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Abstract: In this research, a hierarchical met-ocean data selection model is proposed to reduce
the computational cost in stochastic simulation of operation and maintenance (O&M) and enable
rapid evaluation of offshore renewable energy systems. The proposed model identifies the most
representative data for each calendar month from the long-term historical met-ocean data in two steps,
namely the preselection and the refined selection. The preselection incorporates three distinct metrics
to evaluate the characteristics of statistical distributions, including the Jensen–Shannon divergence,
the encapsulation of extreme met-ocean conditions, as well as the overall vessel accessibility. For the
refined selection, a component of temporal synchrony is devised to emulate dynamic changes of met-
ocean conditions. As such, a met-ocean reference year comprising twelve representative historical
months is subsequently produced and deployed as the input for O&M stochastic simulation. While
this research focuses on the development of a generalised methodology for selecting representative
met-ocean data, the proposed statistical method is validated empirically using a case study inspired
by real-life floating offshore wind installations in Scotland, e.g., Hywind and Kincardine projects.
According to the O&M simulation results with five capacity scenarios, the proposed data selection
model reduces the computational cost by up to 97.65% while emulating the original results with
minor deviations, i.e., within ±5%. The simulation speed is therefore 43 times quicker. Overall,
the proposed met-ocean data selection model attains an excellent trade off between computational
efficiency and accuracy in O&M stochastic simulation.

Keywords: offshore renewable energy; representative year; met-ocean data; O&M; M

1. Introduction

Since offshore renewable energy (ORE) plays a pivotal role in decarbonising the global
energy sector and tackling climate change, many studies are dedicated to techno-economic
analysis of ORE systems, such as offshore wind farms [1,2], wave energy converters [3,4],
tidal energy farms [5,6], as well as offshore hydrogen productions [7–9]. One of the key
components in techno-economic analysis is the estimation of operation and maintenance
(O&M) costs as they have prominent contributions to the lifecycle costs of ORE projects, e.g.,
25–30% for offshore wind farms [10]. More specifically, O&M denotes a set of procedures
required to keep a system operational for a desired timespan, following its commissioning
and installation [11]. The aim of O&M in ORE systems is to ensure reliability and availability
of electricity generation with minimum resource allocations and economic costs [12]. O&M
strategies can be classified into three major categories according to the level of criticality of
components in systems, i.e., corrective maintenance for assets with low criticality, periodic
maintenance for assets with a well-known and consistent failure–time correlation, and
condition-based maintenance for the most critical assets [12,13]. O&M activities in ORE
systems are essentially logistical problems and they become more complicated owing to
the increase in distances from ORE sites to the shore and the uncertainties resulted from
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harsh offshore environments. Various aspects need to be considered in the O&M phase,
including the reliability of components in ORE systems, accessibility via vessels, the transfer
of components and technicians for repair and replacement, as well as meteorological and
oceanographical conditions [14]. Therefore, O&M should be investigated properly in
order to determine the optimal maintenance strategies and achieve the trade off between
minimizing the cost and maximizing the availability of ORE systems [15].

The estimation of O&M costs is complex due to the interactions among component
reliability, vessel accessibility, as well as system availability. To quantify uncertainties and
enable probabilistic O&M simulation, O&M assessment tools are often deployed using
Markov Chains Monte Carlo (MCMC) techniques [16–20]. These tools are able to imitate the
stochastic nature of failure occurrence and mimic realistic constraints in terms of dynamic
met-ocean environment, resource availability and vessel limitations. They require decades
of met-ocean data, which provide measured combined wind, wave and climate conditions,
such as wind speed and direction, wave height and sea condition, temperature and humid-
ity, as the input to determine weather windows and vessel accessibility through the lifetime
of ORE projects [21]. Despite their effectiveness, the MCMC-based O&M simulations are
characterised by significant computational cost due to the need for multiple simulations
to define the distribution of stochastic outputs, such as O&M cost, and the consideration
of probabilistic failure occurrence at each timestep in each simulation. Typically, 1000 or
10,000 experimental runs are required for a lifecycle assessment using Monte Carlo simula-
tions [22], and the probabilistic occurrences of component failures need to be simulated
on a sub-daily or even hourly basis over the lifespan of ORE systems, i.e., usually 20 to
25 years [23]. The high computational cost becomes a bottleneck in a lifecycle assessment of
ORE systems, especially when it comes to the integration of stochastic simulation tools with
holistic optimisation since optimisation also incurs significant computational cost [24–26].
As a result, there is an intrinsic trade off between the accuracy and the computational
efficiency of O&M stochastic simulations. Similar limitations also exist in energy system
design and the ideas of constructing representative hours, days and weeks by aggregat-
ing long-term time series data were proposed to reduce computational cost in existing
studies [27–29]. The aggregation can be performed in two fashions, namely averaging and
time slices. The averaging method aggregates consecutive periods into one period, such
as representing one year by twelve monthly averaged representative days [30–32]. The
time slice method groups periods based on timeframes, such as seasons, weekends and
weekdays [33–36]. Despite the applications in energy system planning and expansion, the
existing aggregation methods are not suitable for O&M stochastic simulation since they
undermine the sequence and variability of the original time series data, which are critical
to the calculation of weather windows in O&M assessment. Therefore, new methods of
constructing a representative period need to be developed to reduce the computational
cost in O&M stochastic simulation.

In order to overcome the limitation of computational inefficiency and enhance the
practicality of O&M stochastic simulation, in this study, a hierarchical statistical model
is proposed to identify the most representative historical month from the long-term met-
ocean data for each calendar month and generate a met-ocean reference year with one-year
equivalent length for an O&M stochastic simulation. Using the yielded met-ocean reference
year, the computational efficiency of O&M stochastic simulation can be boosted significantly
owing to the major reduction in the input met-ocean time series and the total number of
iterations in a Monte Carlo simulation. The proposed model includes two steps: (1) the
preselection to produce five candidate historical months and (2) the refined selection to
identify the most suitable month from the preselected candidates. The selection process
is conducted independently for each calendar month from January to December. In the
preselection, three statistical components are incorporated to characterise the similarities
between the historical months and the long-term met-ocean data belonging to the same
calendar month, including the Jensen–Shannon (JS) divergence [37], the coverage of extreme
met-ocean conditions, as well as the availability of met-ocean windows regarding vessel
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accessibility. In the refined selection, the change patterns of met-ocean conditions between
the candidate months and the long-term data from the same calendar month are compared
using cosine similarity. As such, the proposed hierarchical model is capable of evaluating
similarities on different dimensions, including statistical distribution, temporal synchrony,
as well as extreme conditions. The trade off between computational cost and accuracy can
be achieved in an O&M stochastic simulation by the proposed data selection model owing
to the preserving characteristics of a met-ocean time series in a reduced length.

Inspired by real-life installations of floating offshore wind in Scotland, i.e., Hywind
and Kincardine projects, a case study which is representative of the above two projects is
developed to evaluate the proposed data selection model, following the existing study [2].
An offshore location halfway between Hywind and Kincardine projects is selected to retrieve
met-ocean data owing to the short distance between the two sites, i.e., 47 km. A port located
25 km West of Hywind project, namely Peterhead quay, is considered the O&M base since it
satisfies conditions of facilities and infrastructure for installation and operation of floating
offshore wind devices [2]. Five capacity scenarios are employed to evaluate the proposed
model on different farm sizes in the case study, including 2, 5, 10, 20 and 30 turbines.

The research contributions of this study are highlighted as follows.

1. A hierarchical met-ocean data selection model is proposed to produce a refined
representation of met-ocean conditions from the long-term historical record. The
generated representative met-ocean data preserves the characteristics of the original
long-term met-ocean time series.

2. The representative met-ocean data set generated by the proposed model is employed
to reduce the computational cost and enhance the practicality of an O&M stochastic
simulation for ORE systems. Based on the empirical results, the computation time
can be reduced by up to 97.65% and the simulation speed becomes 43 times faster.
Meanwhile, the original simulation results can be reproduced with minor deviations,
i.e., within ± 5%.

3. The distributions of the synthetic lifetime O&M cost and the lifetime energy produc-
tion are established for the representative met-ocean data set using random sampling.
Evidenced by the Wilcoxon rank sum test results, no significant statistical difference
is observed on the distributions of the O&M cost between the representative data and
the original long-term data, whereas the deviations on the distributions of the lifetime
energy production are narrow.

The remainder of the paper is organised as follows: In Section 2, the details of the
proposed hierarchical met-ocean data selection model are presented. Section 3 assesses the
impact of each statistical component on the selection of met-ocean data. Furthermore, the
simulation results of the lifetime O&M cost, the lifetime energy production, as well as the
computational time are compared between the single-year representative met-ocean data
set and the original long-term met-ocean data set in Section 4. In Section 5, the importance
of temporal synchrony for the generation of a representative met-ocean data set and its
impact on the O&M simulation are discussed. Finally, the conclusions are drawn and future
research directions are presented in Section 6.

2. Methodology

In this research, a hierarchical met-ocean data selection model is proposed to reduce
computational cost while retaining simulation accuracy for an O&M stochastic simulation
of ORE systems. The overall schematic of the proposed method is shown in Figure 1. The
proposed method comprises two stages, i.e., the preselection and the refined selection. For
each calendar month, the preselection produces five candidates from all corresponding
historical months, whereas the refined selection identifies the most representative month
from the candidates.
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Figure 1. Schematic of the proposed hierarchical met-ocean data selection model.

A similar concept was used to generate a typical meteorological year (TMY) for
building a performance simulation [38,39]. However, there are fundamental differences
between our research and existing ones in terms of the nature of the targeted problem and
the proposed method. To be specific, the O&M stochastic simulation imposes more stringent
requirements on the synchrony of dynamic changes in temporal domain owing to its
significant impact on vessel accessibility, maintenance cost, as well as energy generation. In
addition, unlike the TMY model which is purely motivated to find the most average weather
conditions, we propose a combination of distinct statistical components incorporating both
average and extreme conditions to create a bespoke design of met-ocean reference year.
The details of the proposed model are presented as below.
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2.1. Preselection

The preselection aims to identify five candidate months from the long-term data set for
each calendar month by examining the overarching distribution characteristics. Specifically,
for each calendar month, an indicator of similarity between the individual historical month
and the long-term met-ocean data belonging to the same calendar month is calculated.
Three statistical measurements are incorporated in the similarity indicator, including the
Jensen–Shannon (JS) divergence, the square of differences of extreme values and the differ-
ence in cumulative met-ocean windows. The first two components measure the similarities
in terms of overall data distribution and coverage of harsh met-ocean conditions, whereas
the last component measures the similarity of overall vessel accessibility.

The three components are combined by applying component weighting factors af-
ter normalisation to obtain a composite similarity score. For multivariate time series,
the calculation of the three statistical components is conducted independently for each
met-ocean parameter. An overall similarity score is derived by weighting the different
parameters’ respective similarity scores. As such, a holistic characterisation encompassing
different aspects of met-ocean time series similarities is established and the individual
historical months with higher similarities to the long-term met-ocean data are identified in
the preselection stage.

2.1.1. Jensen-Shannon Divergence

The JS divergence is adopted to evaluate the closeness between the distribution of
met-ocean data from a single historical month and the overall distribution constituted
by all met-ocean data belonging to the same month. Jensen-Shannon (JS) divergence [37]
is a statistical method of measuring the similarity between two probability distributions
in comparison. It is the symmetrised and smoothed version of Kullback–Leibler (KL)
divergence, which measures how a probability distribution diverges from a reference
probability distribution as shown in Equations (1) and (2) [40]. JS divergence is chosen
in this study owing to its capability of dealing with less-overlapped and non-overlapped
distributions [41].

DJS(P || Q) =
1
2
[DKL(P || P + Q

2
) + DKL(Q ||

P + Q
2

) ] (1)

DKL(P || Q) =
∫

log
(

dP
dQ

)
dP (2)

where DJS and DKL represent JS divergence and KL divergence, respectively. P and Q are
two distributions of met-ocean data from a single historical month and from the long-term
data belonging to the same calendar month. JS divergence scores are bounded by [0, 1],
where smaller scores indicate higher similarities between distributions in comparison.

2.1.2. Encapsulation of Extreme Met-Ocean Conditions

In O&M analysis of ORE systems, extreme met-ocean conditions are critical due to
their profound impacts on component reliability and vessel accessibility in real life [42–44].
Therefore, the second component in the preselection is dedicated to the encapsulation of
extreme met-ocean conditions. Specifically, we first calculate the differences with respect
to the maximum and minimum values between the two distributions in comparison, i.e.,
distributions from a single historical month and from the long-term data of the same
calendar month, respectively. Then the sum of squares of the obtained differences is
derived to indicate the coverage of extreme met-ocean conditions in comparison with the
full spectrum, as shown in Equation (3).

Cextreme = (Pmax −Qmax)
2 + (Pmin −Qmin)

2 (3)
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where Cextreme represents the indicator for the coverage of extreme met-ocean conditions. Pmax
and Pmin denote the maximum and minimum values in P distribution. Similarly, Qmax and
Qmin denote the maximum and minimum values in Q distribution.

2.1.3. Vessel Accessibility

Vessel accessibility plays a significant role in determining downtime and O&M costs for
ORE systems [45,46]. Therefore, the third component in the preselection is dedicated to the
measurement of vessel accessibility. Firstly, the cumulative durations of available weather
windows regarding the mean vessel limits of wave, wind and current are calculated for
the single historical month and for the set of all same calendar months, respectively. Then
the obtained accessible duration from a single month is scaled up by multiplying the total
number of that calendar month contained in the historical record. The difference between
the two types of cumulative durations is hence calculated to represent the similarity of
overall vessel accessibility.

Adi f f = Pcountnyear −Qcount (4)

where Adi f f and nyear represent the difference in overall vessel accessibility and the total
number of a specific calendar months, respectively. Pcount and Qcount denote the count of
suitable weather windows for P and Q distributions, respectively.

2.1.4. Overall Similarity Score

The three distinct elements are subsequently normalised and aggregated by applying
weighting factors to obtain a composite similarity score. When multiple variables are
contained in met-ocean time series, the three statistical components are calculated for each
variable independently. The resulted composite similarity scores are then weighted to
obtain an overall similarity score as shown in Equations (5) and (8).

Scom = wc1DJS + wc2Cextreme + wc3 Adi f f (5)

Soverall = ∑n
i=1 wiScom i (6)

wc1 + wc2 + wc3 = 1 (7)

∑n
i=1 wi = 1 (8)

where Scom and Soverall denote composite similarity score and overall similarity score,
respectively. wc1, wc2, wc3 represent three component weighting factors for JS divergence,
coverage of extreme met-ocean condition and overall vessel accessibility, respectively. In
addition, wi indicates the weighting factor for i-th variable in a multi-variate time series.

Overall, the preselection identifies promising candidate months with high distribution
similarities to the long-term met-ocean data by comparing overall distributions, coverages
of extreme met-ocean conditions, as well as overall vessel accessibility. Where the pres-
election has assessed the similarity of the distributions, the subsequent refined selection
assesses the temporal patterns in the data.

2.2. Refined Selection

In addition to the distribution characteristics, the sequence of met-ocean data is also
critical to the calculation of weather window. Therefore, in the refined selection, a statistical
component is devised to measure the level of synchrony between met-ocean data sets
in temporal domain and determines the most representative historical month from the
preselected five candidates.

Temporal Synchrony

In O&M stochastic simulation, it is data sequence over consecutive timesteps that
establishes suitable weather windows, not separate data points. The change of sequence
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within met-ocean data can have significant impacts on weather windows and vessel acces-
sibility. Therefore, a refined selection process is developed focusing on the temporal change
of met-ocean variables as time evolves. The similarity regarding the patterns of temporal
changes between met-ocean time series is denoted as temporal synchrony. The candi-
date month which generates the highest synchrony score, as compared to the long-term
met-ocean record, is considered as the most representative month.

To ensure the equal length between time series data in comparison, the means of long-
term met-ocean data are calculated by averaging all monthly time series. This process is
performed separately for each calendar month. Despite suffering from reduced variability,
calculating averages of different periods is widely used for temporal aggregation in existing
studies [30,47,48]. In this study, the averaging process is adopted for two considerations.
Firstly, the purpose of the refined selection is to identify a historical month which can find
the average of simulation results from using all data of that calendar month. This average
enables us to estimate the lifetime O&M results effectively. Secondly, the means of time
series is only used as a reference for the selection and the actual variability of met-ocean
time series is still preserved in the identified representative data.

The first-order difference is then calculated to obtain the change between consecutive
observations of a met-ocean variable. The cosine similarity is subsequently calculated using
the derived first-order differences to evaluate the level of synchrony in terms of changes
between met-ocean time series in comparison, as shown in Equations (9)–(11).

Pdi f f (t) = x(t)− x(t− 1) (9)

Q′di f f (t) = x′(t)− x′(t− 1) (10)

Cosim =
∑n

t=1 Pdi f f (t)Q′di f f (t)√
∑n

t=1 P2
di f f (t)

√
∑n

t=1 Q′ 2
di f f (t)

(11)

where Pdi f f represents the first-order difference of the time series from a single historical
month and Q′di f f denotes the first-order difference of the averaged long-term time series. In
addition, Cosim is cosine similarity for the two vectors of first-order difference. x(t− 1) and
x(t) indicate data instances at timestep t− 1 and t in a single-month time series, whereas
x′(t− 1) and x′(t) represent data instances at timestep t− 1 and t in the averaged long-term
time series.

As such, in the refined selection the temporal changes of met-ocean variables are com-
pared whereas the overall characteristics of the statistical distributions are examined in the
preselection. The representative met-ocean reference year yielded by the proposed hierarchi-
cal model is employed to reduce the computational cost of O&M stochastic simulation.

3. Validation

We first evaluate the impacts of each devised statistical component on the selection
of representative months. Then the proposed model is coupled with an O&M stochastic
simulation tool to evaluate the performance of the generated representative met-ocean
reference year. The trial-and-error approach is adopted to identify suitable weighting
factors for the employed statistical components based on the simulation results.

The UNEXE O&M [49] tool is employed for the O&M stochastic simulation. The
experimental settings are determined by following the existing study [2]. A representative
floating offshore wind farm with five 9.5 MW wind turbines in Scotland is employed as a case
study. Nine components with higher failure rates are considered for maintenance, including
pitch and hydraulic system, generator, gearbox, blades, floating platform, mooring lines,
anchors, inter-array cables and export cables. The reliability data for different components
are obtained from the existing literature [50–53]. Four types of vessels are employed for
undertaking various maintenance tasks, namely a crew transfer vessel (CTV), a field support
vessel (FSV), a heavy-lift vessel (HLV), as well as an anchor handling tug supply (AHTS)
vessel. The weather limits associated with each type of vessel are provided in Table 1. The
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met-ocean data set with twenty historical years is employed for the case study, i.e., spanning
from 1995 to 2014. The variables contained in the data set include significant wave height,
peak period, direction at peak spectral, wind speed, wind direction, current speed and
current direction. They are measured at an interval of 3 h. A total number of 100 runs is
deployed in the Monte Carlo simulation based on the existing study [2]. All experiments
were conducted on a machine with 2.30 GHz 4-core CPU and 32 GB RAM. It should be noted
that the focus of this research is to investigate the performance of the selected representative
met-ocean data, rather than providing actual guidance on O&M strategy.

Table 1. Weather limits of the employed vessels.

Name of the Vessel CTV FSV HLV AHTS

Wave height limit, [m] 2.5 1.8 1.5 3
Wind speed limit [m/s] 30 30 25 30

Current speed limit [m/s] 5 5 4 4

3.1. Impacts of the Devised Statistical Components

In order to avoid the disturbance imposed by other statistical components, the impacts
of each component are investigated separately by switching off the irrelevant ones, i.e.,
setting weighting factors as 0. For the benefit of comparison, the results of March are used
as an example to illustrate the distinctive effects driven by different components. The
cumulative distributions and probability densities of significant wave height in March from
the five candidate years identified by the three statistical components, i.e., the JS divergence,
the extreme condition encapsulation and the overall vessel accessibility, are illustrated in
Figures 2–4, respectively.
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height in March from five candidate months yielded by the component of vessel accessibility.

With respect to the JS divergence, the resulted five candidate months for March,
i.e., 1997, 1998, 2002, 2005 and 2009 as illustrated in dash lines in Figure 2, possess very
similar distributions to that of the twenty-year case. They enclose the distribution of the
twenty-year met-ocean data with narrow gaps across the whole spectrum of the significant
wave height. This resemblance demonstrates the efficacy of the JS divergence in capturing
characteristics of overall distributions of time series.

With respect to the extreme condition encapsulations, the yielded five candidate
months for March, i.e., 1995, 1996, 2006, 2007 and 2008 as illustrated in dash lines in
Figure 3, are able to fully cover the harsh met-ocean conditions contained in the twenty-
year met-ocean data, as evidenced by the higher probability densities of the candidates
in regions with large significant wave heights. However, discrepancies in the overall
distribution landscapes can be observed from the candidate months in comparison with
the twenty-year case.

With respect to the overall vessel accessibility, the identified five candidate months
for March, i.e., 1997, 2005, 2007, 2009 and 2014 as illustrated in dash lines in Figure 4,
demonstrate a high level of resemblance to the twenty-year case when the significant wave
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heights are below the mean value of vessel limits, i.e., 2.2 m. With the further increase in
significant wave heights, the divergence of distributions becomes larger. This is due to
the specified emphasis on the met-ocean data which comply with vessel limits, e.g., the
significant wave height is lower than the defined threshold of vessel limits, in order to
evaluate the overall vessel accessibility.

With respect to the temporal synchrony, the identified representative month (red curve
in Figure 5) demonstrates identical granular changes to the twenty-year case (denoted as the
blue curve in Figure 5) in the temporal domain. A close match of major peaks and troughs
between the identified typical year and the twenty-year scenario can be observed in Figure 5.
The variability in the twenty-year case is smaller than the selected representative year
due to the fluctuations being reduced by averaging significant wave heights from twenty
historical years. However, the essence of measuring temporal synchrony is to compare the
change patterns of met-ocean conditions, rather than matching exact values. In short, the
effectiveness of the devised component of temporal synchrony is verified by the identical
change in patterns shared by the representative data and the twenty-year data set.
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3.2. Parameter Tuning

In the proposed statistical model, two types of weighting factors exist, including
parameter weighting factors and component weighting factors. In this case study, two met-
ocean parameters, namely significant wave height and wind speed, are considered and
assigned with an equal weighting factor of 0.5 since they are commonly used for assessing
vessel accessibility [2,54]. The major attention is dedicated to the tuning of parameters for
the three statistical components in the preselection. Based on the analysis of impacts from
individual components, the most effective combination of them is identified by devising
bespoke weighting factors through a trial-and-error process.

A heuristic search process is conducted to identify the most effective weighting fac-
tors with efficiency. The JS divergence and overall vessel accessibility are prioritised to
start the tuning process owing to their capability of selecting the representative months
with similar distributions to the twenty-year data set, as shown in Figures 2 and 4. The
identified elite solution of weighting factors is then further improved by manipulating the
level of participation for the component of extreme met-ocean encapsulation. The search
space between [0,1] is investigated to enable different combinations of components of JS
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divergence and overall vessel accessibility. Both the O&M cost and the energy production
results are employed to evaluate the fitness of weighting factor solutions, as compared
against the results from using the twenty-year met-ocean data set.

The empirical results of O&M cost and energy production are presented in Table 2.
When applying the equal weighting factor of 0.5 for the components of JS divergence and
extreme condition encapsulation, the simulation results demonstrate small variances to
the twenty-year case, i.e., −4.83% for the lifetime O&M cost and 3.83% for the lifetime
energy production. Moreover, a better combination of weighting factors is identified by
allowing a modest participation for the component of extreme condition encapsulation.
Specifically, by applying the weighting factors of (0.4, 0.1, 0.5) for the components of JS
divergence, encapsulation of extreme met-ocean conditions and overall vessel accessibility,
the best simulation results with the least variances to the twenty-year case are obtained,
i.e., −4.83% for the lifetime O&M cost and 3.14% for the lifetime energy production. The
resulted met-ocean reference year incorporates the following twelve representative calendar
months, i.e., January in 2003, February in 2001, March in 1997, April in 1999, May in 2003,
June and July in 2001, August in 2007, September in 2001, October in 2009, November in
2007 and December in 2008.

Table 2. O&M simulation results from the representative met-ocean reference year yielded by different
combinations of component weighting factors.

Weights
(wc1, wc2, wc3)

O&M Cost
(m£)

O&M Cost
Scaled
(m£)

Variations of
O&M Cost

Energy
Production

(MWh)

Energy Production
Scaled
(MWh)

Variations of
Energy

Production

20-year data 86.16 86.16 4.336 × 106 4.336 × 106

(1, 0, 0) 3.57 71.40 −17.13% 2.275 × 105 4.551 × 106 4.96%
(0, 1, 0) 3.70 74.00 −14.11% 2.401 × 105 4.802 × 106 10.75%
(0, 0, 1) 3.68 73.60 −14.58% 2.259 × 105 4.518 × 106 4.21%

(0.8, 0, 0.2) 3.57 71.40 −17.13% 2.284 × 105 4.567 × 106 5.34%
(0.6, 0, 0.4) 4.10 82.00 −4.83% 2.267 × 105 4.534 × 106 4.59%
(0.5, 0, 0.5) 4.10 82.00 −4.83% 2.251 × 105 4.502 × 106 3.83%
(0.4, 0, 0.6) 4.10 82.00 −4.83% 2.270 × 105 4.540 × 106 4.70%
(0.2, 0, 0.8) 3.68 73.60 −14.58% 2.313 × 105 4.627 × 106 6.71%

(0.4, 0.1, 0.5) 4.10 82.00 −4.83% 2.236 × 105 4.472 × 106 3.14%
(0.4, 0.2, 0.4) 3.69 73.80 −14.35% 2.240 × 105 4.479 × 106 3.31%
(0.3, 0.4, 0.3) 3.69 73.80 −14.35% 2.271 × 105 4.542 × 106 4.76%
(0.2, 0.6, 0.2) 3.70 74.00 −14.11% 2.304 × 105 4.609 × 106 6.30%
(0.1, 0.8, 0.1) 3.71 74.20 −13.88% 2.401 × 105 4.802 × 106 10.77%

Moreover, the simulation results from different combinations of weighting factors
indicate the complexity of the problem. To be specific, the relationships between the
weighting factors and the results of the O&M costs and energy productions are nonlinear,
as evidenced by the empirical results. The increase in the weighting factor for any specific
statistical component does not guarantee a continuous increase or decrease in the accuracy
of the simulated O&M costs and energy productions. This also indicates that the impacts
of met-ocean data on the simulated stochastic outputs are sophisticated. The selection of
suitable met-ocean data for O&M assessment is not an easy task owing to the large search
space. The total number of solutions in a 20-year case is 4.096 × 1015, i.e., 2012. However,
according to the results of the parameter tuning, good performances can be obtained when
similar weights are assigned to the components of JS divergence and vessel accessibility
and the weights for the component of extreme conditions are kept small, such as (0.6, 0,
0.4), (0.5, 0, 0.5), (0.4, 0, 0.6), (0.4, 0.1, 0.5). These four combinations of weighting factors
achieved the most accurate O&M cost results with a deviation of 4.83% from the 20-year
case. Despite resulting in the same O&M costs, the met-ocean reference years generated by
these four weighting solutions are not entirely the same and different historical data are
selected on several calendar months, as shown in Table 3.
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Table 3. The representative met-ocean reference years identified by four different combinations of
component weighting factors.

Weights
(wc1, wc2, wc3)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

(0.6, 0, 0.4) 2008 2001 1997 1999 2003 2003 2001 2007 2001 2009 2001 2008
(0.5, 0, 0.5) 2003 2001 1997 1999 2003 1995 2001 2007 2001 2009 2001 2008
(0.4, 0, 0.6) 2003 2001 1997 1999 2003 2001 2001 2007 2001 2009 2001 2008

(0.4, 0.1, 0.5) 2003 2001 1997 1999 2003 2001 2001 2007 2001 2009 2007 2008

Overall, a heuristic solution of weighting factors is identified where the four statistical
components, i.e., the JS divergence, the extreme condition encapsulation, the overall vessel
accessibility, as well as the temporal synchrony, complement each other to attain the refined
representation of realistic met-ocean conditions. The resulted representative met-ocean
data set is able to emulate the original simulation results from using twenty-year met-ocean
data with small variations on the test scenario with five turbines.

4. Results

A comprehensive evaluation was conducted for the proposed data selection model
equipped with the identified most effective weighting factors, i.e., 0.4, 0.1, and 0.5 for the
components of JS divergence, extreme condition encapsulation and vessel accessibility,
respectively. Three performance indicators are examined in detail, including computational
time, O&M cost and energy production. Five wind farm sizes are tested: i.e., 2, 5, 10, 20, 30
wind turbines.

4.1. Simulation Results for Different Wind Farm Configurations

As shown in Table 4, the results are the averages based on 100 independent runs
in the Monte Carlo simulation. The simulation results obtained from the single-year
representative met-ocean data are multiplied by the total number of years, i.e., 20, to
generate synthetic lifetime results. Across the tested five wind farm sizes, the selected
representative met-ocean reference year is capable of emulating the lifetime results of the
twenty-year case with small deviations.

Table 4. O&M simulation results of different wind farm configurations using 20-year and representa-
tive met-ocean data.

Met-Ocean
Data Set Configuration Computation

Time (s)
Reduction of

Computation Time
O&M

Cost (m£)
Variations of
O&M Cost

Energy
Production

(MWh)

Variations of
Energy

Production

20-year 2 15,745.8 34.30 1.735 × 106

Representative 2 568.0 96.39% 35.60 3.79% 1.787 × 106 2.99%

20-year 5 21,405.2 86.16 4.336 × 106

Representative 5 703.3 96.71% 82.00 −4.83% 4.472 × 106 3.14%

20-year 10 68,514.8 173.06 8.671 × 106

Representative 10 2868.9 95.81% 173.00 −0.03% 8.890 × 106 2.53%

20-year 20 178,241.7 345.34 1.734 × 107

Representative 20 4183.6 97.65% 337.40 −2.30% 1.787 × 107 3.07%

20-year 30 297,086.5 515.87 2.601 × 107

Representative 30 7700.4 97.41% 502.20 −2.65% 2.679 × 107 3.00%

Specifically, with respect to the O&M cost, the absolute variations are within 5%, i.e.,
from 0.03% to 4.83% across different configuration scenarios, between the two types of
met-ocean data. The highest variation occurs in the scenario of five wind turbines and
the lowest variation occurs in the scenario of ten turbines. In comparison, the results of
energy production demonstrate a smaller range of variances across different wind farm
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configurations, i.e., from 2.53% to 3.14%. Similarly, the scenarios where the highest and
lowest variations occur for the energy production are identical to those of the O&M cost,
i.e., five and ten turbines, respectively.

In addition to the simulation results, the computational efficiency is also compared
for two types of met-ocean data. As shown in Table 4, using the representative met-ocean
reference data, the computation time of O&M simulation is reduced significantly, i.e., from
95.81% to 97.65% across five configuration scenarios, in comparison with using the twenty-
year met-ocean data. In other words, the simulation speed becomes 28, 30, 24, 43 and
39 times faster on the five scenarios, respectively. This indicates that the computational
efficiency can be boosted massively by employing the representative met-ocean data.

Furthermore, the performances of the met-ocean reference year are compared against
three baseline individual years chosen at different timepoints, i.e., the beginning (year
1995), the midpoint (year 2004), and the end (year 2014), as shown in Table 5. Evaluated
using the wind farm with five turbines, the met-ocean reference year demonstrates much
smaller variations on the results of the lifetime O&M costs and energy productions than
the three baseline years. More specifically, with respect to the O&M costs, the deviations
demonstrated by the baseline years of 1995, 2004 and 2014 are 11.6%, 8.8%, 10.4% larger
than the met-ocean reference year, respectively. With respect to the energy productions, the
deviations of three baseline years are 3.43%, 3.18% and 5.46% higher than the met-ocean
reference year. As a result, the generated representative met-ocean reference can achieve
more accurate simulation results than single historical years.

Table 5. O&M simulation results of the met-ocean reference year and the baseline individual years.

Met-Ocean
Data Set Configuration Computation

Time (s)
Reduction of

Computation Time
O&M

Cost (m£)
Variations of
O&M Cost

Energy
Production

(MWh)

Variations
of Energy

Production

20-year 5 21,405.2 86.16 4.336 × 106

Reference year 5 703.3 96.71% 82.00 −4.83% 4.472 × 106 3.14%
Year 1995 5 667.2 96.88% 72.00 −16.43% 4.620 × 106 6.57%
Year 2004 5 672.7 96.78% 74.40 −13.65% 4.610 × 106 6.32%
Year 2014 5 649.4 96.88% 73.00 −15.27% 4.708 × 106 8.60%

Based on the empirical results, the representative met-ocean reference data set is
able to reduce the computation time of the O&M stochastic simulation significantly while
emulating the original simulation results with minor deviations. As such, a trade off
between computational efficiency and model fidelity can be attained and the practicality of
the O&M stochastic simulation can be enhanced considerably.

4.2. Construction of Distributions for Lifetime Performance Indicators

In addition to the average results, the distributions of simulation outputs are also
preferred in order to understand variability of performance indicators with respect to
complex uncertainties embedded in the O&M stochastic simulation [2]. In this section,
the distributions of the lifetime O&M cost and energy production are established for
the representative met-ocean data, using the results pool generated by 100 runs in the
Monte Carlo simulation. Specifically, random sampling with replacement is employed
to draw 20 samples from the result pool, representing simulation results from twenty
individual years. These samples are subsequently aggregated to produce a synthetic
instance pertaining to a specific lifetime outcome, such as the lifetime O&M cost or the
lifetime energy production. The above procedures are repeated to generate 100 synthetic
instances, signifying 100 independent runs as prescribed in the Monte Carlo simulation.
The distributions of lifetime performance indicators are thereafter established for the
representative met-ocean data and compared against those resulted from using the twenty-
year met-ocean data.

As shown in Figure 6, the histograms for the 20-year case and the representative year
are highlighted in orange and blue colours, respectively, whereas the red curves denote the
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fitted probability density functions based on the histograms. The constructed distributions
of the lifetime O&M cost for the representative met-ocean reference year demonstrate high
similarities to those yielded by the twenty-year met-ocean data. More specifically, the two
types of distributions exhibit identical patterns characterised by predominant overlaps and
homogeneous spectrums. This similarity can be observed across different configuration
scenarios. Furthermore, the Wilcoxon rank sum test is conducted to provide statistical
evidence regarding the level of distinctiveness between two distributions in comparison.
The rank sum test results are higher than 0.05 for all tested configuration scenarios, i.e.,
1.89 × 10−1, 9.58 × 10−1, 1.53 × 10−1and 9.39 × 10−2 for 5, 10, 20 and 30 wind turbines,
respectively, as shown in Table 6. As a result, the hypothesis that two distributions are
likely to be derived from the same population cannot be rejected. As such, the original
lifetime O&M cost distributions can be reproduced with a high level of confidence by using
the representative met-ocean reference year, as evidenced by the results of the statistical
test and different configuration scenarios.
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Table 6. Wilcoxon rank sum test results for lifetime O&M cost and lifetime energy production.

Met-Ocean Data Set Wilcoxon Rank Sum Test Results

O&M cost 1.89 × 10−1 9.58 × 10−1 1.53 × 10−1 9.39 × 10−2

Energy Production 1.18 × 10−9 6.20 × 10−8 1.48 × 10−17 4.42 × 10−24

The distributions are also constructed for the lifetime energy production for different
configuration scenarios, as shown in Figure 7. The red curves are the fitted probability
density functions based on the histograms. The two distributions resulted from two types
of met-ocean data exhibit a higher level of distinctiveness in their spectrums, hence leading
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to a lower level of overlaps. The lifetime energy production results of the representative
met-ocean reference year appear to be slightly overestimated compared to those of the
twenty-year met-ocean data. This distinctiveness is also verified by the rank sum test results
below the threshold of 0.05, i.e., 1.18 × 10−9, 6.20 × 10−8, 1.48 × 10−17 and 4.42 × 10−24 for
5, 10, 20 and 30 wind turbines, respectively, as shown in Table 4. This overestimation of the
lifetime energy production could be attributed to the underestimation of failure occurrence
and downtime on certain components. Using blades as an example, for the configuration
scenario of five turbines, the total number of blade failures and the resulted downtime for
the representative met-ocean data are 8.69% and 7.35% less, respectively, than those of the
twenty-year case. Nevertheless, the variances between the two distributions are small in
comparison with the scales of the lifetime energy production. The relative differences of
mean values of the two distributions are 3.14%, 2.40%, 3.03%, 2.97% for the configuration
scenarios of 5, 10, 20, 30 turbines, respectively. Therefore, the constructed distributions of
the lifetime energy production are effective in providing reliable estimations regarding the
energy yield of ORE systems.

Overall, the representative met-ocean reference year identified by the proposed hierar-
chical data selection model is able to emulate both the average results and distributions
pertaining to the lifetime performance indicators, e.g., the lifetime O&M cost and the
lifetime energy production. More importantly, the empirical results indicate that the com-
putation time can be reduced by up to 97.65% and the simulation speed becomes 43 times
faster. Therefore, the proposed data selection model is capable of achieving the advanced
trade off between the computational cost and the model fidelity, hence enhancing the
practicality of the O&M stochastic simulation significantly.
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5. Discussion

Despite following a similar two-step hierarchical structure, our proposed model
employs distinctive statistical measurements to account for the unique characteristics in
the domain of O&M stochastic simulation, compared to the data selection model applied in
the domain of dynamic building simulation [55–57]. More specifically, in O&M stochastic
analysis, dynamic changes of met-ocean conditions play a significant role in affecting
O&M cost and energy production owing to its impact on the availability of a suitable
weather window for maintenance operations [58]. Therefore, in the refined selection of
the proposed model, temporal synchrony is measured by calculating the cosine similarity
using the first difference to capture dynamic changes in the temporal domain. In contrast,
the data selection model employed in the dynamic building simulation only considers
spatial proximity of time series by calculating the root mean square error (RMSE), which
ignores time dependency embedded in the time series data and cannot satisfy the stringent
requirement in the O&M stochastic simulation.

We validate the above argument by further conducting a comparison experiment,
where the cosine similarity is replaced by RMSE for the selection of representative data.
The yielded met-ocean reference year is then employed for the O&M simulation and the
lifetime performance indicators are calculated. In comparison with the twenty-year case,
the variations for the lifetime O&M cost and energy production are −17.13% and 4.19%,
respectively, which are much higher than the results yielded by using the component of
temporal synchrony, i.e., −4.83% and 3.14% for the lifetime O&M cost and the energy
production, respectively.

Furthermore, the decomposed results with respect to component failures and down-
time are presented in Table 7 for comparison between using the devised temporal synchrony
component, i.e., cosine similarity, and the spatial proximity indicator, i.e., RMSE. Despite
the identical outcomes of failure occurrence for the considered seven major wind turbine
components, large variances can be observed between the results of downtime yielded
by the two statistical measurements. Specifically, the downtime results induced by cosine
similarity are much closer to the original twenty-year case than those induced by RMSE,
across all major components. As an example, with respect to the downtime caused by the
failures of mooring lines, the variances for the two methods of cosine similarity and RMSE
are −0.57% and 18.93%, respectively, as compared against the twenty-year scenario. This
relative difference in mooring lines alone between two methods amounts to 714 h in terms
of absolute downtime. Such evident disparities in the downtime results can be ascribed to
the failure of extracting dynamic changes in met-ocean conditions in the temporal domain
when using RMSE as the selection criteria in the refined selection. In contrast, the devised
component of temporal synchrony enables the identified representative met-ocean data
to emulate the granular and continuous changes in a realistic met-ocean environment,
therefore obtaining better simulation results with high fidelities.

Table 7. The number of failure occurrences and the system downtime over the 20-year lifetime for the
proposed model where cosine similarity is employed and for a test model where RMSE is considered
in the refined selection.

Major Components
Results of Failure Occurrence Results of Downtime

20-Year Cosine Similarity RMSE 20-Year Cosine Similarity RMSE

Floating platform 29.4 29.2 −0.68% 29.2 −0.68% 492.0 462.8 −5.93% 446.2 −9.31%
Mooring lines 17.8 17.4 −2.36% 17.8 −0.11% 3891.0 3869.0 −0.57% 4627.4 18.93%

Anchors 19.8 16.6 −16.12% 16.6 −16.12% 4155.0 3026.0 −27.17% 2841.6 −31.61%
Pitch and Hydraulic 32.8 33.0 0.76% 33.0 0.76% 15,988.0 12,961.4 −18.93% 11,354.0 −28.98%

Generator 29.6 27.0 −8.85% 27.0 −8.85% 1820.0 1572.0 −13.63% 1570.0 −13.74%
Gearbox 18.4 19.4 5.21% 19.8 7.38% 886.0 873.0 −1.47% 804.2 −9.23%
Blades 16.0 14.6 −8.69% 14.6 −8.69% 588.0 544.8 −7.35% 504.2 −14.25%
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6. Conclusions

In this research, a hierarchical data selection model has been proposed to reduce
the computational cost of an O&M stochastic simulation and achieve fast evaluation for
ORE systems. The proposed model includes two steps, namely the preselection and the
refined selection, to establish a fine representation of met-ocean conditions from large
volumes of met-ocean time series data. The preselection employs three distinctive statistical
components, i.e., the JS divergence, the encapsulation of extreme met-ocean conditions,
as well as the overall vessel accessibility, to emulate holistic distribution characteristics
embedded in the original met-ocean time series. In the refined selection, the component of
temporal synchrony is devised to mirror the dynamic changes of met-ocean conditions in
the temporal domain. As such, the proposed hierarchical model is capable of establishing
a comprehensive description of realistic met-ocean conditions by incorporating different
features, including probability distribution, extreme sample points, local information
regarding vessel limits, as well as granular temporal changes.

A met-ocean reference year comprising twelve representative historical months is
generated by the proposed model and subsequently employed as the input data set in
the O&M stochastic simulation. Evaluated using a floating offshore wind farm with five
capacity scenarios, i.e., 2, 5, 10, 20, 30 turbines, the yielded representative met-ocean
reference year reduces computational cost of the O&M simulation by up to 97.65%. The
simulation speed is therefore 43 times faster compared to using the twenty-year met-ocean
data. Moreover, the distributions of synthetic lifetime O&M cost and energy production
are constructed for the representative met-ocean reference year for further comparison.
Evidenced by the Wilcoxon rank sum test, the original lifetime O&M cost distributions
yielded by the twenty-year met-ocean data set are reproduced vividly by the representative
met-ocean data. Minor deviations can be observed between the distributions of lifetime
energy production from two types of met-ocean files, but the relative differences of the
means are small. Therefore, the representative met-ocean reference year is able to emulate
the original simulation results with a high level of confidence. An advanced trade off
between computational efficiency and model fidelity can be attained by the proposed
hierarchical met-ocean data selection model for the O&M stochastic simulation. Overall,
the four devised statistical components in collaboration account for the efficacy of the
proposed model by establishing a fine representation of realistic met-ocean conditions both
in overall distributions and in temporal changes.

For future research, thorough comparisons between our proposed model and the con-
ventional method will be conducted on detailed metrics, such as weather delays, using more
case studies to gain better understandings about the deviations of the simulated results
and to further improve the data selection mechanism. In addition, the proposed model will
be integrated with optimisation algorithms to automatically identify the optimal settings of
weighting factors for different components and achieve a higher level of intelligence and
automation for undertaking complex modelling problems of ORE systems [15,59–63].
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Nomenclature

O&M Operation and Maintenance
ORE Offshore Renewable Energy
MCMC Markov Chains Monte Carlo
TMY Typical Meteorological Year
JS Jensen-Shannon
KL Kullback-Leibler
CTV Crew Transfer Vessel
FSV Field Support Vessel
HLV Heavy-Lift Vessel
AHTS Anchor Handling Tug Supply
RMSE Root Mean Square Error
DJS Jensen-Shannon divergence
DKL Kullback-Leibler divergence
P Distribution of met-ocean data from a single historical month
Q Distribution of met-ocean data from the long-term record
Cextreme Coverage of extreme met-ocean conditions
Pmax Maximum value in P distribution
Pmin Minimum value in P distribution
Qmax Maximum value in Q distribution
Qmin Minimum value in Q distribution
Adi f f Difference of overall vessel accessibility
nyear Total number of years in the met-ocean record
Pcount Count of suitable weather windows in P distribution
Qcount Count of suitable weather windows in Q distribution
Scom Composite similarity score
Soverall Overall similarity score
wc1 Weighting factor for JS divergence
wc2 Weighting factor for coverage of extreme met-ocean condition
wc3 Weighting factor for overall vessel accessibility
Cosim Cosine similarity for two vectors of first-order difference
Pdi f f First-order difference of time series from a single month
Q
′

di f f First-order difference of the averaged long-term time series
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