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Abstract: Torrefaction is an effective technology to overcome the defects of biomass which are adverse
to its utilization as solid fuels. For assessing the torrefaction process, it is essential to characterize the
properties of torrefied biomass. However, the preparation and characterization of torrefied biomass
often consume a lot of time, costs, and manpower. Developing a reliable method to predict the fuel
properties of torrefied biomass while avoiding various experiments and tests is of great value. In this
study, a machine learning (ML) model of back propagation neural network (BPNN) hybridized with
genetic algorithm (GA) optimization was developed to predict the important properties of torrefied
biomass for the fuel purpose involving fuel ratio (FR), H/C and O/C ratios, high heating value (HHV)
and the mass and energy yields (MY and EY) based on the proximate analysis results of raw biomass
and torrefaction conditions. R2 and RMSE were examined to evaluate the prediction precision of the
model. The results showed that the GA-BPNN model exhibited excellent accuracy in predicting all
properties with the values of R2 higher than 0.91 and RMSE less than 1.1879. Notably, the GA-BPNN
model is applicable to any type of biomass feedstock, whether it was dried or not before torrefaction.
This study filled the gap of ML application in predicting the multiple fuel properties of torrefied
biomass. The results could provide reference to torrefaction technology as well as the design of
torrefaction facilities.

Keywords: biomass; torrefaction; fuel property; machine learning; BP neural network; genetic algorithm

1. Introduction

As the only carbon-based renewable resource, biomass is considered to be a promising
alternative to fossil fuels because it can not only be used for power generation and heat
supply but can also be converted into gaseous, liquid, and solid products with zero CO2
emissions through their life cycle via various technologies [1]. Therefore, the utilization of
biomass has attracted increasing attention in the past decades. However, the commercial
utilization of biomass is still conditional since the raw resources exhibit the shortcomings
of high moisture content, low calorific value, and low energy density, leading to the high
collection, storage, and transportation costs and low conversion efficiency [2].

To overcome the abovementioned shortcomings, various pretreatment technologies
have been proposed, including torrefaction, hydrothermal carbonization, pyrolysis, etc.
Compared to pyrolysis and hydrothermal carbonization, torrefaction consumes the least
energy and costs, while obtaining the highest energy values in the solid products [3–5].
Torrefaction is traditionally performed at 200~300 ◦C in an inert atmosphere. A few studies
also included an oxidative atmosphere, such as air, steam, flue gas, etc., in the definition
of torrefaction [6,7]. It is widely accepted that the qualities of biomass are significantly
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upgraded after torrefaction. To date, utilization as solid fuels for power generation and
heat supply is still the dominant pathway of biomass. Fuel ratio (FR), O/C, H/C, high
heating value (HHV), and mass (MY) and energy yields (EY) are important parameters for
evaluating the fuel performance of the raw and torrefied biomass [8].

FR, the content ratio of fixed carbon (FC) to volatile matter (VM), is often used to
determine the combustibility of solid fuels [9]. The FR value of torrefied biomass is higher
than that of the raw material due to the release of volatiles caused by the cleavage of weak
chemical bonds during the torrefaction process [8]. O/C and H/C are other two important
ratios to help assess the fuel properties for energy applications, which are usually visualized
by the Van Krevelen diagram in the literature [10]. The O/C and H/C ratios of biomass
decline at a linear trend with increasing torrefaction temperature [11]. Lower H/C and O/C
ratios indicate higher energy density [12]. Low O/C ratio also leads to less formation of smoke
and soot during combustion [13]. To obtain the above ratios, proximate and ultimate analyses
need to be performed to determine the contents of FC, VM, and CHO elements.

Simultaneously, the decrease of O/C and H/C ratios is also beneficial to the HHV of
solid fuels. Therefore, torrefaction enhances the HHV of biomass, which is quite important
for the design of biomass conversion technologies. The HHV of the torrefied biomass is
reported to be comparable to that of coal (25~35 MJ/kg) [14]. The HHV of torrefied biomass
is either experimentally tested by a calorimeter bomb or mathematically calculated based
on the proximately and ultimate analysis results [15].

For assessing the torrefaction performance, it is necessary to determine the MY and
EY values of torrefied biomass [7]. The MY is calculated by dividing the mass of torrefied
biomass by that of the raw material, while EY represents the proportion of energy main-
tained in torrefied biomass compared to that of the raw biomass. With the increase in
temperature, the two yields decrease with an invariable tendency that the EY value is
always higher than that of MY.

As discussed above, it is quite cumbersome and costly to obtain the necessary fuel
properties of torrefied biomass by repetitive experiments, and subsequently, instrumental
analysis or mathematical methods. Therefore, developing a reliable method to predict
the properties of torrefied biomass based on those of feedstock without various tests and
experiments is of great value to save time, costs, and manpower. Two-step kinetic models
were employed by Bach et al. [16] and Lin et al. [17] to predict the elemental composition,
the HHV, and EY of torrefied biomass. Chen et al. [18] used the interpolation and regression
method to predict the HHV, MY, and EY. Xu et al. [19] also developed a model which was
established by using a two-stage torrefaction process involving mild and severe stages
to predict the ultimate and proximate properties as well as the mass and energy yields.
However, the aforementioned methods were appropriate to only small amounts of data
obtained from the experiments performed by the authors. Nevertheless, the properties of
torrefied biomass are highly dimensional and non-linear relationships with variable factors,
including biomass types, torrefaction conditions, such as temperature, duration time, etc.
There is an urgent need to develop more advanced methods for biomass torrefaction.

Machine Learning (ML), which is a subset of artificial intelligence (AI), allows software
to automatically learn and integrate knowledge from an existing dataset and then generate
a model to predict the target. ML has the superiorities of time-saving and high prediction
accuracy in solving non-liner problems without unnecessary repetitive experiments [20].
Due to this, the ML algorithms, such as Artificial Neural Network (ANN), genetic algo-
rithm (GR), decision tree (DT) and support vector machines (SVM), have been widely
employed for biomass applications, including hydrothermal processing, gasification, pyrol-
ysis, etc. [21] which provided good performance for exploring the relationships between
input and output variables and performing predictions from small data sizes of around 20
to >20,000 [22].

For torrefied biomass, ANN model, which is an efficient tool to deal with nonlinear
problems, was most frequently used to predict the yields [23,24], the CHO contents and
HHV [25], and the exergy [26] of torrefied biomass, as well as to optimize the torrefaction
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process [27]. Several other models have also been employed to predict the yield and HHV
of torrefied product. García et al. [28,29] predicted the HHV of torrefied biomass using
support vector machine models (SVMs) combined with particle swarm optimization (PSO)
or simulated annealing (SA) optimization. Onsree et al. [30,31] compared the accuracy of
kernel ridge regression (KRR), gradient tree boosting (GTB), ANN, SVM, and random forest
(RF) models in predicting the yields. Leng et al. [32] employed extreme gradient boosting
(XGB), RF, SVM, and multilayer perceptron (MLP) algorithms to predict the distribution of
three-phase products. These studies indicated that ML algorithms are appropriate for the
prediction of torrefied biomass properties, especially the yield and HHV.

It is reported that the optimization of ANN-based models by algorithms, such as
genetic algorithm (GA) [33] and particle swarm optimization (PSO) [34], can improve the
prediction accuracy in energy systems. However, the literature with respect to the appli-
cation of ML in biomass torrefaction is fairly scarce and mainly focused on the prediction
of HHV and yield using basic algorithms, whereas predictions of other important fuel
properties of torrefied biomass have not been reported. Moreover, the implementation
of an optimized model to predict the fuel properties of torrefied biomass is still absent.
Therefore, there is a wide gap in the prediction of torrefied biomass properties, especially
for fuel purposes.

The purpose of this study was to develop an ML model for the prediction of fuel prop-
erties of torrefied biomass. The back propagation neural network (BPNN) was employed as
an initial ML model, and it was further optimized by genetic algorithm (GA) to improve its
prediction precision. Then, both the BPNN and GA-BPNN models were applied to predict
the fuel properties of torrefied biomass, including the ratios of FR, O/C and H/C, HHV, the
MY and EY from the proximate analysis results of the feedstock, and torrefaction conditions.
To the authors’ knowledge, this is the first study that simultaneously predicts the multiple
properties of torrefied biomass for fuel purposes using an optimized ML algorithm.

2. Methods
2.1. Data Collection and Pre-Processing

In this study, only the data of the traditional torrefaction, which was performed at
200~300 ◦C in an inert (N2, He, Ar and anoxic environment) atmosphere, were employed.
Four hundred ninety-seven data points were extracted from 66 peer-reviewed publications,
including our previous studies [11], to create a dataset, the detailed information of which is
shown in the Supplementary Materials (Table S1). Most of the data were directly obtained
from the experimental reports in the text and tables of the literature and the corresponding
supplementary materials. While for those data which were not directly listed, we used
WebPlotDigitizer tool (https://apps.automeris.io/wpd/, accessed on 2 October 2022) to
extract the demand data from the figures. Various types of biomass feedstock involving
agricultural residues, forestry residues, energy crops, leaves, fruit wastes, sewage sludge,
etc., were included. The proximate analysis results of the raw biomass involving moisture
(MO, wt.%), volatiles (VM, wt.%), fixed carbon (FC, wt.%), and ash (Ash, wt.%) contents as
a function of torrefaction conditions involving temperature (Temp, ◦C) and duration time
(Time, min) were collected as input features. The FR, the O/C, and H/C ratios, the MY
(wt.%) and EY (%), and the HHV (MJ/kg) values of the torrefied biomass were assigned to
the targets. The FR, the O/C, and H/C ratios were calculated based on the proximate and
elemental analysis results.

Once the dataset was prepared, correlation analysis was applied to the dataset and the
linear dependency between any two of the features was evaluated by Pearson’s correlation
coefficient (PCC) [35].

r =

n
∑

i=1
(xi − x)

n
∑

i=1
(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(1)

https://apps.automeris.io/wpd/
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where r is the value of PCC ranging from −1 to 1; x and y are the means of the input
feature and output target, respectively. It means no linear correlation when r value is 0.
The values of negative or positive indicate negative or positive correlation. The greater the
absolute value of r, the stronger the linear correlation. The two features were considered to
be strongly correlated to each other when the absolute value of r is greater than 0.7, and
one of them will be excluded [36].

To unify the range of the features and the targets, they were normalized with Z-score
standardization using Equation (2):

x∗i =
xi − µ

s
(2)

where xi is the value of feature i; xi
* is the normalized value of xi; µ is the mean value of xi,

and s represents its standard deviation.
After preprocessing, the data points were then randomly divided into training and

testing subsets at a ratio of 80% to 20% for further model evaluation.

2.2. Training Models
2.2.1. BPNN Model Description

BPNN is the most extensively used multilayer feedforward neural network based
on gradient descent. It is a supervised learning model inspired by the neural system of
the human brain consisting of neurons and connections. There are three or more layers
involving an input layer, a single or multiple hidden layer(s), and an output layer in
the networks [37]. The structure of the BPNN model with one hidden layer is shown in
Figure 1.

Figure 1. BPNN model for prediction of fuel properties of torrefied biomass.

The BP neural network transforms the input signals forward via a nonlinear activation
function to the output layer and propagates the error back, and then the neural network
continuously adjusts the threshold and weight. The iterative process continues in a loop until
the error converges to a stable value. Finally, the model will output the predicted result.

In this study, the BPNN model consisted of 6 input neurons, 6 output neurons, and
1 hidden layer. The number of the hidden neurons was determined by Equation (3) [38].

X =
√

m + n + a (3)

where X is the number of hidden neurons; m and n are the number of the input and output
variables, respectively, a is the integer ranging from 1~10. Therefore, the number of hidden
neurons was 4~14.
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2.2.2. GA-BPNN Model

As described above, the BPNN is a training method based on error function gradient
descent, due to this, it is easily trapped in the local minima or even not converging in the
search space [33]. Thus, genetic algorithm (GA) was employed to further optimize the
BPNN model.

GA is a stochastic optimization algorithm that searches for the optimal solution by
simulating natural evolution based on the ‘survival of the fittest’ of Darwin’s biological
evolution law and biological evolution of the genetic mechanism [39]. Compared with the
local optimization of BPNN, GA devotes itself to searching for the optimal weights and
thresholds globally. Therefore, the parameters optimized by GA can significantly improve the
stability and prediction precision of the BPNN model. In this study, the initial population was
comprised of the weights and thresholds. For the 6-X-6 network, the weights and thresholds
number were 13X + 6, which was coded as genes of the chromosomes.

The Implementation of the GA-BPNN model is shown in Figure 2. The initial weights
and thresholds of BPNN were taken as the initial population of GA, and all individuals in the
initial population were encoded in real numbers to generate corresponding chromosomes.
Then, the fitness function (Equation (4)) was used to assess the adaptability of the individuals
to the change of the environment, and the individuals that survived were selected. The
individuals with poor adaptability were sent back for iterative calculation until the optimal
solution was found. When the number of iterations increased to the set value or the moderate
value of the fitness function reached the required threshold, or the population was no longer
updated, GA optimization was considered to be completed. The obtained individuals with
the maximum fitness value were employed as the initial weights and thresholds of the BPNN
model. The detailed settings of GA-BPNN are listed in Table S2.

fGA =
1
2

(
n

∑
i=1

(ŷtrain − ytrain)
2 +

n

∑
i=1

(ŷtest − ytest)
2

)
(4)

where ŷ and y are the predicted and actual values of the targets, respectively.

Figure 2. The working flow chart of the GA-BPNN model.
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2.3. Performance Evaluation

The performance of the BPNN and GA-BPNN models was evaluated using R2 and
RMSE [40]. Conceptually, a higher R2 and a lower RMSE indicate better model accuracy.

R2 = 1− ∑N
i=1 (ŷ− y)

2

∑N
i=1 (ŷ− y)2 (5)

RMSE =

√
∑N

i=1 (ŷ− y)
2

N
(6)

where ŷ is the predicted value of the target, y is the actual value and y is the mean value,
N is the total number of data points.

3. Results and Discussion
3.1. Dataset Description

An overview of the statistical distribution of the dataset is presented in Figure 3. The
violin plots consist of boxplots (inner) and data distribution (outer) based on kernel density
estimation. For the boxplot, the data are divided into quartiles by the interquartile range
(IQR) to evaluate data variability. The points outside the range, i.e., outliers, are displayed
individually with rhombus, which would be directly removed from the dataset in the
subsequent prediction. Table S2 is a brief description of the dataset, including the unit,
count, range, mean value, and standard deviation of all the features.

As shown in Figure 3 and Table S2, the MO content of raw biomass in the dataset
ranged from 0 to 14.8 wt.%. The samples had VM content ranging from 32.2 to 96.4 wt.%
with the violin-plot peak of approximately 80 wt.%. The ASH content exhibited a peak
density at 1.76 wt.% in the range of 0~32.58 wt.%. The FC content varied from 1.67 to
61.4 wt.% with a peak density of 16.51 wt.%. The significant variation in the textural
properties should be attributed to the diversity of the feedstock. In terms of the torrefaction
conditions, the preferential duration time was 30 min followed by 60 min. Generally, 250 ◦C
and 300 ◦C were employed in the literature, while other temperatures within 200~300 ◦C
were also frequently used.

For torrefied biomass properties, the FR was widely distributed in the range of
0.021~7.19 with a mean value of 0.53, which is in close proximity to that of the indus-
trially used coal (0.5~2.0) [41]. The density peaks of O/C and H/C ratios in the violin plots
were 0.71 and 0.11, which are within the ranges of the two ratios of coal, i.e., 0.38~0.91 and
0.02~0.28 [42], respectively. The HHV ranged from 13.48 to 30.3 MJ/kg, with a median of
20.67 MJ/kg. The violin plot peaks of MY and EY were 85.61 wt.% and 93.43%, respectively.

According to the Pearson correlation matrix among the features (Figure 4), there was no
significant linear correlation between any two of them since all the PCC absolute values were
lower than 0.7. Detailed information on the PCCs was given in the supplementary material
(Table S3). A relatively strong negative correlation was found between FC and VM (−0.61),
which was acceptable simply because the sum of the proximate analysis results should be
100%. Therefore, due to the lack of strong liner correlation among the features, all of them were
retained since each feature would then contribute individually to the model. Simultaneously,
the output features exhibited a very weak linear connection with the input variables. However,
the lack of a linear correlation does not imply the absence of other relationships.
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Figure 3. The statistical distribution of each variable in terms of the inherent properties of the raw
biomass, the torrefaction conditions, and the fuel properties of torrefied biomass with violin plots.

Figure 4. Pearson correlation matrix between any two features.
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3.2. Model Prediction

Figure 5 presents the comparison between GA-BPNN predicted value and the exper-
imental data for the training set and testing set, respectively. The corresponding BPNN
predicted results are given in the supplemental materials (Figures S1 and S2). It can be seen
that all the data points were densely distributed along the black line of y = x, implying the
equivalence between the predicted values and the actual data. Therefore, the GA-BPNN
model had the ability to perfectly predict the FR, H/C, O/C ratios and the HHV, MY, and
EY of torrefied biomass from the proximate analysis results of the feedstock and torrefac-
tion conditions for both the training set and the testing set with high precision. Besides,
no outliner was observed for all the features. While for BPNN model, the data points,
especially the ones for the testing set, were dispersedly distributed around the y = x line, as
shown in Figures S1 and S2, implying that the BPNN model was obviously trapped in the
local minima. Therefore, GA optimization greatly improved the prediction performance of
the BPNN model.

Figure 5. Comparison of GA-BPNN predicted values and experimental data.

The results of R2 and RMSE for the training set and the testing set using the GA-BPNN
model are shown in Table 1, while those of BPNN are also given in the supplemental
materials (Table S4) for comparison. The R2 values of the GA-BPNN model were larger
than 0.91 for both the training set and the testing set of all the targets, implying the strong
predictive ability of the model. When comparing the two models, GA-BPNN always
exhibited much higher R2 values for both the training set and the testing set than the BPNN
model, indicating that GA optimization significantly improved the stability and prediction
accuracy of the BPNN model.

Table 1. R2 and RMSE results of the training and testing set using the GA-BPNN model.

FR H/C O/C HHV MY EY

R2 (training) 0.9936 0.9156 0.9938 0.9432 0.9764 0.9634
RMSE (training) 0.0404 0.0068 0.0672 0.7569 0.0351 0.0389

R2 (testing) 0.9669 0.9471 0.9533 0.9128 0.9364 0.9661
RMSE (testing) 0.0666 0.0056 0.0793 1.1879 0.0501 0.0721

The RMSE values of all the features were fairly acceptable, implying the excellent
performance of the GA-BPNN model. HHV had the highest RMSE values for training
(0.7569) and testing (1.1879). Similarly, the highest RMSE values were also obtained for
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HHV prediction by the BPNN model (Table S4), with a value of 1.6033 for training and
1.8196 for testing.

Kartal et al. [25] examined the estimation capacity of the ANN model and ANFIS in
modeling the torrefaction process. The R2 values of the training set and testing set for the
two models were 0.8643 and 0.8296, 0.8233, and 0.9207, respectively. Onsree et al. [30,31]
found that the GTB model exhibited higher accuracy in MY and HHV prediction than other
models with R2 and RMSE values of 0.9153 and 0.0641, 0.9052, and 0.8086 for MY and HHV
prediction, respectively. When predicting MY using the Kriging-ANN model, the values of
R2 and RMSE for the training set and the testing set were 0.904 and 0.9099 [24]. Comparing
the best results of R2 and RMSE for MY and HHV in the existing literature and the values
obtained in this study, the GA-BPNN model exhibited more outstanding performance.

Figure 6 illustrates the data points of the output variables in the testing set obtained by
BPNN and GA-BPNN prediction and their comparison with the actual values. Compared
with BPNN, the curve behaviors of GA-BPNN predicted data were sufficiently consistent
with the actual values, meaning that GA optimization was an efficient method to improve
the prediction ability of the BPNN model.

Figure 6. Comparison between the actual and BPNN/GA-BPNN predicted output variables of the
testing set.

4. Conclusions

An innovative ML model of BPNN hybridized with GA (GA-BPNN) was developed
to predict the multiple properties of torrefied biomass for the fuel purpose in terms of
FR, O/C, H/C ratios, HHV, MY, and EY based on the proximate analysis results of the
feedstock and the torrefaction conditions. Compared with the original BPNN model, the
GA-BPNN model exhibited a more excellent prediction performance for all the targets
with the values of R2 higher than 0.91 and MASE less than 1.1879, indicating that GA
optimization significantly improved the prediction ability of the BPNN model. In addition
to the high precision, the GA-BPNN model had another prominent advantage of strong
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adaptability to various kinds of feedstock, whether the raw biomass has been dried or
not. In the future, the effect of each feature on the targets will be investigated to reveal the
torrefaction mechanism and to provide optimal parameters for torrefaction technique.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/en16031483/s1, Figure S1: Comparison of BPNN predicted and experimental
data of training set; Figure S2: Comparison of BPNN predicted and experimental data of testing set;
Table S1: Dataset; Table S2: Dataset description; Table S3: Pearson correlation coefficient between any
two features; Table S4: R2 and RMSE results of the training and testing set using BPNN model.
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