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Abstract: Vehicular ad hoc networks (VANETs) are vital to many Intelligent Transportation System
(ITS)-enabled technologies, including efficient traffic control, media applications, and encrypted fi-
nancial transactions. Due to an increase in traffic, vehicular network topology is constantly changing,
and sparse vehicle distribution (on highways) hinders network scalability. Thus, there is a challenge
for all vehicles (in the network) to maintain a stable route, which would increase network instability.
Concerning IoT-based network transportation, this study proposes a bio-inspired, cluster-based
algorithm for routing, i.e., the intelligent, probability-based, and nature-inspired whale optimiza-
tion algorithm (p-WOA), which produces cluster formation in vehicular communication. Various
parameters, such as communication range, number of nodes, velocity, and route along the highway
were considered, and their probaabilities were incorporated into the fitness function, hence resulting
in randomness reduction. Results were compared to existing methods such as Ant Lion Optimizer
(ALO) and Grey Wolf Optimization (GWO), demonstrating that the developed p-WOA technique
produces an optimal number of cluster heads (CH). The results achieved by calculating the Packet
Delivery Ratio (PDR), average throughput, and latency demonstrate the superiority of the proposed
method over other well-established methodologies (ALO and GWO). This study confirms statistically
that VANETs employing ITS applications optimize their clusters by a factor of 75, which has the twin
benefits of decreasing communication costs and routing overhead and extending the life of the cluster
as a whole.

Keywords: bio-inspired algorithms; clustering; vehicular networks; whale optimization algorithm

1. Introduction

The development of devices has led to greater precision in terms of driver ease
and safety, the introduction of intelligent systems, and the modification of vehicles in
recent years in response to the growing concern for safety on the roads. The Intelligent
Transportation System’s (ITS) core focus is on improving road traffic and safety data,
which has benefited greatly from the proliferation of wireless and mobile networks. Some
of the most common applications of ITS include real-time information on traffic routes,
monitoring of traffic conditions to prevent accidents and collisions, and the collection of data
on traffic volumes and congestion [1]. Other than safety-related data, users can also find
information about features such as gas stations, toll booths, and Wi-Fi hotspots. Intelligent
Transportation Systems include V-WLANs (Vehicular Wireless Local Area Networks) and
V-Cell Networks (Vehicular Cellular Networks) (VCN). The first makes use of wireless
local area networks (WLANs) to connect cars to the internet, whereas the second relies
on fifth-generation (5G) mobile networks to do the same by allowing cars to tap into the
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existing cellular network’s infrastructure to access those services; in this case, the base
station’s coverage area is measured in Cubicles (cells). When packets are transmitted with
low latency and high bandwidth base stations in mind, new applications in the fields
of VCN and V-WLAN are made possible; nevertheless, these systems are not utilized
because their devices and infrastructures are costly, and their locations are less than ideal.
Due to these discrepancies, the network’s efficiency suffers, and the connected vehicles’
range, latency, and connectivity are all severely limited. The high speeds at which vehicles
(on highways) travel reduce the efficiency of the network and may cause radio links to
be severed [2]. This is because the transmission range is shortened due to issues such
as handoffs, message dropouts, and limited connectivity between cars. V-WLANs and
VCNs have a big limitation in terms of cost-effectiveness because each vehicle must be
linked and provided with an access point, which increases the price of the entire ITS [3].
Wireless nodes and the operator’s data transfer packages work together to provide cost-
efficient answers [4]. It is more challenging to deliver messages to all vehicles at once
due to the limitations of the vehicular network; as a result, only unicast and multicast
communications are possible. Taking into account the aforementioned constraints, along
with the desire to improve dependability and mobile connection, a new network called a
vehicular network emerged [5]. Each car in this network is linked to every other car in the
system as well as to a central unit and several access points along the road. Introducing
standardized On-Board Units (OBUs) for automobiles that interface with the network
has the potential to increase system reliability and coverage area while also lowering
the system’s overall cost [6]. Numerous vehicle communication apps have an impact
on drivers’ comfort and security in a variety of ways [7]. Several different kinds of ITS
security applications can be distinguished in inter-vehicle communication based on the
transmission method, which can be either geo mode or broadcast. Businesses that stay
put on the road offer a variety of ITS security services, including freeway management,
accident detection and avoidance, and climate control. Businesses typically employ unicast
mode for sending sensitive information, and the same is true of the ITS application known
as VRC (Vehicle-to-Roadside Communication) that these businesses offer. For example,
ITS software could help cars detect and avoid collisions, assist drivers of frame vehicles,
and describe their locations. Maintaining a safe distance from potential collisions or taking
the necessary precautions is made easier when such vehicles are transported and used
responsibly [8]. To enable the correct sending of various forms of security notifications,
timely, reliable, and useful information is required. For instance, sending recordings of
street conditions (such as heavy traffic, a catastrophic event, or fire) in advance of the
route could allow drivers to make complex judgments in advance or reverse course [9].
In addition, many gas stations, weather reports, crisis management offices, intelligent
letters, Internet connections, and other services are now integrated into vehicle-based
communication and entertainment systems, making for a more pleasant and informative
driving experience for everyone. Creating a system that allows direct messaging between
cars is impossible without first ensuring a high level of service quality (QoS) [10], which
includes its media services [11]. By eliminating the need for roadside equipment and
allowing vehicles on the same network to exchange data directly, Vehicle-to-Vehicle (V2V)
communication has benefited [12]. Traffic reliability, infotainment network security, and
driver and passenger safety are among the primary motivations behind V2x application
optimization. It has been established that V2x applications encounter several challenges
regarding the appropriateness of decision-making and the consistency and dependability
of data sharing across vehicles. Many of these difficulties can be overcome with the help of
artificial intelligence (AI) techniques, in particular those that deal with decision-making in
IoV systems [13]. By limiting the number of clusters, many bio-inspired routing (clustering)
algorithms have been created to guarantee optimal route selection, facilitating fast V2V
communication among vehicular networks without the need for centralized infrastructure
to extend the life of the network. Delay mitigation, topological stability in networks,
bandwidth optimization, and data aggregation are some of the issues investigated in this



Energies 2023, 16, 1456 3 of 20

paper. The existing whale optimization algorithm for clustering was analyzed, and several
changes are proposed to make it more effective. These include using probabilistic modeling,
increasing the convergence factor to avoid local optima, and making smart adjustments
to the algorithm’s self-adaptive weights. An intelligent probabilistic whale optimization
strategy, inspired by the way whales locate and target prey, has been proposed in [14] as
a way to deal with routing problems in the context of cluster deployment. The primary
contribution is as follows:

• A mathematical model of an intelligent whale optimization algorithm (p-WOA) for
cluster optimization was developed.

• Predictive vehicle initialization procedures to eliminate randomness were created.
• Self-adjusted weights of each vehicle based on their fitness functions for optimal

performance were designed.
• A statistical analysis to evaluate the developed method with other well-established

methods was performed.

1.1. Bio-Inspired Algorithms for VANETs

The performance and overall strength of the current ITS have improved due to many
VANETs capabilities and applications. To apply the VANET technology, though, there
have also been a number of difficulties and problems. Numerous studies in this domain
concentrate on several fundamental aspects of vehicle networks, such as routing, safety, and
space management. Recently, techniques based on biological inspiration have been utilized
to enhance ITS frameworks already in use. Due to the following issues, bio-inspired cluster
optimization has been implemented in vehicular ad hoc networks [15]:

• Evolutionary algorithms effectively handle varied topological structures found in
VANET networks because they are self-organizing and adaptable to different scenarios.

• As they incorporate the highest level of exploration and exploitation, algorithms
with bio-inspiration are more accurate at detecting the network’s damaged nodes.
This offers a practical means of lowering security attacks on the network and, thus,
improving its security.

• Employing biologically inspired approaches has additional benefits, including their
low complexity in handling a VANET’s computational issues, which include network
overhead, packet delivery ratio, minimizing delay, and improving the convergence factor.

1.2. Background Research and Literature

Metaphor and natural metaheuristics are two examples of bio-inspired approaches
that can be used to solve the NP-hard clustering optimization problems of in-vehicle
networks [16]. In contrast to conventional metaheuristics, biologically inspired approaches
or metaheuristics procedures are error-free. The techniques here take their cues from real-
world examples, be they biological, natural, or human-made. These techniques are used
to address a wide range of NP-hard optimization problems, and they do not require any
prior knowledge of the problem domain. When combined with efficient search strategies,
metaheuristics can quickly identify the optimal answer. It has been established that routing
in a VANET is an NP-hard problem. Clustering algorithms form an integral part of several
CBR methods [17]. Multi-Objective Problems (MOPs) are put into practice in the field
of clustering [18]. In particular, these MOPs affect routing in ad hoc networks. The
effectiveness of traditional QoS is affected by several variables. These include Packet
Delivery Ratio (PDR), average end-to-end delay, and bandwidth utilization. Some of
the benefits of clustering optimizations, as shown in Figure 1, include network topology
stability, data aggregation, minimizing the number of clusters, bandwidth optimization,
and efficient handover management [19].
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As cluster stability increases, the need for these optimization tasks decreases [20].
However, metaheuristics, particularly bio-inspired optimization techniques, can be used
to increase cluster performance even though cluster stability is an NP-hard problem.
Figure 2 [21] as shown below depicts the overall structure of VANETs.
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This is seen in [22] when Levy’s expedition to free the Ant Lion Optimizer from local
optima displaces the insects’ shambolic gait. To further strengthen the presentation of ALO,
the population growth rate was used as an input to progressively adjust the deception
dimensions by the 1/5 Principle, which includes changes to assembly precision, velocity,
and control. The authors of [23] suggest implementing the lion optimization algorithm
(LOA) in VANETs. It is a refined method of routing in automobile networks that use LOA
QoS. Utilizing mobility from local to stronger networks, this technique enhances vehicle
QoS pathfinding, which is inspired by a lion pride’s most important characteristics. The
authors of [24] introduced the Bull Optimization Algorithm to facilitate routing based
on reactive topologies. The Bull Optimization Algorithm is a property of all forms of
directional finding that, when given a sufficient evaluation constraint, interferes with the
production of optimal pathways for recovery and regular forwarding. One method for
routing in VANETs that was proposed in [25] was based on water wave optimization
(WWO). The optimal path was determined by simulating water-wave characteristics and
taking into account QoS requirements, collision probabilities, and network congestion.

According to [26], a genetic algorithm-enhanced method based on the AODV was
proposed (G-AODV). It was a safe method of backup routing that is used only when
necessary, and it helped strengthen the security of the connections between nodes and
other networks. To improve VANET multicast routing performance, [27] recommended
emulating bee-life behavior (BLA). It was presented to address the NP-complete Quality-
of-Service Multicast Routing Problem (QoS-MRP) in VANETs. Using preexisting paths
that maximize bandwidth utilization while minimizing cost and time, the ABC Algorithm
determined the optimal multicast tree between the sender and the receiver. The BLA took
cues from bee activities such as breeding and foraging to generate new routes predicated
on the BLA’s tolerance of scavenging in the surrounding area. The ACO-based cluster-
ing technique presented in [28] was a novel CACONET (Constrained Ad Hoc Network)
algorithm. This algorithm addressed the issue of VANET scalability. The CACONET
minimized cluster size while maintaining CH stability, which resulted in less strain on the
network’s infrastructure. The authors of [29] presented a moth–flame-based clustering
algorithm called CAMONET. This approach utilized Moth–Flame Optimization (MFO) to
guarantee a high cluster lifetime and an ideal CH number, two crucial components of a
reliable network. This concept was inspired by the moths’ ability to track their flight path
by watching the moonlight as they travel at night. A moth keeps an eye out for the flaming
object in space and reports its whereabouts. By determining the CNs’ speeds, directions,
and communication ranges, this phenomenon made it possible to trap CHs and reduce the
network’s cluster density while simultaneously taking advantage of the moth’s position
and intended capabilities to improve location via a diminishing aspect. Consequently, the
most effective clusters for dependable networking were amassed. When using a wide
range of densities and transmission distances, CAMONET outperformed CACONET. Node
clustering in VANET, based on the work of Grey Wolf, was presented in [21] (GWOCNET).
GWOCNET made use of the hunting and social habits of grey wolves to find the optimal
cluster size. A vehicle’s heading, velocity, and location can all be determined with a cluster
number, which must be optimized. The GWOCNET model minimized the linear factor
convergence discovered during various phases of wolf hunting by using methods such
as social ranking for hunting guidance, seeking out prey, highlighting prey, and attacking
prey. Increasing the quality of all optimization methods, including the selection of the
alpha wolf, requires the development of the election of the leader wolf. The suggested
method built the optimal number of clusters across all zones and communication dis-
tances, outperforming both CLPSO and MOPSO [30]. For VANETs, the authors of [31] took
cues from fireflies and suggested a multi-objective weighted clustering method (RWCP-
MFO). This algorithm used the metaheuristics of the Firefly Algorithm, which was inspired
by the fluttering movements and light-intensity observations of fireflies, to optimize the
RWCP parameters while accounting for the vehicles’ speeds, directions, reputations, land
identifiers, and neighborhood sizes. Multiple agents gathered information at a secure
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urban monitoring site, as proposed in [32] (Datataxis). When E. coli infiltrated a network,
it disrupted a topology-based unicast routing protocol. According to [33], glow-worm
routing packets were propagated via glow-worm swarm optimization (GSO) to provide
numerous routing paths. The GSO approach made use of new phenomena of required data
that were node-specific. The ED between the current hop and the source, as well as the
number of cars present, were what established the fitness value. Following a calculation
of the fitness value, the luciferin was optimized with each successive hop. By utilizing
inter-layer approaches, a traffic flow system, and an AI-based system for cluster selection
that took into account cluster size, network density, and CN velocity, the authors of [34]
presented an intelligent-based clustering algorithm in VANETs (IBCAV) that enhanced
directional accuracy. A new clustering strategy for VANETs was created in [35]: a highway-
transmittable environment. To establish reliable groups, the authors suggested an algorithm
based on the Ant Colony System (ACS) called ASVANET. By taking into account travel
time, road quality, and mobility congestion, the authors of [36] proposed an ACO- and
PSO-based synchronized self-motivated direction-finding optimization strategy to aid the
central decision-making routing system. These evaluations showed how effective PSO
and ACO algorithms are at cutting down on travel time. The authors proposed using a
whale optimization-based cluster optimization technique to achieve an optimal number of
clusters through fine-tuning a wide variety of parameters, including communication range,
node count, network size, and load balancers. The efficiency and longevity of the network
were both boosted. The authors of [22] suggested a method for optimizing the number
of clusters in a transportation network that takes its cues from the behavior of wolves in
their search for food or prey. The convergence factor and total network overhead were both
optimized with the suggested technique. A unique optimization approach, suggested by
the authors of [37] and based on the behavior of ant lions during foraging, delivered the
optimal solution (cluster head) within a local optimum (limited coverage area).

This study evaluated the WOACNET [15] and proposes a new p-WOA strategy for an
optimal number of clusters for efficient routing amongst vehicles, based on the requirements
of cluster optimization in VANETs, by increasing the nodes’ density to their maximum
range, expanding the network area, and boosting the load balancing factor. In addition,
a probabilistic technique was created for the initialization of vehicles on the road. The
paper’s contents are as follows: In the second section, we discuss a summary of materials
and methods used, followed by a discussion of simulations based on probabilities. Section 3
details the outcomes and comparative statistical analysis. Section 4 comprises discussion,
and the final portion, Section 5, concludes the paper.

2. Materials and Methods

Routing protocols may be limited in scope or rely on a small set of parameters if they
are expected to fulfill all of the critical requirements for information exchange. To solve
all of these issues with ITS in one fell swoop, this study proposes an intelligent cluster
optimization approach (p-WOA), including efficient cluster formation, packet delivery
ratio, average throughput, and latency, and involves probabilistically seeding the road with
a single vehicle, increasing the number of cars to 100, and accounting for the time and
resources required to run such a simulation. To optimize the paths taken by data messages
as they travel through the network, a clustering technique that takes its cues from the laws
of probability was employed. Figure 3 depicts the suggested framework with an emphasis
on inputs and outputs:
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The proposed framework works as follows:

1. Representation: Individuals inside evolutionary algorithms are defined in representation.
2. Evaluation Function: The fundamental for enabling improvements is the identification

of a fitness function or maximized function. To determine the legitimacy of a solution,
this threshold value must be attained.

3. Population: This contains every potential resolution.
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4. Parent Selection Mechanism: This identifies solutions that can serve as the foundation
or parents for the following generation.

5. Variation Operators: To separate the novel solutions from the old ones, two variation
operators, mutations and rearrangements, were used.

6. Selection Mechanism: This works exactly like parent selection, only it happens in
the following cycle of evolution when the candidate solution is mature enough
to be judged.

7. Best Solution: Once all of the fitness functions are evaluated, the cluster head is
selected based on the best packet Delivery Ratio, latency, and average throughput.

2.1. The p-WOA Algorithm for Intelligent Whale Optimization

To decrease cluster formation processing time, computational cost, network overhead,
packet latency, and end-to-end delay between vehicles, a probabilistic whale optimizer was
developed to decrease vehicles’ randomness. The probabilistic method and mathematical
modeling are covered in sections B and C.

2.2. Mathematical Modelling of p-WOA

In this study, we provide numerical examples to explain how to search for vehicles,
how to construct clusters, and how to choose a cluster leader for optimal performance of
clustering. The numerical analysis of enclosing a target, plotting an attack using a bubble
circle, and searching a vehicle are all depicted in this section (Figure 3).

(1) Encircling Prey

After being assigned a cluster head, vehicles can locate it and establish communication
with it by incorporating Equations (1) and (2), where D represents the distance between
vehicle X(t) and cluster head X*(t), and X(t + 1) displays the next iteration toward the
optimal solution (cluster head). Because p-WOA does not know where exactly exploration
will take place, it will pick whichever vehicle has the most optimal cluster head arrangement
as the target. In Equations (1) and (2), we see how, once the optimized investigation is set
up, other vehicles looking for cluster heads inform the optimized vehicle specialist of the
locations in which they agree:

→
D =

∣∣∣∣→C.
→
X
∗
(t)−

→
X(t)

∣∣∣∣ (1)

→
X(t + 1) =

→
X∗(t)−

→
A.
→
D (2)

Here, t represents the current iteration, A and C are coefficient vectors, X* is the
vector indicating the position of the best possible arrangement found so far, X represents
the location direction, | |is the highest possible esteem, and “.” represents the growth
in dot-product size. Each iteration toward the best solution requires X* to be refreshed.
Equations (3) and (4) can be used to determine the trajectories A and C:

→
A = 2

→
a .
→
r –
→
a (3)

→
C = 2.

→
r (4)

Whale optimization techniques have two basic stages: the exploration stage (where
vehicles are searched) and the exploitation stage (formation of the cluster head). Finding all
of the cars in a network based on their distance from one another requires first performing a
search or exploration, and then grouping. The variable (a) in Equation (3) is used to toggle
between the exploration and exploitation stages; it is reduced from 2 to 0 at each iteration,
and (r) is a random vector in the interval [0, 1].

(2) Bubble-net Attacking Method (Exploitation Phase)

Two strategies, based on vehicles’ Bubble-net behavior, are offered:
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(3) (2.1) Shrinking Encircling Mechanism

This strategy reduces the value of (a) in Equation (3). Additionally, (a) minimizes
the path to the validation of A. The interval [−a, a] where a is minimized from 2 to 0
over a specific collection of emphases can be thought of as including arbitrary esteem in
(a). The unused location of a search agent can be set anywhere between the true position
of the operator and the position of the current best operator by altering the value of A
between −1 and 1.

(4) (2.2) Spiral Updating Position

This technique measures the distance between the area of the vehicle (X, Y) and the
desired area (X*, Y*). Soon after, a spiral condition is produced for two points to characterize
the spherical growth of automobiles, as depicted in Equation (5):

→
X(t + 1) =

→
D’.ebl. cos(2πl) +

→
X∗(t) (5)

where
→
D’=|

→
X∗(t)−

→
X| and it seems to be the elimination of the ith vehicle from the cluster

head (the best possible arrangement is reached), b is a constant used to determine the
shape of a logarithmic curve, l can be any number in [–1, 1], and “.” denotes a replication
of the elements one by one. Vehicles move around in a spherical or spiraling pattern
within the environment of the vehicle they are concentrating on (the cluster head). Before
optimizing the clusters as indicated, it is assumed that there is a probability of 50% that
both activities will be presented because they appear to be rare synchronous practices;
hence the formulation of Equation (6):

→
X(t + 1) =

{ →
X∗(t)−

→
A.
→
D if p < 0.5

→
D’.ebl. cos(2πl) +

→
X∗(t) if p ≥ 0.5

(6)

where p might be any non-integer in the range [0, 1]. Vehicles also randomly scan the
area for cluster heads, and the segment’s accompanying scientific display is shown in the
closing credits.

(5) Search for Prey (Exploration Phase)

It is possible to employ the comparative part, which is derived from a transformation
of vector A, for hunting (investigation). In addition to specifically targeting their current
locations, vehicles also conduct random searches. For vehicle searches, the arbitrary range
1–−1 on A was employed. In this setup, the searching automotive operator’s standing is
raised above that of the randomly selected expert, which is in contrast to the manipulation
stage. This method, together with the |A| > 1 focus on investigation, enables the p-WOA
to perform a universe-wide search. A representation of this phenomenon can be seen in
Equation (7):

→
D =

∣∣∣∣→C.
→

Xrand −
→
X
∣∣∣∣ (7)

2.3. p-WOA Probabilistic Modelling

To obtain the most up-to-date location of the vehicle, a probabilistic model was in-
corporated by adjusting the cross-over probability to increase the efficacy and population
coverage of the suggested strategy. For more information on the crossover procedure, see
Equation (8):

Pm
n (t + 1) =

{
Pm

n (t) if b < cp
Pm

n (t + 1) if b ≥ cp
(8)

In this equation, Pm
n represents the mth reading taken from the current nth agent,

b represents the random nodes or search vehicles in the population, and cp is the crossover
probability used to determine the algorithm’s running duration and convergence factor.
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The method will take longer to run, converge more quickly, and have a lower population
range if cp is made smaller. The formula for determining cp’s value is:

cp = c + (0.5− c) _ sin
(

t .
π

2
.tmax

)
(9)

In this expression, tmax is the maximum number of iterations allowed, and [0, 0.5]
is the range of values for the constant c that is used to regulate the fluctuations of the
parameter cp. By adjusting cp as given in Equation (9), we may enhance diversity and
accuracy in vehicle location estimates.

Self-adaptive weights have been assigned in the planned p-WOA to ensure that no
vehicle can get lost. As demonstrated in Equation (10), where tmax is the maximum number
of cycles permitted, we choose an adaptive probability ‘ap’ such that every automobile is
linked to the best automobile found so far:

ap = 1.2− 0.9. cos(t.π/tmax) (10)

Algorithm 1 displays the generated mathematical model’s pseudocode:

Algorithm 1 Pseudocode of p-WOA

1. Initialization of vehicles’ positions and velocity randomly on a freeway by creating a mesh
between vehicles. All vehicles in the above mesh should have the same values for their
search agents.

2. Determine the separation between a vehicle and others,
3. WHILE (Iteration == Iterations ≤ 350) or Convergence Factor = 0.001 do
4. FOR Nodesi = 1 to 100 do
5. Nodes for clustering = {All Nodes}
6. WHILE (Nodes for clustering! =empty) do
7. Calculate the likelihood of each node’s selection
8. CH = Roulette Wheel selection [All nodes for clustering are possible]
9. Node. tour. append (CH) (Equation (1))
10. Neighbors of CH = find Neighbors (CH)
11. (Nodes for clustering) = (Nodes for clustering) –CH
12. (Nodes for clustering) = (Nodes for clustering)- Neighbors of CH
13. END WHILE
14. Nodesi.cost = evaluation (Nodei.tour)
15. IF (Nodesi.cost < Best Node.cost)
16. Best Node = Nodei
17. Nodei++
18. END FOR
19. FOR Nodei = 1 to Population size do
20. Update Search (Nodei.tour, Nodei.cost)
21. IF (Best Node.cost == Last iteration Best.Node.cost) do
22. Calculate PDR for each node;
23. Calculate Latency between nodes;
24. Calculate the Average Throughput of the medium;
25. Stall Iteration ++;
26. ELSE
27. Stall Iteration = 0;
28. END IF
29. Iteration++;
30. END WHILE
31. Output: CHs = Best Node.tour;

The p-WOA kicks off with some made-up configurations. Every cycle, the cars im-
prove their standing with either a predetermined vehicle or the best possible configuration
found using a probabilistic method. Providing individual cluster head searching and
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identification necessitates lowering the "a" value from 2 to 0. When |A| > 1, the probability
work chooses the most erratic vehicle, and when |A| < 1, the best configuration for the
rearrangement of the vehicles is chosen. p-WOA may exhibit either a spiral or circular
motion, as determined using the value of p.

Simulation parameters are presented in Table 1.

Table 1. Simulation Parameters.

Parameters Values

Number of vehicles (Particles) 100
Epoch 350
Vehicle Speed 22–30 m/s
Grid size (Area of Network) 1 km × 1 km to 4 km × 4 km
Communication Range 100–600 m
Mobility Model Freeway Mobility Model
Number of Simulations 10
Weights 0.5
Convergence Factor 0.001
Processor AMD Radeon™ RX 5700 XT
Memory 8 GB

3. Results

In this section, we provide numerical results for various configurations for a number
of nodes, communication ranges, network area, and load balancing factors. The devel-
oped cluster optimization method for route optimization in vehicular networks, namely
(p-WOA), was evaluated in comparison to two state-of-the-art methods: the Ant Lion
Optimizer (ALO) [38] and the Grey Wolf Optimizer (GWO) [22].

A. Cluster Density and Optimal Transmission Range
A variety of experiments were carried out with varying parameters, such as increasing

the number of nodes to 100, reducing the communication range to 100–600 m, and extending
the grid size from 1 km × 1 km to 4 km × 4 km, to identify the boundaries of the developed
p-WOA. In Figure 4, we see the wide variety of clusters that form when the number of
nodes is fixed at 100 but the communication distance between them is changed (from 100 m
to 600 m).

Taking a transmission range of 100 to 600 m and a total of 100 nodes, a 1 km × 1 km
grid is depicted in the Figure 4a. When compared to other state-of-the-art approaches such
as ALO [38] and GWO [22], it is clear that the suggested p-WOA had the lowest overall
cost. Using the same constraints as in (a), but with a grid size of 2 km × 2 km, we obtained
(b) in Figure 4. As the range of the transmission grew, the number of clusters reduced, and
vice versa. The smaller the clusters that were generated, the less effort was expended by the
network. Although the other settings in Figure 4c remain the same, the grid size was fixed
at 3 km × 3 km. Compared to the other two approaches, the number of clusters created
using the developed p-WOA was much smaller. An enhanced packet delivery ratio and
reduced hop count will result from using these findings. To see how p-WOA performs in
comparison to the previously described techniques, see Figure 4d, which depicts the final
scene with a grid size of 4 km × 4 km. More clusters are needed to accommodate vehicles
that are geographically separated in a larger grid size, which is evident when the grid size
is raised. The result is an increase in routing costs and a deterioration in the lifespan of
the network. It can be observed from Figure 4 that, as the transmission range increased,
the number of clusters decreased. However, it is observed that the developed p-WOA
produced a relevantly lesser number of clusters compared to other bio-inspired algorithms
(ALO and GWO).
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Figure 4. Transmission range vs. CHs for Nodes 100 and Grid Size 1 km × 1 km, 2 km × 2 km,
3 km × 3 km, and 4 km × 4 km. (a) Nodes = 100, Grid-Size = 1 km × 1 km; (b) Nodes = 100,
Grid-Size = 2 km × 2 km; (c) Nodes = 100, Grid-Size = 3 km × 3 km; (d) Nodes = 100,
Grid-Size = 4 km × 4 km.

B. Grid Size vs. Number of Clusters
Next, to confirm the advantage of utilizing p-WOA over other bio-inspired algorithms,

a new angle was tested by creating multiple clusters to compare with varying grid sizes
and transmission distances. Figure 5 shows the results of maintaining a fixed number of
nodes (30) while increasing the transmission range from 200 m to 500 m. The y-axis shows
the number of clusters, and the x-axis represents the dynamic grid sizes. It was found that
there was a clear correlation between the grid size and the number of clusters, which in
turn directly affected the routing cost, packet delay, and, ultimately, the network’s lifetime.
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As can be seen in Figure 6, the number of nodes was increased for the continuation of
the experiments. P-WOA outperformed competing approaches when compared in aggre-
gate. In some phases, p-WOA overlapped with those of other approaches due to the ran-
domness of the algorithms; however, this may be readily fixed by adopting a probabilistic
approach and applying intelligent self-adaptation weights during the succeeding iteration.
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C. Packet Delivery Ratio
The average packet delivery ratio shows how many packets were sent from the source

and how many were received at the destination. Because it allows us to evaluate the efficacy
of any given network, it is an essential metric [38]. Using Equation (11), we can determine
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that a network with a higher average packet delivery ratio is more reliable than one with a
lower ratio:

Average PDR =
Σ Number o f packets received

Σ Number o f packets sent
(11)

Comparing p-WOA’s PDR to that of other conventional approaches, as shown in
Figure 7, it can be seen that p-WOA performed better than ALO and GWO.
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D. Latency
Transferring a data packet requires some processing time, which is referred to as

“latency” (packet). The term “latency” is used to describe the delay experienced by data
as they travel over a network. The time it takes for a datum to travel from its origin
to its destination and back again is often referred to as the “round trip delay.” When
30–100 cars are taken into account, as shown in Figure 8, the average delay was about one
minute. In comparison to other approaches, the figure demonstrates that p-WOA had the
lowest latency [39].
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E. Average Throughput
The average throughput is the rate at which data are transported between the source

and the destination. We know that a higher throughput number [40] will boost our net-
work’s performance. Equation (12) allows for its determination:

Throughput =
Σ(no. o f packets) ∗ (packet size)

(transmission time)
(12)

For 100 nodes and a grid size of 1 km × 1 km, Figure 9 displays that the maximum
throughput attained with p-WOA was 7 Mpbs, whereas the average throughputs of GWO
and ALO were 6 Mpbs and 4 Mpbs, respectively.
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E. F. Load Balance Factor (LBF)
LBF is often used as a performance metric in research. Therefore, LBF was used in

this study to assess the efficacy of the created method in comparison to other established
methods. With LBF, the workload on the network is distributed evenly across all cluster
heads (CHs). To maximize the longevity of both the cluster head and the network as a whole,
the ideal situation is for CH to manage an equal number of nodes. When a node in a cluster
moves in or out, the LBF makes sure CH is updated accordingly. Figure 10 shows that
when the number of nearby vehicles was near its maximum value, p-WOA outperformed
GWO and ALO in terms of tuning the network load. The proposed approach, p-WOA, was
tested against existing methods, and the results are compared here to determine its efficacy.

The new method was put through its paces in a series of additional experiments. By
raising the number of network nodes to 50 while keeping the grid size at 1 km * 1 km,
Figure 11 compares p-WOA to other possible solutions. The new scheme, p-WOA, was
better than the older ones in distributing the workload evenly among a cluster’s nodes.

F. G. Evaluation-related statistical tests and analyses
Fully Modified Least Squares (FMOLS) statistical tests, including the p-test, regression

analysis, R-squared, and analysis of variance, were applied to the results to gauge the
performance of the created p-WOA (ANOVA).
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Table 2 demonstrates how clusters were affected by communication distance.

Table 2. Transmission Regression Coefficients Under Fully Modified Least-Squares (FMOLS) Ap-
proaches Vary Depending on the Number of Clusters.

Dependent Variables Variable Coefficient Prob. R-Squared Adjusted R-Squared ANOVA

NO OF CLUSTERS ALO [38] TR 0.042088 0.0097
0.715376 0.679798 F(1 9) = 20.73 ***C 27.73294 0.0005

NO OF CLUSTERS GWO [22]
TR 0.040038 0.0124

0.706213 0.669490 F(1 9) = 22.81 ***C 27.15528 0.0006

NO OF CLUSTERS p-WOA TR 0.039256 0.0092
0.779748 0.752216 F(1 9) = 25.55 ***C 27.00485 0.0004

*** p < 0.01 or 1%.

The transmission range (TR) is the independent (predictor) variable.
No. of clusters is the dependent (outcome) variable.
The findings of a regression study comparing the number of clusters with the commu-

nication range under ALO, p-WOA, and GWO are shown in Table 2. Here, it is claimed
that the relationship between transmission range and the number of clusters obtained was
inverse, with a larger transmission range value resulting in fewer cluster heads. According
to the table, an increase in communication range of 1% resulted in a −0.04 reduction in the
cluster head under ALO and GWO, with p values of less than 1% and 5%, respectively. On
the other hand, under p-WOA, a 1% increase in transmission range caused a significant
drop of 0.039. According to the adjusted R2 value for the specified transmission range, the
independent variables (No. of clusters ALO, No. of clusters p-WOA, and No. of clusters
GWO) adequately explain the variation. Their variations were 67.97%, 75.22%, and 66.94%,
respectively, with ANOVA values of F (1 9) = 20.73 ***, 25.55 ***, and 22.81 ***, respectively.

4. Discussion

Keeping the number of nodes at 100 and the transmission range at 100–600 m, the
findings in Figure 4 demonstrate that p-WOA generated 45 clusters for a grid size of
1 km × 1 km and 53 clusters for a grid size of 4 km × 4 km. According to the comprehen-
sive evaluation, the created method outperformed the state-of-the-art alternatives. It also
demonstrates that an increase in grid size results in a corresponding rise in clusters. There
was a correlation between transmission range and cluster output in p-WOA, with more
optimal clusters being generated as the range expanded. Figures 5 and 6 show the results
of the experiments in which the grid size was varied while the number of nodes was held
constant at 30 and 40. Moreover, PDR, latency, and throughput were calculated and com-
pared with other bio-inspired methods (ALO and GWO), exhibiting the superiority of the
developed method. It was observed that by incorporating probability-based functions into
the whale optimization algorithm, the randomness of vehicles at the time of initialization
was significantly improved, and the convergence factor was increased.

The load balance factor was used to verify the results by comparing them to those
obtained using a standard procedure. As shown in Figures 10 and 11, p-WOA achieved
superior results when compared to other benchmark algorithms by distributing the burden
of overall cluster leaders. The LBF was utilized to evaluate the proposed method with other
methods in terms of the ability of vehicles to stay in a cluster for a maximum length of time.
Moreover, the LBF assures that each cluster has been assigned an equal number of nodes.

The typical range for the number of nodes in a published work is between twenty
and one hundred and twenty [37,38]. In this analysis, we only evaluated clusters with up
to 100 nodes because increasing the number of nodes affects the longevity of the cluster
and the network, and thus, it raises the cost of the network. Because the nature-inspired
algorithms were random, overlaps occurred during the experiments [39–44]. In the current
study, we integrated self-adaptive weights via fitness function optimization to overcome
this issue using a probabilistic intelligence technique. The developed technology has a
wide range of possible uses, including enhancing the accuracy of maps generated using
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the global positioning system and employing media services to distribute news and other
information via the internet.

5. Conclusions

This research, inspired by whale behavior, devised and implemented a probabilistic
method for clustering nodes. The developed method commissioned p-WOA in order to
determine the optimal number of VANETs clusters; hence, it reduced the overall amount of
unpredictability in the network. The developed method was compared to two gold stan-
dard methods, ALO and GWO. When considering cluster heads, the suggested optimization
approach outperformed the GWO and ALO regardless of variations in communication
distance, network approximation, or the number of cars. Increasing the duration of clusters
and optimizing them to be as close to optimal as possible reduced the system’s communica-
tion overhead. Reduced needs for infrastructure components in transportation networks
are another benefit of these optimized clusters.

This study could be improved in the future by increasing the number of nodes to
200 and by deploying different network performance parameters, such as bandwidth effi-
ciency, transmission error and packet loss, etc.—Cluster optimization research employing
the Harris Hawks Optimization approach is currently underway.
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