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Abstract: It is important to understand the features of an integrated renewable energy power system,
especially for deregulated systems. The greatest obstacle to assimilating renewable energy generators
with the existing electrical system is their unpredictability. Because wind energy is inconsistent,
incorporating it into an established power system necessitates more planning. The effects of wind
farm (WF) incorporation with fuel cells and a unified power flow controller (UPFC) on electric
losses, voltage profile, generating price, and the economics of the system in a deregulated power
market are examined in this paper. An impact analysis of integrating wind farms into controlled
and uncontrolled situations is conducted. At two randomly selected locations in India, the real-time
statistics of the actual wind speed (AWS) and forecasted wind speed (FWS) were merged for this study.
The surplus charge rate and deficit charge rate are intended to evaluate the imbalance cost which is
arising from the difference between anticipated and true wind speeds to determine the economics of
the system. Customers are always trying to find electricity that is reliable, inexpensive, and efficient
due to the reconfiguration of the power system. As a consequence, the security limitations of the
system may be surpassed or might function beyond the safety limit, which is undesirable. In the
last section, heuristic algorithms, such as sequential quadratic programming (SQP), artificial bee
colony algorithms (ABC), and moth-flame optimization algorithms (MFO), are employed to analyze
economic risk. In the real-time energy market, it also covers how the fuel cells and UPFC are utilized
to rectify the WF integration’s deviation. Economic risk evaluation approaches include value-at-risk
(VaR) and conditional value-at-risk (CVaR). A modified IEEE 30-bus test system is used throughout
the whole project.

Keywords: electricity market; wind energy; UPFC; fuel cell; system profit; VaR; CVaR

1. Introduction

The capacity to harness and utilize various sources of energy has revolutionized
living conditions for people around the world since the beginning of the industrial period.
Particularly, the high dependency on fossil fuels poses a major danger to the sustainability
of both important human and natural systems by drastically altering the temperature
of the planet [1]. Due to the introduction of new technologies that increase consumer
comfort and require a lot of electrical power to function, energy demand is rising quickly
nowadays. The reform of the electrical system has created intense competition among
all the participants in the energy market, including retailers, transmission companies,
distribution firms, and generation companies (GENCOs). It fosters an environment where
clients can gain additional financial advantages [2].
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However, it is exceedingly challenging to build new power stations quickly because of
environmental, political, and economic hurdles. Because power supply lags behind power
generation, there are several hazards associated with a competitive energy marketplace,
including grid failure, severe bottleneck, financial loss to market players, etc. By optimizing
the flow of electrical power, the use of renewable energy along with energy storage tech-
nologies as a power source provides a method to reduce the gap between power generation
and demand.

Due to its affordability, environmental friendliness, accessibility, and independence,
wind energy is among the popular renewable energy sources worldwide [3]. Electric
utilities must augment their methods for maximizing the flow of power through current
transmission networks due to prohibitions on the installation of new transmission lines.
The most adaptable and practical alternative for regulating the flow of electricity across
transmission lines is thought to be the FACTS devices. In both normal and fault scenarios,
it also gives the system voltage stability [4].

Recent research has shown how fuel cells can significantly contribute to backup supply
to lower system costs, have a smaller negative impact on the environment, and be less
reliant on fossil fuels, while maintaining essential services. The paper [5] by Ma Zhiwen
identifies methods for using fuel cells in a large network of fuel cells as distributed energy
sources through nano/microgrids.

Thermal units are allowed to participate in electricity markets on most provincial
power markets, and renewables are set up with independent system operators (ISO) for
electricity generation priority. A two-level model of planned market allocations for elec-
tricity is proposed in this study, which considers the generation company’s bid-matching
games to achieve smooth power system reform transitions [6].

A generation company’s (GenCo) profits are maximized by the profit maximization of
GenCo’s shares in the electric market. Both the demand and supply sides submit bids in
a regulated electricity market, and the price forecast is the benchmark for both. Bilateral
agreements and energy derivatives use the long-term price estimates of electricity supply
as a benchmark [7]. Conejo et al. [8] adopted the price forecast errors to account for
pricing uncertainty.

A comprehensive literature review was carried out regarding deregulated electricity
systems integrating renewable sources with the help of FACTS devices [9]. Ramesh et al. [10]
investigated the efficiency of deregulated power systems incorporated with different energy
storage techniques [10]. It is widely recognized that FACTS have a substantial influence
on power transmission efficiency. The optimum placement of the distributed power flow
controllers (DPFC) within a power grid should take into account operational costs and the
investment of installed DPFCs [11]. Voltage and frequency fluctuations in island electrical
systems are caused by fluctuations in electricity supply from renewable sources. When the
power grid is shut down, the distributed generation still provides the needed electricity for
that segment of the local loads [12].

Scientists published a study in Energy & Environmental Science on how to extend the
life of solid oxide fuel cells, which are used to generate hydrogen and electricity [13]. In
a WF-integrated power system, to reduce the system risk as well as to reduce system-
generated costs, the storage systems are placed optimally within the electricity grid,
applying the artificial honeybee colony (ABC) and moth-flame optimization (MFO) al-
gorithms [14]. To address energy dispatch problems, hybrid algorithms using enhanced
differential evolution (EDE) and a genetic algorithm (GA) were applied by the authors
of [15]. Nature-inspired optimization algorithms include stability of frequency [16,17], cost
optimization [18], energy management [19], and optimization of storage [20,21].

Although, in earlier times, various placement strategies and associated problems for
WPGs, FACTS, or fuel cells, either independently or partially combining them, have been
examined, no one, to the best knowledge of the authors, has tackled all these concerns
concurrently. To answer these questions, which have not previously been addressed, we
took all of the aforementioned factors into account.
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The analysis of the literature survey indicates that studies have been conducted on
various features of a deregulated system in conjunction with wind generation and energy
storage systems. There were few areas to explore in this region, though the following
questions were proposed: (a) From an economic and methodological perspective, what are
the effects of incorporating wind power to the regulated as well as uncontrolled energy
networks? (b) What relationship does the energy market’s system revenue have with
imbalance costs? (c) How is the system’s profitability impacted by the disagreement
between anticipated and real wind speeds? (d) In a deregulated electricity market, how
does demand-side bargaining affects prices?

The present study examines all of the difficulties and places a strong emphasis on
providing answers to all of these queries. The main features of this research include
the following:

• This work analyzes and distinguishes regulated systems and deregulated systems
where wind power is present in the system;

• A methodology is designed to investigate the implications on the power system due
to the unpredictability of the wind speed with integrated wind power in a deregulated
electricity scenario. If the actual and expected wind speeds diverge after the GENCOs
and DISCOs form a power supply contract based on a wind speed estimate, the ISO
may impose a penalty or reward the GENCOs for the excess or shortfall in power
delivery. Hence, to mitigate the adverse impact of cost imbalances, GENCOs are
making efforts to reduce the power gap between actual and forecast wind speeds;

• The best solution to address this shortage of power is an energy storage system. In a
global energy market, storage technology systems can reduce power differences and
the load on thermal power plants, allowing the financial return to be realized;

• Depending on the projected and actual wind speed for a whole day, the effect of the
imbalance cost of the system on profit is discussed for two distinct sites in India;

• In this case, a fuel cell is used to deal with the adverse impact of cost imbalances in the
thermal–wind–fuel cell combined system;

• To assess the efficiency of the recommended technique, SQP, ABC, and MFO
are employed;

• Different optimization approaches are used here to highlight the proportional analyses
of system risk before and after the deployment of fuel cells;

• The imbalance cost’s impact is evaluated. The uniqueness of this research lies in the
utilization of a fuel cell to optimize profit, while reducing the impact of cost imbalances,
since it has never been conducted before;

• This analysis also establishes how the location of the fuel cells and the UPFC affects
the system risk profile.

2. Mathematical Modeling

Here, considering the speed of wind at specific elevations, the generated wind power,
and the cost of the wind power investment formulation, we examine the costs associated
with an imbalance in a deregulated energy system.

2.1. Wind Speed Data

To begin with, two places in India (Delhi and Mumbai) were chosen to confirm the
results using the data on wind speeds that have been collected. Real-time data on the
actual and predicted wind speeds for the selected areas were collected at an elevation of
10 m [22,23]. To do an analysis, it is essential to determine the potential wind speed at that
particular height (in India, the wind turbine hub height is 120 m). The investigation into
the efficacy of the suggested strategy used the actual and predicted wind speeds, which are
shown in Table 1.
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According to the specifications, the equation of power law [24] was applied to deter-
mine the wind speed at a specified height:

WSh
WSr

=

(
h
10

)N
(1)

where ‘WSh’ = wind velocity at height ‘h’, ‘WSr’ = reference wind velocity at a height of
10 m, and ‘N’ = Hellman’s coefficient. h was chosen as 120 m.

Table 1. FWS and AWS at 10 m elevation (in m/s).

Hour of the Day
Wind Speed of Mumbai Wind Speed of Delhi

Forecasted Actual Forecasted Actual

1. 2.22 2.22 2.22 2.22

2. 2.22 2.50 1.67 2.22

3. 2.22 1.94 1.67 2.22

4. 2.22 2.22 1.67 2.22

5. 2.22 2.22 1.94 2.22

6. 2.22 1.94 1.94 2.22

7. 2.22 1.94 1.67 2.22

8. 2.50 2.22 1.94 2.22

9. 2.78 2.50 1.94 2.50

10. 3.06 2.50 1.67 2.50

11. 3.06 3.06 1.67 2.22

12. 3.06 3.61 1.67 2.22

13. 3.61 3.89 2.22 2.50

14. 3.89 4.17 2.50 2.50

15. 4.17 4.44 2.50 2.50

16. 4.44 4.44 2.50 2.50

17. 4.72 4.17 2.22 2.22

18. 4.44 3.33 1.94 1.94

19. 3.89 2.78 1.94 1.94

20. 3.33 2.50 1.94 1.94

21. 2.78 2.50 1.94 1.94

22. 2.50 2.22 2.22 1.94

23. 2.22 1.94 2.22 1.94

24. 1.94 1.94 2.22 2.22

2.2. Wind Power and Cost Estimation

The main factors that affect wind energy production are air density, wind speed, swept
area, and the efficiency of the turbine. The wind power (WP) generated can be reflected as:

Pw =
1
2

DairAtηWSh
3 (2)

where ‘Dair’ = the air density (in kg/m3), ‘At’ = turbine’s swept area in (m2), and η = the
overall efficiency of the wind plant. In our work we have taken Dair = 1.225 kg/m3, η = 0.49,
and the radius of the turbine rotor (r) = 40 m.
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According to the wind speed data, as mentioned in Table 1, the average wind speed for
all the designated sites is between 1.67 m/s and 4.72 m/s. The wind power generation costs
are $3.75/MWh to invest [25]. It is anticipated that the power facility would concurrently
install 50 turbines. Table 2 summarizes the speed of the wind at the necessary height, the
amount of energy that can be generated from the wind, and the wind cost associated with
various wind speeds.

Table 2. Wind speed and the corresponding investment costs for wind power.

Sl. No.

Wind
Velocity
at 10 m
(m/s)

Wind
Velocity
at 120 m

(m/s)

Wind
Power

with 50
Turbines

(MW)

Wind
Gen Cost
with 50

Turbines
($/h)

Sl. No.

Wind
Speed at

10 m
(m/s)

Wind
Speed at

120 m
(m/s)

Wind
Power

with 50
Turbines

(MW)

Wind
Gen Cost
with 50

Turbines
($/h)

1 1.67 2.38 1.01 3.799 7 3.33 4.75 8.10 30.389

2 1.94 2.77 1.61 6.032 8 3.61 5.15 10.30 38.637

3 2.22 3.17 2.40 9.004 9 3.89 5.55 12.87 48.257

4 2.50 3.57 3.42 12.820 10 4.17 5.94 15.83 59.353

5 2.78 3.96 4.69 17.586 11 4.44 6.34 19.21 72.033

6 3.06 4.36 6.24 23.407 12 4.72 6.73 23.04 86.401

To increase economic profits by combining wind power stations with UPFCs in a
competitive double-auction power market, a UPFC static model has been employed in
this study.

2.3. UPFC Static Model

A UPFC is the FACTS component with the widest range of applications for controlling
voltage and power flow in transmission lines. It may alter the series injected voltage’s
amplitude and phase angle simultaneously or individually, as well as the reactive current
drawn by the shunt-coupled voltage source converter. By adjusting the transmission line’s
series reactance together with shunt-connected reactive power injections or extractions on
the associated bus, the UPFC may be used as either a capacitive or an inductive compensa-
tion, respectively. Here, a DC link connects two voltage source converters that are coupled
together to form a UPFC. Figure 1 depicts the transmission line architecture with the UPFC
static model where a specific UPFC is linked between buses i and j.
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The UPFC’s reactance is influenced by the reactance of the transmission line where it
will be placed:

XL = Xi−j + Xupfc (3)

where
Xupfc = UPFC′s series converter′s reactance = XL × kupfc (4)

XL = total line reactance between bus i and j (at the location of the UPFC).
The UPFC compensation level’s range is considered as [26,27] −0.7 ≤ kupfc ≤ 0.2.

Because 100% compensation will cause a resonance issue in the series circuit of the system,
the safe limit of the reactance of the line is considered as 70% for compensation. According
to the model, as it is presented, the Qupfc delivers or drains reactive power through a shunt
converter at the line’s designated bus, which is where the UPFC is situated.

2.4. Investment Cost of the UPFC

Due to the substantial capital costs of UPFC devices, a cost optimization approach for
their deployment is crucial. The employed UPFC investment cost models were inspired
by [28–35]. In this study, the UPFC device’s lifespan (LS) and rate of interest (Ir) are
considered to be 0.05 and 15 years, respectively. The following formula has been utilized to
calculate the UPFC’s investment cost:

ICupfc = 0.0003S2
oz − 0.2691Soz + 188.22 $/kVar (5)

where
Soz= operating zone or range of UPFC = |Qx| −

∣∣∣Qy

∣∣∣ MVar (6)

Qx = flow of reactive power in the line post-UPFC installation, and Qy = flow of reactive
power in the line before UPFC installation.

The total investment cost for UPFC devices is computed as:

T_ICupfc = (ICupfc × Soz × 1000) $ (7)

Due to UPFC devices’ high cost, a cost assessment is required to find out if a new UPFC
device is the most cost-effective option among potential installation locations. In this regard,
the investment cost is transformed into a per-year value using the following equation:

AT_ICupfc = T_ICupfc
Ir(1 + Ir)

LS

(1 + Ir)
LS − 1

$ (8)

where AT_ICupfc = annual UPFC investment cost considering all the factors mentioned above.

2.5. Fuel Cell Model

An electrolyzer employs the reverse reaction to electrolyze water to produce hydrogen;
while using hydrogen as fuel, a fuel cell turns the chemical energy into electrical energy.
Together, these components make up the storage system. The following equation shows
the reversible chemical interaction between oxygen and hydrogen, which results in the
production of electrical energy, heat, and water.

2H2 + O2 → H2O + Electrical Energy + Heat (9)

In tanks, the generated hydrogen is kept, enabling the utilization of the gas for both
short- and long-term storage. In comparison to large-scale storage systems such as batteries
or pumped hydro storage, the efficiency of hydrogen storage is quite high [36]. The storage
system operates according to the following principle:
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2.5.1. Low-Demand Period (The Electrolyzer Produces Hydrogen to Be Stored in Tanks)

The consumed energy by the electrolyzer is represented as:

Eelz =
hvl

H2
× Ep

H2

ηelz
(10)

where Ep
H2

= hydrogen produced by the electrolyzer;
Eelz = energy consumed by the electrolyzer;
ηelz = efficiency of the electrolyzer;
hvl

H2
= lower heating value of hydrogen.

2.5.2. High-Demand Period (Stored Hydrogen to Be Used in the Fuel Cell to Supply
the Demand)

The fuel cell produces electricity using hydrogen during peak hours, and the power-
producing capacity is directly related to the use of hydrogen.

Efc = ηfc × fccon
H2
× hvl

H2
(11)

where
Efc = energy produced from the fuel cell;
fccon

H2
= hydrogen consumption in the fuel cell;

ηfc = efficiency of the fuel cell.

2.6. Social Welfare (SW) and Locational Marginal Pricing (LMP)

The mismatch between society’s acceptance of paying for its need for energy and the
expense of providing that demand is known as social welfare. The cost and supply of
power for a certain provider ‘i’ is expressed as [37]:

Pi = RPi + mGPG(i) (12)

where Pi = the cost that ‘i’ is ready to provide ($/MWh);
RPi = the intercept (reservation price RPi > 0);
mG = the slope of the generation (> 0) ($/MW2h);
PG(i) = supply (MW);
Ng = number of generation buses.
At the operational point (Pi, Gi), the apparent cost of production is expressed as:

C(i)PG(i)
= RPi × PG(i) +

1
2

mGP2
G(i) (13)

Likewise, the linear demand curve for the customer ‘j’ is expressed by:

Pj = RPj + mDPD(j) (14)

where Pj = the cost that ‘j’ is ready to pay ($/MWh);
RPj = the intercept (reservation price RPj > 0);
mD = the slope ($/MW2h);
PD(j) = demand supply (MW);
Nd = number of demand buses.
The consumer benefit can be presented as:

B(j)PD(j)
= RPj × PD(j) +

1
2

mDP2
D(j) (15)
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Therefore, social welfare is interpreted as:

SW =
Nd

∑
j=1

B(j)PD(j)
−

Ng

∑
i=1

C(i)PG(i)
(16)

It is revealed from Equation (16) that social welfare is the union of the generating
cost of electricity and consumer benefits. Hence, to optimize social welfare, customer
benefits must be maximized while minimizing power-generating costs. The maximizing
of SW in this study is obtained by minimizing the objective function, as demonstrated in
Equation (35) [38].

Locational marginal pricing is a very important part of mathematical modeling and
is also termed nodal pricing (NP). This technique of setting pricing involves figuring out
market-clearing prices at various transmission grid nodes or locations. It is constituted of
the total of the marginal costs of transmission congestion, losses, and generation.

LMP = Marginal cost of (congestion in transmission + losses + generation) (17)

2.7. Risk Assessment

In today’s competitive environment, the necessity for risk assessment and management
is becoming more and more crucial. In the realm of risk management, the approaches of
value-at-risk (VaR) and conditional value-at-risk (CVaR) have grown in popularity. Based
on probabilistic research and assurance confidence levels, both evaluation methods are built.
VaR determines the maximum loss and level of confidence for a given period. CVaR is the
most precise risk-measuring technique for calculating the potential loss in tail events since
VaR does not reflect the amount of loss that may occur over the threshold. For instance,
if VaR is estimated at a 95% confidence level, CVaR may be calculated considering the
average of the 5% worst losses. The additional losses in the remaining 5% make up the
CVaR. With a loss amount of (1 − ω) percentile, VaR thus denotes the lowest loss, whereas
CVaR gives the average loss components in the lower end of the loss distribution.

Here, g(x,y) is the loss related to the decision vector Q, which is to be chosen from
a specific subset x of

.
R and the random vector y in

.
R. ‘ω’ is the confidence level. The

possibility that g(x,y) does not exceed a threshold ζ is represented by p(y) and is thus
expressed as [39]:

ψ(x, ζ) =
∫

g(x,y)≤ζ
p(y)dy (18)

Mathematically, the assurance level based on VaR and CVaR is represented by:

ζω(x) = min
{
ζ ∈

.
R : ψ(x, ζ)

}
(19)

ϕω(x) =
1

1−ω

[(
∑

jω
j=1pj −ω

)
ajω + ∑T

j=jω
pjaj

]
(20)

where T = the quantity of attempts conducted under various circumstances, and loss points
are arranged as: a1 < a2 < a3 . . . . . . < aT.

3. Objective Function

Let us consider an electricity network with ‘Nb’ buses, ‘Ng’ generators, and ‘Nl’
loads. Mathematically, the proposed approach’s primary goals are to maximize societal
welfare, reduce system generating costs, optimize investment costs for the UPFC, and
limit investment costs for wind power generation. This research aims to increase social
good and commercial gain while reducing generation costs and system risk in the case of
cost imbalances. For the performance study of any renewable integrated power system,
the imbalance cost concept must be taken. However, to the authors’ knowledge, only a
few researchers have taken this idea. The system operators use rewards and penalties to
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create revenue; thus, the positive imbalance cost increases the system profit, while the
negative imbalance cost decreases it. The maximization and minimization problems are
the two objective functions in this study, respectively. The objective functions are modeled
mathematically as:

3.1. The Objective Function (First Part)

Pn(t) = TRn(t) + IMCn(t) − TGCn(t) (21)

where Pn(t) = the n-th unit’s total profit at a time ‘t’, TRn(t) = total revenue, IMCn(t) = total
imbalance cost, and TGCn(t) = overall generation cost (containing the investment costs for
wind power generation and thermal power generation).

The most crucial element in optimizing the profit of wind–thermal power plants under
the newly deregulated electricity environment is the imbalance cost, which is the most
significant consideration among the revenue, imbalance cost, and overall generating cost.
The following is a description of the formulae for the total income, imbalance cost, and
generation cost:

TRn(t) = ∑
Ng
i=1Pa,i(t).LMPi(t) (22)

IMCm(t) = ∑
Ng
i=1

CRs(t) + CRd(t).

(
Pf,i(t)

Pa,i(t)

)2
.
[
Pa,i(t) − Pf,i(t)

]
(23)

where Pa,i(t) = power generated with actual wind speed at a time ‘t’ at thr i-th generation
bus, Pf,i(t) = power generated with the forecasted wind speed, CRs(t) = charge rate (surplus),
and CRd(t) = charge rate (deficit).

TGCm(t) = GCm(t) + WGCm(t) + Costupfc (24)

where WGC = wind power investment cost. In a wind-incorporated deregulated setup, the
wind-generated electricity is committed after being calculated based on the anticipated
wind speed. If the actual wind speed data turns out to be different from the forecasted
one, the fuel cell can aid to lessen the power required for operation to make up for the
discrepancy. However, there may be expenditures associated with the imbalance caused
by the discrepancy between the projected and actual wind speeds. Equation (23) shows
the imbalance cost. The calculation methods for the charge rates (deficit and excess) are as
follows:

CRd(t) = (1 + γ). LMPi(t), CRs(t) = 0 when Pa,i(t) < Pf,i(t) (25)

CRs(t) = (1− γ). LMPi(t), CRd(t) = 0 when Pa,i(t) > Pf,i(t) (26)

CRs(t) = CRd(t) when Pa,i(t) = Pf,i(t) (27)

GCm(t) = ∑
Ng
i=1x + y.Pa,i(t) + z.Pa,i(t)

2 (28)

where LMPi(t) = LMP at time ‘t’ at the i-th bus, GCm(t) = power generation cost of the
thermal unit, and X, y, and z are coefficients of the generation cost. The ICR, or imbalance
charge rate (surplus or deficit), to MCP ratio is used to indicate the imbalance cost coefficient
or ‘γ’. In the present work, the value of ‘γ’ is considered as 0.9.

3.2. The Objective Function (Second Part)

Min. ζω(x) = min
{
ζ ∈

.
R : ψ(x, ζ)

}
(29)

Min. ϕω(x) =
1

1−ω

[(
∑

j(ω)

j=1 pj −ω
)

aj(ω)
+ ∑T

j=j(ω)
pjaj

]
(30)
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VaR and CvaR’s functions are given in Equations (29) and (30), respectively. The
evident reciprocal link between system risk and VaR and CvaR indicates that the degree of
system risk will either be the highest or lowest Depending on whether VaR and CvaR have
the smallest or largest negative values. As a result, extending from left to right of the curve
(as illustrated in Figure 2), the system risk must be decreased or the VaR and CvaR values
must be raised in a positive way. One of the main goals of this endeavor is to reduce system
generating costs as much as possible. The rightmost tail of the curve, when the system
profit is the maximum and the system generating cost is lowest, is where the VaR and CvaR
are of most benefit. As a result, there is an inverse relationship between the VaR and CvaR
and the system generation cost. Contrarily, system generating costs are negatively related
to social welfare; thus, it rises when generation costs are reduced and falls when they are
not. VaR and CVaR thus have a direct relationship with social well-being.
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The objective function has to be reduced suitably to satisfy all of the aforementioned
requirements. The following is provided as the approach’s objective function:

F = ∑
Ng
i=1C(i)PG(i)

−∑Nd
j=1B(j)PD(j)

+ ∑
Nupfc
m=1 Cupfc

m + ∑Nwind
n=1 Cwind

n (31)

where Nupfc = the total number of UPFC devices, and Nwind = the total number of linked
wind generators. It has been identified that the objective function is composed of societal
welfare, UPFC investment costs, and WPG installation costs. The main purpose of the
proposed strategy is to reduce the objective function (F), as shown in Equation (31). To
meet this need, we have enhanced the consumer benefit curve, minimized the investment
cost of the UPFC, and reduced the installation cost of the WPG. As a result, societal welfare
improved significantly.

3.3. Constraints for OPF Solving

The optimum power flow (OPF) problem involves the constraints as mentioned below.

∑
Ng
i=1PG,i + Pw − PL − PD = 0 (32)

PL = ∑NL
j=1Gi−j

[
|Vi|2 +

∣∣Vj
∣∣2 − 2|Vi|

∣∣Vj
∣∣ cos

(
δi − δj

)]
(33)

where PG,i = generated power at the i-th generation unit, Pw = wind power, PL = line
loss, PD = power demand, NL = No. of transmission lines, Gi−j = line conductance of
line between bus ‘i’ and ‘j’, δi, |Vi| = phase angle and voltage magnitude of bus ‘i’, and δj,∣∣Vj
∣∣ = phase angle and voltage magnitude of bus ‘j’.

Pi −∑Nb
i=1|ViVkYik| cos(θik − δi + δk) = 0 (34)
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Qi + ∑Nb
i=1|ViVkYik| sin(θik − δi + δk) = 0 (35)

where Pi = real power injected at the bus ‘i’, Qi = reactive power injected at the bus ‘i’, and
θik, Yik = angle and magnitude of the element of the i-th row and the k-th column of the
bus admittance matrix.

Voltage : Vi(min) ≤ Vi ≤ Vi(max) where i = 1, 2, 3, 4, . . . Nb (36)

Angle : ∅i(min) ≤ ∅i ≤ ∅i(max) where i = 1, 2, 3, 4, . . . Nb (37)

Line flow (MVA) : LFl ≤ LFl(max) where l = 1, 2, 3, 4, . . . . . . NL (38)

Active power of bus : PGi(min) ≤ PGi ≤ PGi(max) where i = 1, 2, 3, 4, . . . Nb (39)

Reactive power of bus : QGi(min) ≤ QGi ≤ QGi(max) where i = 1, 2, 3, 4, . . . Nb (40)

kupfc(min) ≤ kupfc ≤ kupfc(max) (41)

Qupfc(min) ≤ Qupfc ≤ Qupfc(max) (42)

where Vi(min), Vi(max) = lower and upper voltage limits of bus ‘i’, ∅i(min) , ∅i(max) = lower
and upper angle limits corresponding to the voltage of bus ‘i’, LFl, LFl(max) = actual and
maximum line flow of line ‘l’, PGi(min), PGi(max) = lower and upper real power limits of
bus ‘i’ and QGi(min), QGi(max) = lower and upper reactive power limits of bus ‘i’.

This paper outlines a method to choose the best UPFC location and cost to ac-
complish the objective function’s minimal value with all constraints (as mentioned in
Equations (32)–(42)). In this method, optimization was carried out by positioning the
UPFC, adjusting all control parameters within the predetermined bounds, and obtaining
the best results. The UPFC will be placed at the optimal location where the objective
function has the minimum value. For each prospective location of the UPFC, the optimum
power flow has been repeatedly examined in this study.

3.4. Fuel Cell Constraints

Energy is stored using a hydrogen energy storage system made up of hydrogen tanks,
an electrolyzer, and a fuel cell. Because electricity is less expensive during off-peak hours,
energy is transformed into hydrogen by the electrolyzer and is preserved in hydrogen tanks.
In the future, when energy prices are high during peak hours, a fuel cell can generate power
using hydrogen that has accumulated. The following factors determine the electrolyzer’s
operation [40,41]:

Eelz(min) ≤ Eelz ≤ Eelz(max) (43)

Ep
H2(min)

≤ Ep
H2
≤ Ep

H2(max)
(44)

The following factors determine the fuel cell’s operation:

Efc(min) ≤ Efc ≤ Efc(max) (45)

fccon
H2(min) ≤ fccon

H2
≤ fccon

H2(max) (46)

4. Proposed Approach

This research illustrates an optimization strategy for allocating UPFC devices in the
wind power-integrated deregulated electricity system. This paper suggests a way for
assessing system risk and social benefit in a wind–fuel cell-incorporated deregulated
power system. For 24 h situations, the technique takes into account the implications of a
disagreement between the anticipated and actual wind speeds.
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Proposed Approach Expectation 
Fuel cell + Wind power Improvement in imbalance cost and social welfare  

Optimal placement of UPFC 
Improvement in system risk mitigation, line flow, and en-

hanced voltage stability 
Fuel cell + Wind power + Opti-

mal placement of UPFC 
Improvement in social welfare, system risk, voltage stability, 

and line flow 

Proposed Approach Expectation
Fuel cell + Wind power Improvement in imbalance cost and social welfare

Optimal placement of UPFC
Improvement in system risk mitigation, line flow,

and enhanced voltage stability
Fuel cell + Wind power + Optimal placement

of UPFC
Improvement in social welfare, system risk, voltage

stability, and line flow

4.1. Algorithm for Placing UPFC

This approach finds the objective function for each situation by placing a UPFC in
each line of the system, separately. In the end, UPFCs are placed along the lines with
the least objective function values. A flowchart showing the said approach is shown in
Figure 3, where ‘Nupfc’ indicates the number of UPFCs, ‘WGcost’ indicates the cost of wind
generation, and ‘∆kupfc’ indicates the increment in ‘kupfc’.
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4.2. Application of the Proposed Approach

This work has been conducted using a modified IEEE 30-bus system to evaluate the
efficacy of the suggested technique. MATPOWER was used in this study to find the solution
to the optimal power flow problem. Flowcharts of profit calculation and risk assessment
are shown in Figures 4 and 5.
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4.3. Integration of a UPFC and a WPG on a Modified IEEE 30-Bus System

In this research, a modified IEEE 30-bus system is utilized to examine how the recom-
mended approach works. The test system’s information is gathered from [42,43]. The OPF
problem was initially solved using SQP, and several meta-heuristic optimization techniques
were subsequently applied for comparison studies.

5. Results and Analysis

Three system scenarios were evaluated to substantiate the suggested technique and
demonstrate the effects of a WPG and a UPFC in the system:

(a) Regulated system;
(b) Deregulated system with single-demand bus auction bidding;
(c) Deregulated system with double-demand bus auction bidding.

In addition, the system was analyzed considering the following cases:

1. System performance in the absence of a WPG and a UPFC;
2. System performance when only a WPG is present;
3. System performance when a WPG is present and the UPFC is optimally located.

5.1. Case 1: Performance of the System in the Absence of a WPG

The OPF in a modified IEEE 30-bus system in the absence of a wind generator has
been performed. The generating cost, system revenue, and profit for various systems are
displayed in Figure 6. The data for all generators for the various cases under consideration
are provided in Table 3. It has been observed that demand-side bidding reduces system
generating costs, directly benefiting power consumers. Demand-side bidding suggests
that the present electricity system may go ahead with more deregulation. As additional
buses are added to the demand-side bidding (DSB), the generating costs decrease and
LMP increases, as can be seen from the results displayed in Figure 7. Various scenarios’
voltage and transmission line losses are shown in Figures 8 and 9. Both tables exhibit higher
improvements after the double-demand-side bidding.

Demand-side bidding (DSB) is used for the modified IEEE 30-bus system at bus
number 4 for a single-bus bidding and at bus numbers 4 and 21 for a double-bus bidding.
To allow the load and generation sides some flexibility, this analysis has taken into account
both generation- and demand-side biddings. Figure 10 depicts the single-line diagram for
a modified IEEE 30-bus system with the bidding structure.
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Demand-side and generator-side bidding have both proven effective in the deregulated
power scenario. As a result, compared to the regulated system, the power scheduling
procedure is altered. Customers usually become financial gainers because the electrical
sector is hugely competitive. The system currently includes many generation companies,
which has increased the competition and quality of the power. For these reasons, after
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the system is changed to a deregulated system, significant positive changes in the system
voltage profile as well as in transmission line losses are observed.

From Figure 8, it is seen that the system voltage profile reaches very near to the desired
1 p.u. after the implementation of the deregulated environment compared to the regulated
one. The graph indicates a more stable system condition with the deregulated environment.
Table 3 shows the optimal generation capacity of each generator considering all three
chosen cases. It can be seen that the generation from Generator 6 is zero for all conditions.
So, it has not been included in Table 3.

Table 3. Comparison of generation data of various systems.
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1.67 212.16 212.18 210.78 36.22 36.22 35.98 28.99 29 25.65 12.67 12.66 6.24 4.09 4.05 0

1.94 212.12 212.14 210.73 36.21 36.21 35.97 28.74 28.78 25.41 12.48 12.5 6.04 3.88 3.87 0

2.22 212.07 212.08 210.66 36.2 36.2 35.96 28.49 28.5 25.11 12.29 12.29 5.78 3.66 3.63 0

2.50 212 212.01 210.58 36.19 36.19 35.95 28.12 28.14 24.71 12.02 12.02 5.45 3.35 3.31 0

2.78 211.91 211.93 210.48 36.17 36.17 35.93 27.67 27.68 24.22 11.68 11.68 5.04 2.96 2.93 0

3.06 211.81 211.82 210.36 36.15 36.15 35.91 27.11 27.13 23.62 11.26 11.26 4.53 2.49 2.45 0

3.33 211.68 211.7 210.21 36.13 36.13 35.88 26.44 26.46 22.9 10.76 10.76 3.93 1.93 1.88 0

3.61 211.53 211.55 210.03 36.1 36.1 35.85 25.64 25.67 22.05 10.15 10.17 3.21 1.3 1.22 0

3.89 211.33 211.36 209.82 36.07 36.07 35.81 24.68 24.72 21.06 9.38 9.43 2.38 0.67 0.54 0

4.17 211.07 211.1 209.58 36.02 36.02 35.77 23.49 23.53 19.91 8.35 8.38 1.43 0.21 0.11 0

4.44 210.74 210.75 209.28 35.96 35.96 35.72 22.05 22.05 18.55 6.98 6.95 0.5 0 0.01 0

4.72 210.33 210.34 208.85 35.89 35.89 35.64 20.34 20.34 16.78 5.31 5.29 0.05 0 0 0

5.2. Case 2: System Performance with a WPG but without Considering the Imbalance Cost

SQP has been employed to estimate the optimum power flow, and bus number 4
has been chosen at random as the location for the wind generator. When computing
the entire generating cost, which also includes the cost of generation of the thermal sys-
tem, the wind investment cost is taken into account. For numerous systems with varied
specified wind speeds, Figure 11 displays the revenue costs and overall generating costs.
The system may experience a drop in the overall generation cost and a rise in profit as
deregulation approaches.

Figure 12 displays a comparison of system profits at various wind speeds. Adding
more wind power into the system results in a better profit. Social welfare and system
generation costs are inversely related. It is evident in this instance that adding wind farms
to the system reduces generation costs, maximizing societal benefits.
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Figure 11. Generation cost, revenue, and profit for various systems at different wind speeds.
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5.3. Case 3: System Performance with a WPG and Considering the Imbalance Cost

With a wind-integrated electrical system, the idea of the imbalance cost accounts for
the implications of variable wind speeds on profit. The location of the wind generator
inside the system was arbitrary. The wind generator in this instance was located on bus
number 7, and OPF was performed for each wind datapoint while taking into consideration
all of the limitations specified in Equations (32)–(40). The cost of thermal generation is
estimated along with the overall cost of generating electricity after the wind generator is
placed, taking the cost of the wind power investment into account. The generation cost of
the thermal system fluctuates according to the circumstance due to producing rescheduling.

Figure 13 shows that the generation cost of the thermal units decreases as wind
speed/wind power rises. Table 4 indicates that LMP improves with the increase in wind
speed. In all circumstances, this lowers the thermal power generation cost while enhancing
wind power.
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Table 4. Generation and LMP calculations for the modified IEEE 30-bus system after wind placement.
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1.67 210.78 36.20 35.98 37.99 25.65 40.51 6.24 40.13 0.00 39.88 0.00 39.52

1.94 210.73 36.20 35.97 37.99 25.41 40.51 6.04 40.12 0.00 39.83 0.00 39.51

2.22 210.66 36.19 35.96 37.98 25.11 40.50 5.78 40.12 0.00 39.82 0.00 39.51

2.50 210.58 36.19 35.95 37.97 24.71 40.49 5.45 40.11 0.00 39.81 0.00 39.50

2.78 210.48 36.18 35.93 37.97 24.22 40.48 5.04 40.10 0.00 39.80 0.00 39.48

3.06 210.36 36.17 35.91 37.95 23.62 40.47 4.53 40.09 0.00 39.79 0.00 39.47

3.33 210.21 36.16 35.88 37.94 22.90 40.46 3.93 40.08 0.00 39.78 0.00 39.45

3.61 210.03 36.14 35.85 37.92 22.05 40.44 3.21 40.06 0.00 39.76 0.00 39.43

3.89 209.82 36.13 35.81 37.91 21.06 40.42 2.38 40.05 0.00 39.74 0.00 39.41

4.17 209.58 36.11 35.77 37.88 19.91 40.40 1.43 40.03 0.00 39.72 0.00 39.38

4.44 209.28 36.09 35.72 37.86 18.55 40.37 0.50 40.00 0.00 39.69 0.00 39.34

4.72 208.85 36.05 35.64 37.82 16.78 40.34 0.05 39.95 0.00 39.64 0.00 39.29

The mismatch between real wind speed data and predictions is represented by the
system’s imbalance cost. The imbalance cost (negative) is largest when the disagreement
between the predicted and actual wind speeds is greatest. A deficit charge rate is attained
when the actual wind speed exceeds the anticipated wind speed, while a surplus charge
rate is attained when the actual wind speed is lower than the anticipated wind speed. By
taking the deficit and excess charge rates into consideration, we can determine the total
imbalance cost of the electrical system. If the projected and actual wind speeds match,
there is no cost associated with the imbalance. There is a certain number of hours in city
situations where the cost of the imbalance is zero, as shown in Table 5. It is the outcome
of the precise wind speed forecasts. The 24 h interval system’s imbalance cost is also
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shown in Table 5 for each selected location in India. The “positive” imbalance cost means
that GENCOs are rewarded by the ISO for supplying more power as opposed to being
penalized by the ISO for providing inadequate power, which contrasts with the “negative”
imbalance cost.

Table 5. Imbalance cost (in $/h) calculations for 24 h.

Hour Delhi Mumbai Hour Delhi Mumbai

1 0 0 13 3.0727 6.3861

2 4.189 3.0727 14 0 6.5408

3 4.189 −48.4454 15 0 6.4891

4 4.189 0 16 0 0

5 2.4329 0 17 0 −404.6408

6 2.4329 −48.4454 18 0 −671.0034

7 4.189 −48.4454 19 0 −499.7596

8 2.4329 −62.157 20 0 −285.583

9 5.2252 −77.2631 21 0 −77.2631

10 6.7857 −171.9853 22 −48.4454 −62.157

11 4.189 0 23 −48.4454 −48.4454

12 4.189 9.6045 24 0 0

5.4. Estimated Profit throughout the Day

An electrical system’s profit at any moment is primarily determined by its revenue
cost and production cost. A comparison between projected and actual wind speeds has
been conducted in this study to include the imbalance cost factors in the system’s profit
calculation. Table 6 displays the profit values for 24 h for each site when the system is
operating in a deregulated electricity environment. By lessening the negative effects of
imbalance costs, the profit is raised. After the WF was installed in the system and the
predicted and actual wind speed data were analyzed, Mumbai was found to have the
highest profit due to more accurate forecasts of wind speed, whereas Delhi recorded the
lowest profit since forecasting was less accurate.

Table 6. Profit (in $/h) estimation of the system for 24 h.

Hour Delhi Mumbai Hour Delhi Mumbai

1 2527.760 2527.760 13 2574.730 2981.502

2 2531.949 2574.730 14 2571.657 3107.078

3 2531.949 2445.352 15 2571.657 3252.557

4 2531.949 2527.760 16 2571.657 3246.068

5 2530.192 2527.760 17 2527.760 2695.897

6 2530.192 2445.352 18 2493.797 2101.325

7 2531.949 2445.352 19 2493.797 2126.559

8 2530.192 2465.603 20 2493.797 2286.074

9 2576.883 2494.394 21 2493.797 2494.394

10 2578.443 2399.672 22 2445.352 2465.603

11 2531.949 2692.884 23 2445.352 2445.352

12 2531.949 2875.584 24 2527.760 2493.797
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5.5. Profit Comparison following WF Installation, Taking AWS and FWS into Account

This case provides an overview of the general conclusions and findings drawn as an
outcome of the deliberate work. Figure 14 shows a profit comparison while accounting
for numerous scenarios for all the selected sites. It is clear that, following wind placement,
profit is enhanced (Figure 15) for every site, but due to the presence of imbalance costs,
profit is lowered for every location. Since wind flow is unpredictable, contracts between
market participants in a deregulated power market must take this into account. When
employing wind power, the system is more secure and adaptable thanks to wind speed
predictions. In the event of AWS and FWS mismatch, profit can be reduced. This is
supported by the data in Tables 7 and 8. A summary of the variations in the imbalance
costs for the various instances taken into consideration for 24 h is shown in Figure 16.
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Table 7. Comparison of hourly profit ($/h) of Mumbai considering imbalance costs.

Hour Regulated
System

Single Bus
Deregulated

System

Double Bus
Deregulated

System
Hour Regulated

System

Single Bus
Deregulated

System

Double Bus
Deregulated

System

1 2153.898 2457.195 2527.760 13 2526.688 2829.709 2981.502

2 2193.581 2496.683 2574.730 14 2629.028 2932.696 3107.078

3 2071.723 2373.628 2445.352 15 2744.802 3048.138 3252.557

4 2153.898 2457.195 2527.760 16 2734.410 3037.441 3246.068

5 2153.898 2457.195 2527.760 17 2085.540 2380.981 2695.897

6 2071.723 2373.628 2445.352 18 1649.467 1805.740 2101.325

7 2071.723 2373.628 2445.352 19 1606.301 1909.194 2126.559

8 2075.577 2378.883 2465.603 20 1829.428 2132.467 2286.074

9 2091.728 2395.522 2494.394 21 2091.728 2395.522 2494.394
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Table 7. Cont.

Hour Regulated
System

Single Bus
Deregulated

System

Double Bus
Deregulated

System
Hour Regulated

System

Single Bus
Deregulated

System

Double Bus
Deregulated

System

10 1972.335 2275.447 2399.672 22 2075.577 2378.883 2465.603

11 2288.263 2591.590 2692.884 23 2071.723 2373.628 2445.352

12 2441.456 2744.366 2875.584 24 2126.452 2434.508 2493.797

Table 8. Comparison of hourly profit ($/h) of Delhi considering imbalance costs.

Hour Regulated
System

Single Bus
Deregulated

System

Double Bus
Deregulated

System
Hour Regulated

System

Single Bus
Deregulated

System

Double Bus
Deregulated

System

1 2153.898 2457.195 2527.760 13 2193.581 2496.683 2574.730

2 2159.079 2462.349 2531.949 14 2189.747 2492.862 2571.657

3 2159.079 2462.349 2531.949 15 2189.747 2492.862 2571.657

4 2159.079 2462.349 2531.949 16 2189.747 2492.862 2571.657

5 2156.641 2460.228 2530.192 17 2153.898 2457.195 2527.760

6 2156.641 2460.228 2530.192 18 2126.452 2434.508 2493.797

7 2159.079 2462.349 2531.949 19 2126.452 2434.508 2493.797

8 2156.641 2460.228 2530.192 20 2126.452 2434.508 2493.797

9 2195.966 2499.319 2576.883 21 2126.452 2434.508 2493.797

10 2198.105 2501.179 2578.443 22 2071.723 2373.628 2445.352

11 2159.079 2462.349 2531.949 23 2071.723 2373.628 2445.352

12 2159.079 2462.349 2531.949 24 2153.898 2457.195 2527.760
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Figure 16. Imbalance cost ($/h) analysis of Delhi and Mumbai for 24 h.

5.6. Case 4: Performance of System with a UPFC and Wind Farm Installation

Using this test system, six generators, thirty buses, forty-one transmission lines, and
nineteen loads were employed to assess the efficacy of the suggested strategy. The system
information is available in [43]. Here, three test system situations were looked at to validate
the methodology that was described and to demonstrate the effects of WPGs and UPFCs:

(1) Performance of the system in the absence of a WPG and a UPFC.
(2) Performance of a WPG-based system without a UPFC.
(3) Performance of a WPG-based system with optimal UPFC placement.

First, OPF was performed without a WPG or a UPFC, and the total generating cost was
calculated to be 550.067 $/h. The 23.04 MW wind generator is connected to bus number 7 in
the system being illustrated. The hourly investment cost of a 1 MW wind power generator
is $3.75 (approx.) according to [25].

In this instance, the modified IEEE 30-bus system’s OPF was obtained without
WPG and UPFC placement, and the resulting total generation cost was determined to
be $550.0674 per hour. Then, the 23.04 MW wind power generator was coupled to bus
number 7 in the method. The bus number that the WPG was attached to was chosen
at random. For all the cases under consideration, the analysis was conducted with and
without the optimal placement of the UPFC. In our case, the UPFC has been taken into
account for optimal placement in the system, and the relevant data are shown in Table 9.
For the maximum scenarios, it is seen that the optimal values of reactance and reactive
power injection through the UPFC are same. It indicates the stability of the system with
respect to the economy. In this study, the UPFC compensation coefficient was chosen to
be between (−0.7) and 0.2, while the range for reactive power injection or extraction was
estimated to be between (−100) and 100. These two controlling variables change at regular
intervals, and OPF was performed in every case to determine the best outcome. The total
system profit has been seen to improve when a wind power source is connected to a bus
(shown in Figure 17). Therefore, despite a high initial investment cost, more profit was
achieved once the wind power generator was installed.

The changes in bus voltages are depicted in Figure 18. From the graphical represen-
tation of the bus voltage data as shown in Figure 18, it is clear that employing the UPFC



Energies 2023, 16, 1621 24 of 30

enhanced the system’s voltage profile as well. The variation in the LMP value before
and after installation of the UPFC for regulated, single-bus deregulated, and double-bus
deregulated systems can be seen in Figure 19. From Figure 19, It is obvious that the LMP
improved after the UPFC was installed.
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Table 9. UPFC optimal location data for different cases.
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UPFC Optimal Location at Bus No. 2 2 2 2 6 2

Optimal Value of UPFC (X_range of
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5.7. Case 5: System Performance with Wind Farm and Fuel Cell Deployment

This part outlines the system economic assessments of the deregulated wind-integrated
power system with the integration of fuel cells. From the preceding section, it is clear that
the negative effects of imbalance costs reduce system profit. By installing the fuel cell
system, the cost imbalance problem may be resolved. When wind power is available and
during off-peak load periods, the fuel cell operates in charging mode. During peak load
periods, it operates in discharge mode. Fuel cells can add some extra power to the system
during periods of high load and lessen the difference between the planned and actual wind
power schedules. In the modified IEEE 30-bus system, a fixed generating capacity with
a 4 MW fuel cell system has been installed on bus number 6. The bus for the installation
of the fuel cell was chosen using the logic of the greatest number of transmission lines
connected to that particular bus.

Different optimization techniques, such as ABC and MFO, have been used alongside
SQP to test the capabilities and applicability of the given method. The controlling variables
for the MFO and ABC algorithms were taken from references [25,44–47]. The average
hourly profits for Mumbai and Delhi using various optimization strategies are shown in
Table 10 and Figure 20.

The results indicate that the system profits produced by the addition of fuel cells to
the system are larger than those produced by a wind-integrated electrical system without
fuel cells. This paper’s fundamental novelty is in applying MFO optimization for the
first time to an economic problem of this nature. In terms of system profit maximization,
MFO outperforms the other two applied optimization algorithms for all consideration
circumstances. The placement of the fuel cells and the use of MFO procedures thereby
enhance system profits in the context of an unbalanced cost.
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Table 10. Average hourly profit for Mumbai and Delhi using various optimization strategies.

Optimization
Techniques

Conditions

Mumbai Delhi

Regulated
System

Deregulated
System—Double-Bus

DSB

Regulated
System

Deregulated
System—Double-Bus

DSB

SQP

With WF 2162.956 2588.267 2153.843 2528.186

With WF and Fuel Cell 2164.625 2589.924 2155.538 2529.965

With WF and UPFC 2165.538 2590.837 2156.429 2530.854

ABC

With WF 2164.456 2589.721 2155.364 2529.725

With WF and Fuel Cell 2166.358 2591.629 2157.219 2531.693

With WF and UPFC 2167.235 2592.538 2158.129 2532.535

MFO

With WF 2165.563 2590.814 2156.421 2530.816

With WF and Fuel Cell 2167.683 2592.931 2158.563 2532.927

With WF and UPFC 2168.529 2593.824 2159.428 2533.825
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5.8. Case 6: System Risk Analysis Considering the positioning of the Wind Farm, Fuel Cell,
and UPFC

The secure operation of an electrical system largely depends on system risk analysis.
In the event that a fault has developed in the system, it must be fixed right away to prevent
the failure of the system. The system risk has been determined using the risk analysis tools
(VaR and CVaR) based on the LMP of each bus in the system under various scenarios. All
of the risk data were determined with a 95% confidence level. The system risk for Delhi
is shown in Table 11 and Figure 21 for various system configurations and optimization
techniques. The application of MFO algorithms allows for the operation of the most wind
farms with the lowest level of system risk. The system risk was decreased once the fuel cell
and the UPFC were put into the system. By supplying more electricity locally, the load on
the grid was reduced, which is why this occurred.
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Table 11. System risk for Delhi using multiple optimization techniques and various system situations.

Sl. No. Wind Power

VaR CVaR

With WF
Using SQP

With WF-
FC-UPFC

Using SQP

With
WF-FC-UPFC

Using ABC

With WF-
FC-UPFC

Using MFO

With WF
Using SQP

With WF-
FC-UPFC

Using SQP

With
WF-FC-UPFC

Using ABC

With WF-
FC-UPFC

Using MFO

1 10.3 MW −0.4205 −0.4103 −0.4023 −0.3907 −0.5807 −0.5714 −0.5604 −0.5504

2 8.1 MW −0.4234 −0.4122 −0.4046 −0.3926 −0.5851 −0.5774 −0.5662 −0.5545

3 3.42 MW −0.424 −0.4135 −0.4057 −0.393 −0.586 −0.578 −0.5653 −0.5556
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6. Conclusions

The optimum parameter settings for the UPFC and fuel cells in the regulated and
deregulated power systems were presented in this research using different optimization
techniques to mitigate the system risk and maximize the economic sustainability of the
systems. On modified IEEE 30-bus test systems, the proposed methodology was performed.
The test results demonstrated the viability of the suggested strategy. The goal of this
study was to maximize societal welfare and system profit while minimizing the objective
function using the cost models of UPFCs, fuel cells, and wind power generation. It has
been noted that:

(a) After adding the wind generator to the system, a UPFC was employed to mitigate
the issues;

(b) Fuel cells were successful in improving social welfare and cost imbalances;
(c) SW became better once a UPFC was included to the pool model;
(d) By integrating the UPFC and fuel cells with the WPG, the locational marginal price of

the system significantly decreased;
(e) The voltage profile in UPFC operation with the WPG was also stable.

This proposed approach is a universal method that may be utilized to enhance any size,
type, integrated, or deregulated electrical system. In the future, this work can be performed
with different renewable energy sources along with different optimization techniques to
enhance system security and stability.
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Abbreviations

WSh wind speed (at any height ‘h’)
WSr reference wind speed (at a height of 10 m’)
N Hellman’s coefficient
Dair air density (in kg/m3)
At turbine’s swept area (in m2),
η efficiency (overall) of the wind plant
Xupfc UPFC′s series converter′s reactance
ICupfc UPFC’s investment cost
Eelz energy consumed by the electrolyzer
ηelz efficiency of the electrolyzer
Efc energy produced from the fuel cell
ηfc efficiency of the fuel cell
C(i)PG(i)

apparent cost of production

B(j)PD(j)
consumer benefit

Pn(t) the n-th unit’s total profit at a time ‘t’
TRn(t) total revenue
IMCn(t) total imbalance cost
TGCn(t) overall generation cost

Pa,i(t)
power generated with actual wind speed at a time ‘t’ at the i-th generation
bus

Pf,i(t) power generated with forecasted wind speed
CRs(t) charge rate (surplus)
CRd(t) charge rate (deficit).
LMPi(t) LMP at time ‘t’ at the i-th bus
GCm(t) power generation cost of the thermal unit
Nupfc the total number of UPFC devices
Nwind the total number of linked wind generators
PG,i generated power at the i-th generation unit
Pw wind power
PL line loss
PD power demand
NL No. of transmission lines
Gi−j line conductance of line between bus ‘i’ and ‘j’
δi, |Vi| phase angle and voltage magnitude of bus ‘i’
δj,
∣∣Vj
∣∣ phase angle and voltage magnitude of bus ‘j’

Pi real power injected at the bus ‘i’
Qi reactive power injected at the bus ‘i’

θik, Yik
angle and magnitude of the element of the i-th row and the k-th column of
the bus admittance matrix.

Vi(min), Vi(max) lower and upper voltage limit of bus ‘i’
∅i(min) , ∅i(max) lower an upper angle limit corresponding to the voltage of bus ‘i’
LFl, LFl(max) actual and maximum line flow of line ‘l’
PGi(min), PGi(max) lower and upper real power limit of bus ‘i’
QGi(min), QGi(max) lower and upper reactive power limit of bus ‘i’
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