In terms of overall cost increase for energy companies, we observe a maximum total
cost increase of approximately USD 16,831 when comparing the normal scenario against
the 100% LAA in buses #8, #9, and #19. Figure 6 shows the OPF costs for all the cases
evaluated, in which we can observe that the load increases can have a significant impact in
the economic dispatch of energy suppliers and energy customers. In the near future, these
LAA-induced load increases could become a reality due to the rapid deployment of electric
vehicle (EV) charging and smart IoT devices.

  
      

    
   
  

    
   
 

    
   
    
  

    
   
 

   
   
  

   
   
 

   
   
    
  

   
   
 

 

    
 

    
 

    
 

    
 

    
 

    
 

 
 
 
  
  
 

$ 16,831

Figure 6. Optimal power flow (OPF) costs for the nine scenarios evaluated.

5. Conclusions

In this article, we have explored the feasibility of energy market manipulation and
energy storage (ES) arbitrage via realistic load-altering attacks (LAAs) targeted at IoT
high-wattage loads connected to the power grid infrastructure by modeling and describing
a realistic LAA threat targeted at vulnerable HVAC system controllers capable of producing
high-impact variations in the loading conditions of the analyzed power networks. Using
integrated T&D system models of the power network, we have described in detail (1) the
feasibility for an attacker gaining monetary benefits via LAA-assisted ES arbitrage, where
high energy prices, based on locational marginal prices (LMPs), are artificially induced
via stealthy and persistent LAAs, thus producing the perfect conditions for generating
substantial monetary benefits from ES arbitrage, and (2) the feasibility for an attacker to
manipulate the real-time energy market of a future power grid. The feasibility of market
manipulation is explored using integrated T&D system models, allowing us to evaluate the
impacts of LAAs on the economic operation of the entire power network.

We conclude that future transactive energy markets may be at risk from these types
of threats; therefore, protection mechanisms against market manipulation strategies must
be developed. Stakeholders and policy makers should take caution when defining pricing
mechanisms and structures to avoid creating potential energy market manipulation conditions
that threat actors could leverage to obtain monetary benefits. In addition, cybersecurity of high-
wattage loads must be standardized and improved, and better LAA detection mechanisms
must deployed to protect power grid infrastructure from attackers. To increase the realism of
the LAA analysis, we believe that future work should also include the explicit modeling of
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the communications/cyber layer, e.g., using a co-simulation framework that combines the
T&D infrastructure with the communications/cyberinfrastructure.
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Nomenclature

T Belongs to transmission network.
D Belongs to distribution network.
B Set of boundary buses.
Λ Set of boundary links.
N Set of buses.
G Set of generators.
Gi Generator at bus i.
< Real part.
= Imaginary part.
Φ = a, b, c Multi-conductor phases.
χ→ T ,D Belongs to T or D.
C Transmission gen. cost components.
C Distribution gen. cost components.
Pχ

d,i Active power demand at bus i.
Qχ

d,i Reactive power demand at bus i.
eu ES energy rating.
scu ES charge rating.
sdu ES discharge rating.
ηc ES charge efficiency.
ηd ES discharge efficiency.
te time elapsed.
Sl

es ES power losses.
Zes ES injection impedance.
ql

es, qu
es ES reactive power injection limits.

su
es ES thermal limit.

iu
es ES current limit.

P
T

g,k Gen. k active power output.

Q
T

g,k Gen. k reactive power output.

I
T

i Complex current flowing out of bus i.
V
T

i Complex voltage at bus i.
PD,ϕ

g,m Gen. m active power output on phase ϕ.
QD,ϕ

g,m Gen. m reactive power output on phase ϕ.
I
D,ϕ

i Complex current flowing out of bus i phase ϕ.
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V
D,ϕ

i Complex voltage at bus i phase ϕ.
et ∈ (0, eu) Energy stored at time t.
sct ∈ (0, scu) Charge power at time t.
sdt ∈ (0, sdu) Discharge power at time t.
sqct ∈ (0, sdu) Reactive power slack at time t.
Ses,t Complex bus power injection at time t.
Ies,t Complex bus current injection at time t.
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