
Citation: Zhang, E.; Liu, J.; Zhang, C.;

Zheng, P.; Nakanishi, Y.; Wu, T.

State-of-Art Review on Chemical

Indicators for Monitoring the Aging

Status of Oil-Immersed Transformer

Paper Insulation. Energies 2023, 16,

1396. https://doi.org/10.3390/

en16031396

Academic Editor: Pawel Rozga

Received: 18 November 2022

Revised: 5 January 2023

Accepted: 20 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

State-of-Art Review on Chemical Indicators for Monitoring the
Aging Status of Oil-Immersed Transformer Paper Insulation
Enze Zhang 1,*, Jiang Liu 2 , Chaohai Zhang 1, Peijun Zheng 3 , Yosuke Nakanishi 3 and Thomas Wu 1

1 School of Electrical Engineering, Guangxi University, Nanning 530004, China
2 Global Center for Science and Engineering, Waseda University, Tokyo 1698555, Japan
3 Graduate School of Environment and Energy Engineering, Waseda University, Tokyo 1698555, Japan
* Correspondence: enze_zhang1@163.com

Abstract: Chemical compounds dissolved in insulating oil, as indicators can excellently monitor
the paper aging condition, which has attracted increasing interest in areas of transformer condition
monitoring and fault diagnosis. Because of their outstanding features, such as good correlation with
the degree of polymerization of cellulose paper and the aid of non-destructive online monitoring,
chemical indicators have been effectively used for transformer condition assessment. In this study,
a comprehensive, in-depth insight into the indicators of the aging of insulating paper from aging
characteristics, physico-chemical characteristics, shortcomings of various compounds, generation
pathways and mechanisms, and monitoring technologies are provided. It is expected that these
chemical indicators can provide better guidance for the evaluation of paper insulation performance
and transformer aging. In addition, the latest research progress, as well as current challenges and
future prospects are also outlined. This study provides a theoretical basis and reference for chemical
indicators in the fields of microscopic formation mechanism, diffusion equilibrium phenomenon, and
insulation aging state assessment.
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1. Introduction

Oil-impregnated transformers are the core equipment of the power system [1,2], which
undertakes various heavy tasks such as voltage boost, voltage drop, and voltage regulation
in the power grid. In order to provide an uninterrupted power supply, the aging condition
and remaining life of transformers have attracted great attention from scholars. During the
long-term operation of the equipment, the performance of oil-paper insulation gradually
declines due to the effects of thermal field, electric field, moisture, and other factors. This
makes the deterioration of oil-paper insulation one of the main reasons for transformer
failure [3,4].

Insulating paper is used as the solid insulating medium in the oil-paper insulation
system of a transformer, which typically includes paper or paperboard [5]. Compared with
insulating oil, its aging process is irreversible and replacement is difficult. Studies [6,7]
have shown that the aging of insulating paper mainly leads to a decrease in the mechanical
strength and short-circuit resistance of the transformer. It is worth mentioning that the
degradation of electrical insulation properties such as its breakdown voltage is not obvi-
ous. When the aging is serious, the insulating paper embrittlement occurs, indicating the
end of the transformer’s lifespan. Therefore, the aging of the paper insulation is widely
acknowledged as the key determinant of oil-immersed transformer service life [8,9].

The main component of insulating paper is cellulose, accounting for more than 90%. It
is a linear polymer composed of β-D glucose monomer connected by 1,4 glycosides [10,11].
The monomer units are combined in long straight chains, with an average chain length and
degree of polymerization (DP) often stated to be 5000 to 10,000 monomer units in the natural
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state [12]. The insulating paper is subjected to various stresses during the operation of
the transformer, which will gradually depolymerize the cellulose polymer, resulting in the
reduction of the DP and the mechanical properties of the insulating paper [4,10,13]. Tensile
strength (TS) is another intrinsic parameter to directly judge the mechanical properties
of the insulating paper. It can be used to determine the aging rate of insulating paper
at different aging stages [14,15]. However, TS measurement has high requirements for
sample pretreatment, measuring environment, and operators, and has disadvantages such
as difficulty in collecting paper samples and poor repeatability of test results. Therefore, the
average polymerization degree (DPv) is preferred in characterizing the degree of aging of
insulating paper in practical applications [16,17], and the correlation between DPv and TS
has been proved by studies [18]. However, the DPv distribution of transformer windings at
different heights has a certain degree of dispersion [19]. Especially, the measurement of the
DPv can only stay in the offline state. Moreover, it needs to sample the transformer power
outage crane cover, which is a destructive measurement method that is difficult to realize
in the field [20,21].

At present, the indirect method based on an oil-paper chemical indicator is used to
monitor the insulation state of the transformer. Studies [10,19,22–26] show that the degra-
dation process of cellulose will be accompanied by the breakage of cellulose molecular
chains, and some chemical indicators with aging information will be generated, such as
carbon-oxygen, furfural, alcohol, etc. These chemical indicators will further gradually dif-
fuse into the insulating oil. Importantly, CIGRE [19] pointed out that the chemical indicator
in oil is an online detection and non-destructive method to evaluate the aging degree of
insulating paper. This benefits from the easy sampling of transformer oil. Furthermore,
the relationship between the chemical indicator in oil and DPv of insulating paper can be
established. This can effectively characterize the aging state of oil-paper insulation and
monitor the health state of the power transformer.

Although research based on dissolved chemical indicators in oil has been available for
more than half a century, and much progress has been achieved [1,3,10,18,20,24], unfortu-
nately, the fascinating properties and the application of these chemical indicators are rarely
reviewed. Specifically, this study [1] proposes several on-line and off-line state monitor-
ing technologies for oil-immersed transformers. Reference [3] reviews the root causes of
transformer failures and possible remedial measures. In addition, research [10] focused
on the thermal deterioration and failure mechanism of oil-immersed transformers and dis-
cussed the insulation life prediction model. The literature [18] summarizes various factors
leading to the aging of transformer oil-paper insulation. Fault diagnosis techniques for old
transformers are illustrated in detail [20]. Reference [24] classifies transformer insulation
states based on furfural, methanol, and dissolved gas by using a neural network. Based on
the above, most of the emerging review topics revolve around the causes of transformer
failures and fault diagnosis techniques. However, there is no comprehensive overview
of methods for chemical indicators in oil to transformer oil-paper insulation. Thus, we
try to summarize the chemical indicator method relevant research of the past 15 years so
as to inspire forthcoming studies. The novelty of this review lies in the detailed analysis
and summary of the research and physicochemical properties of chemical indicators in
oil. Furthermore, the current research status of analyzing chemical indicators from the
atomic level is illustrated. Finally, the field monitoring methods of chemical indicators
are summarized.

The paper is organized in the logical order of aging of oil-impregnated transformer
paper insulation. In the second section, the foundational principles of transformer paper
insulation are introduced, which include factors affecting paper insulation aging, paper
insulation aging mechanism, and cellulose degradation kinetics equations. The third
section is the classification of the chemical indicators generated by the degradation of
insulating paper, and there are currently seven main types of chemical indicators. More-
over, their generation pathways, basic characteristics, and research status are described.
The fourth section first introduces the production mechanism of these indicators from a
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microscopic perspective and focuses on the monitoring technology of chemical indica-
tors. Ultimately, we will conclude with a critical analysis of the current opportunities and
challenges in this area, as well as a perspective on the future development of dissolved
chemical indicators in insulating oil. This is expected to provide a potential reference for the
application of the chemical indicator method to the transformer insulation state assessment
and life prediction.

2. Foundational Principles of Transformer Paper Insulation Aging
2.1. Influence Factors of Aging for Transformer Oil-Impregnated Insulating Paper System

In a review of transformer experience in the UK prior to privatization, the CEGB found
that 50% of 650 MVA power transformers would reach their expected life (25 years) by
the year 2000, and 30% of 275 and 400 MVA transformers will have attained 90% of life
(40 years) [10,27]. In addition, when CEGB counted 15 faults of the 275–400 kV transformers,
up to one third of the accidents could be directly attributed to paper insulation faults. Often,
power transformer health is connected to the quality of its insulation system. Therefore, it
is necessary to adopt appropriate monitoring and diagnosis techniques to judge the aging
fault of insulating paper, so as to improve the reliability of the equipment. Furthermore,
protecting the normal operation of the transformer and strengthening the reasonable
maintenance of the insulation system can ensure that the transformer has a relatively long
service life [28,29]. Figure 1 summarizes the main factors that cause transformer failures
and typical insulation types.
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Figure 1. Main factors of transformer failure and typical insulation types.

The insulating paper will gradually be affected by various factors during long-term
operation, which can lead to the shortening of the cellulose chain and reduce the overall
physical properties of the insulating paper [4,7,30]. As shown in Figure 2, according
to the classification of aging factors, the factors affecting the aging of transformer oil-
paper insulation can be divided into three categories: thermal aging, electrical aging, and
mechanical aging [4,10,18,31]. The early signals and indicators produced are summarized
and classified.
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Figure 2. Oil-paper insulation aging factors and their early signal and monitoring indicators.

2.2. Aging Mechanism of Transformer Paper Insulation

The cellulose chains in the cellulose crystalline region are closely arranged, the struc-
ture is regular and the intermolecular stress is strong, so it is difficult to degrade. On the
contrary, aging degradation occurs first in the amorphous region because the cellulose
chains are loosely connected and disordered. The chemical bonds between cellulose chains
and within molecules will gradually break during the aging process, accompanied by
the generation of chemical indicators. The cellulose degradation process is an extremely
complicated internal reaction, which is the result of the synergy and antagonism of multiple
factors. Furthermore, researchers have assumed three independent degradation processes:
oxidation, hydrolysis, and pyrolysis, each of which functions within a specific temperature
range [32–35]. As shown in Figure 3, the positions of the broken bonds and the intermediate
by-products of the three degradation processes are classified.

(i) Pyrolysis [36–38] is the main degradation process above 130 ◦C. The direct degradation
of cellulose caused by pyrolysis is generally more obvious above 200 ◦C. Below 200 ◦C,
pyrolysis mainly accelerates other forms of degradation, similar to the normal aging
of cellulose, but faster than normal aging. From the microscopic mechanism, the
thermal stability of cellulose C-O bonds is much weaker than the C-H bonds of
insulating oil. Under the effect of temperature, C-O bonds can be broken, the degree
of polymerization of cellulose will be reduced, and the mechanical strength will be
continuously reduced. Because insulating paper has a low thermal conductivity, heat
easily accumulates in the paper. With the accumulation of heat, local chemical bonds
are cleavaged, and products such as aldehydes, carboxyl groups, and carbon dioxide
are produced. Macroscopically, the rate of pyrolysis is determined by the interaction
of oxygen, water, acid concentration, and temperature.

(ii) Hydrolysis [17,26,34,39] is the main degradation process in the range of 70 ◦C –130 ◦C.
Cellulose is hygroscopic in nature, and not only water molecules can accumulate in the
cellulose chains, but the pyrolysis of cellulose can also produce water. The hydrolysis
reaction between water and cellulose is the main form of aging of insulating paper.
The hydrolysis reaction causes the 1,4-β-glycosidic bond between glucose groups to
be broken to produce short-chain molecules, which are further hydrolyzed to form
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low-molecular carboxylic acids and water. Lundgaard et al. believed that each break
of the cellulose glycoside bond absorbed one water molecule and then released three
water molecules, so a total of two water molecules are generated each time the bond
was broken. In addition, chain fission can indicate the rate of hydrolytic degradation.

(iii) Oxidation [17,39,40] is mainly dominant at temperatures below 75 ◦C. Cellulose
is relatively sensitive to oxidation, and its hydroxyl groups are easily oxidized to
carbonyl and carboxyl groups, resulting in secondary chain cleavage reactions. How-
ever, free oxygen atoms were not formed inside the transformer during the aging
process of transformer oil and cellulose paper. Some scholars have proposed that
transition metal ions such as Cu+/Cu2+ and Fe2+/Fe3+ in transformers catalyze the
reaction of oxygen and water to generate hydrogen peroxide and that the oxidation
process can be catalyzed by hydroxyl radicals (·OH) produced by the decomposition
of hydrogen peroxide.
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2.3. On the Kinetics of Degradation of Cellulose

The study of aging dynamics based on paper insulation has been widely used in the
residual life monitoring of transformers. Researchers have carried out a lot of exploration on
the aging kinetic model of oil-paper insulation [10,15,17,41–44]. Currently, the commonly
used aging kinetic model of oil-paper insulation includes a first-order kinetic model, second-
order kinetic model, and accumulative loss kinetic model of the degree of polymerization
of insulating paper. Ekenstam [42] proposed a first-order kinetic model for the aging of
insulating paper in 1963, based on the first-order random break hypothesis, which stated
that the probability of glycosidic bond breaks was the same everywhere on each cellulose
chain. This equation is according to a uniform system and is appropriate for uniform
insulating paper:

1
DPt

− 1
DP0

= kt (1)

where DP0 is the initial degree of polymerization, DPt is the degree of polymerization at
time t after aging, and k is the reaction rate.

The life of the transformer predicted by the first-order kinetic model depends largely
on the initial state of insulation and the DPv of termination life. When the aging of
insulating paper is carried out to the middle and late stages and the DPv of insulating
paper is about 200, it is not applicable to use a first-order kinetic equation to fit the data of
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this period. However, the critical value for DPv equal to 200 is particularly important for
monitoring the paper insulation life [45]. Therefore, in 1997 Emsley and Heywood made
further improvements to the first-order kinetic model [46]. It is pointed out that the aging
rate of the insulating paper is not a constant k, but a monotonically decreasing function kt
on the aging time t, and a second-order kinetic model is established by derivation.

Calvini suggested the leveling-off degree of polymerization (LODP) of cellulose degra-
dation based on Emsley and introduced it into the Emsley Equation [47]. Through the
study of first-order kinetics, Calvini proposed a new model of cellulose degradation based
on the structure of cellulose consisting of crystalline and amorphous regions in 2008 [44].

Because thermal aging is the most common cause of transformer oil-paper insulation
deterioration, the rate of thermal aging is determined by the chemical reaction rate. The
Arrhenius Equation is followed when the insulating paper is gradually aged in a con-
stant temperature, humidity, and oxygen concentration environment [48]. Equation (2) is
obtained by combining the Arrhenius Equation with the aging kinetics equation [10].

1
DPt

− 1
DP0

= A · e
Ea

R·T(t) ·∆t (2)

where Ea is the activation energy of the aging reaction in J/mol, A is the pre-exponential
factor, which mainly depends on the chemical environment, R is the gas constant equal to
8.314 J/mol/K, and T is the hot spot temperature at the top of the winding. In order to
consider the separate effects of hydrolysis, oxidation, and pyrolysis, Equation (2) can be
decomposed into a combination of three parts [33].

3. Chemical Indicators for Monitoring the Aging Condition
3.1. Furan Compounds Analysis
3.1.1. Research on Furan Compounds

At present, the thermal decomposition of paper insulation materials is mainly charac-
terized by furan compounds generated during the oxidation and hydrolysis of cellulose in
engineering or power enterprises [10,22,49]. In the early 1980s, furan was first identified to
be associated with paper aging by the Central Electricity Generating Board (CEGB) in the
UK [27]. Furan compounds mainly include furfural (C5H4O2, 2-FAL), 5-hydroxymethyl-
2-furaldehyde (C6H6O3, 5-HMF), 2-furfurol (C5H6O2, 2-FOL), furoic acid (C5H4O3), 2-
acetylfuran (C6H6O2, 2-ACF), and 5-methyl-2-furaldehyde (C6H6O2, 5-MEF), as shown in
Figure 4a [50,51]. Figure 4(b1) indicates some of the causes of different furanic compounds
based on in-service experience [50]. The furan content of insulating paper containing both
cellulose and hemicellulose is much higher than that of pure cellulose [35]. In reference [52],
the origin of furan compounds has been experimentally studied under the aging condition
of 130 ◦C. The results of the experiment are clear given the yield of furanic compounds from
different components in the paper as shown in Figure 4(b2). The determination of furan
compounds in transformer insulating oil is well-known as a valuable method for diagnos-
ing the aging state of paper insulation. Urquiza et al. [53] calculated the number of furan
compounds in transformer oil. The 90th, 95th, and 98th percentile of 5-HMF, 2-FAL, 2-ACF,
and 5-MEF were calculated for the database of 18,280 records in Figure 4(c1). Figure 4(c2)
shows percentile values of furanic compounds for the database of 18,280 records.
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Figure 4. The structure characteristics of furan compounds from cellulose degradation and the
measured results in transformer oil are summarized.

(i) Furfural, also known as furan formaldehyde, is the main component of furan com-
pounds. As can be seen from the preceding studies, furfural has the highest concentration
of all furan compounds, and it is also the most commonly used parameter for determining
the aging degree of insulating paper [23,24,27,49,54–56]. The following fault conditions
can be effectively judged by the determination of furfural content in oil. (1) Further judge
whether the existing faults in the known transformer involve paper insulation. (2) Deter-
mine whether there is a phenomenon of low-temperature overheating that causes local
aging of the coil. (3) Assess the insulation aging degree of equipment that has been in
operation for a long time.

In addition, when the relevant insulation parameters cannot meet the standard re-
quirements, the oil replacement measures of filtering oil, oil replenishment, or even using
new oil to completely replace old oil are often adopted [56,57]. After the oil change, the
furfural indicator dissolved in insulating oil is also cleaned up. In order to determine the
paper insulation status more accurately, scholars have begun to focus on correcting the
effect of oil change and other factors on the content of furfural. Sans et al. [58] showed
that for a transformer in service for a short time after the oil change, the furfural loss
rate was as high as about 85%, and found that it took about half a year for furfural to
reach the equilibrium distribution state in oil-paper. Lelekakis et al. [34] investigated a
decommissioned transformer that had been in use for 47 years, compared the amount of
furfural in the oil before and after the oil change, and proposed a method for eliminating
furfural after the oil change. Lin et al. [59] performed laboratory-accelerated thermal aging
experiments. By comparing the changes in furfural content in oil before and after the oil
change, the law of the correction function was studied and the Arrhenius Equation was
used to extend the field operating temperature.

(ii) 5-hydroxymethyl-2-furaldehyde. It was found that the stability of furans was
2-ACF ≈ 5-HMF > 2-FAL > 5-MEF > 2-FOL when the temperature was between 100 ◦C
and 160 ◦C [23,35,60,61]. Meanwhile, during the analysis of furan compounds produced
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by paper insulation decomposition, these compounds could generate and transform each
other [60]. As shown in Figure 5, there are three typical pathways for furfural production.
It can be seen that all three pathways first generate 5-HMF and then remove one molecule
of methylol and finally converted it to furfural [50,62]. Moreover, 5-HMF is the most
important product in the early stage of cellulose decomposition [63]. In addition, 5-HMF is
relatively lively and is easily oxidized and reduced due to its structural characteristics [64].
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3.1.2. Characteristics of Furan Compounds

(i) Furfural is a pentacyclic compound with a chemical formula of C4H3OCHO, a den-
sity of 1.162 g/cm3~1.168 g/cm3. It is liquid and not volatile at normal temperatures, which
is the characteristic product of fiber paper, and it has good stability and an accumulation
effect in oil [35,65]. Since its inception, scholars in many countries have conducted a lot of
research on furfural markers, and the main work is to establish the relationship between
furfural in oil and the degree of polymerization of insulating paper. The following is the
relationship between furfural and the degree of polymerization obtained from experiments
conducted by researchers [49,53,66–68]. That is, Depablo model, Pahlavanpour model,
Vuarchex model, ChenDong model, Scholniket model, Burton model and Heisler model.
The Pahlavanpour model evolved from the Depablo model, both of which are theoretically
derived from the analysis of the relationship between cellulose paper and furfural. Both
the ChenDong model and the Scholniket model are obtained from experiments. Figure 6
shows five typical models and their fitted curves.
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It can be found that each curve has a good coincidence in the middle stage of insulation
paper degradation, but there is a large difference in the early and late stages of aging.
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The reason for this difference may be the experimental conditions of scholars in various
countries, such as the difference in the type of insulating paper and the proportion of
oil-paper [69,70]. To calculate the DP of insulating paper, the Chendong and Depablo
methods are currently widely used in the power industry.

The stability of furfural in oil directly determines reliability in monitoring the aging
state of insulating paper. However, different researchers have different opinions on the
effect of temperature on the stability of furfural. Kan et al. [71] demonstrated that tempera-
ture had no effect on the furfural content of oil. Emsley et al. [23] carried out degradation
stability tests under different temperature gradients (high temperature) and found that
the furfural concentration only changed significantly when the temperature was above
160 ◦C. Jalbert and Pahlavanpour et al. studied the effect of temperature on the distribution
of furfural in oil-paper systems, and the results showed that the higher the temperature
the greater the proportion of furfural in oil [72,73]. Unsworth and Mitchell et al. also
conducted stability tests under low-temperature gradients (20 ◦C, 80 ◦C, 110 ◦C), and found
that furfural content began to decrease at 110 ◦C and was related to diffusion time [60].
Allan, Lewand, and Li et al. tracked and measured the furfural content of the insulating
oil. The experimental results revealed that the addition of oxygen reduced the furfural
content [54,74,75]. Griffin et al. added copper and silicon steel sheets to the oil-paper
insulation system. Despite the fact that the single factor of copper was not studied, the
experimental results revealed that copper had an effect on the stability of furfural [76].
Liao et al. conducted an accelerated thermal aging experiment with three factors taken
into consideration. The experimental results showed that the effects of high temperature,
copper, and oxygen on the stability of furfural appear to be a synergistic effect [77].

(ii) 5-hydroxymethyl-2-furaldehyde. As an important production of cellulose decom-
position, 5-HMF has had little research with respect to the aging of insulating paper, but it
starts to be produced in an earlier stage of aging. These advantages give it a broad research
prospect. The experimental results revealed that the concentration of 5-HMF increased with
aging time, with a more stable trend than furfural in the early aging period (DPv > 600)
or at a lower aging temperature [78,79]. By combining the experimental data with the
Arrhenius equation, Hill et al. [80] found that the formation rate of 5-HMF increased faster
than that of furfural as the temperature increased. Moreover, Zhuang et al. [81] found that
the content of 5-HMF was the highest, reaching 40.67%, at the ultra-low acid condition of
0.05% sulfuric acid, 40 × 105 Pa, and 215 ◦C. Burton et al. [82] proposed that the difference
between the activation energies of furfural and 5-HMF can be used as a basis for monitoring
the hot spot within the transformer winding, but this method has limitations.

3.2. Carbon-Oxygen Gases Analysis
3.2.1. Research on Carbon-Oxygen Gases

Dissolved gas analysis in oil (DGA) is one of the earliest methods to indirectly monitor
the aging state of transformer paper insulation [4,5,10,83]. Detecting the types, concentra-
tions, and evolution trend of dissolved gas in transformer oil, is an important monitoring
indicator of transformer operation status and health condition [84–86]. Carbon-oxygen gases
(carbon monoxide and carbon dioxide) are key gases dissolved in transformer oil, which are
mainly produced by the thermal decomposition of cellulose paper [10,20,24,84,86–88].

However, the use of carbon-oxygen gas in oil to monitor paper insulation degradation
has obvious drawbacks, as stated by the Institute of Electrical and Electronics Engineers
Std. C57.104 (IEEE) [89]: ‘Many techniques for gas detection and measurement have been
developed. However, it must be acknowledged that analyzing these gases and interpreting
their significance is currently not a science, but rather an art subject to variation.’ This art is
also sophistic. Carbon-oxygen gases are not only produced by the aging of insulating paper,
but also by the long-term oxidation of insulating oil [90]. Furthermore, carbon oxides would
disappear or escape in the case of oil degassing or regeneration, or even open-breathing
equipment. Not only that, the operating environment of the transformer (load fluctuations,
etc.) can also cause large fluctuations in CO and CO2 content within a year. Therefore,
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the paper insulation aging state cannot be identified only according to CO and CO2. The
analysis usually requires the combination of furfural and other characteristic products.

3.2.2. Characteristics of Carbon-Oxygen Gases

As listed in Table 1, except for carbon monoxide and carbon dioxide, all other dissolved
gases are formed by the decomposition of insulating oil, which cannot characterize the
aging degree and mechanical properties of paper insulation materials. Hohlein et al.
summarized the parameters that affect the concentration of carbon monoxide and carbon
dioxide produced in dissolved oil [88]. References [17,60,91] also reported that oxygen in
oil promoted the formation of carbon monoxide and carbon dioxide in oil-paper insulating
materials, and that water had a significant effect on the production of these gases.

Table 1. Transformer fault classification for monitoring of dissolved in oil.

Characteristic Faults

Thermal Electrical

Oil Paper Partial
Discharge Arcing

150–300 ◦C
H2, CH4, C2H4, C2H6

CO, CO2 H2, CH4 H2, C2H2
300–700 ◦C

H2, CH4, C2H4, C2H6

>700 ◦C
H2, C2H2, C2H4

By changing the oil temperature, Kan and Miyamoto et al. [71] found that the con-
centration of CO and CO2 was dependent on temperature changes, which was closely
related to the absorption and release of carbon-oxygen gases by the insulating paper. This
explains why the carbon-oxygen gases increase in summer and decrease in winter as the
CO and CO2 at lower temperatures are more easily absorbed into the insulation paper than
at higher temperatures.

3.3. Low Molecular Alcohols Analysis
3.3.1. Research on Low Molecular Alcohol Compounds

In recent years, some scholars [25,92,93] at home and abroad have proposed low
molecular alcohol compounds dissolved in oil as indicators to characterize the aging
state of insulating paper. Jalbert [94] and Schaut [93] used gas chromatography-mass
spectrometry (GC-MS) to find that methanol and ethanol were more stable than other aging
products at different temperatures in all the markers (nearly 30 kinds of products) studied.
Moreover, their formation is generated by the degradation of paper, which has special
significance for studying the aging state of paper insulation.

Jalbert research group has carried out kinetic studies on the relationship between
molecular chain breakage and methanol generation during cellulose cleavage in (1) kraft
paper (60–130 ◦C) [45], (2) thermal upgraded insulating paper (60–130 ◦C) [90], and (3) high
temperature (130–210 ◦C) [95]. Through an accelerated thermal aging experiment at 170 ◦C,
it is revealed that a linear relationship exists between the tensile strength of insulating paper
and methanol concentration in oil [96]. The improved Calvini kinetic equation was used to
simulate the dynamic phenomenon of the change of mechanical properties in the aging
process of cellulose [97]. The concentration of the furfural indicator is relatively low due to
the widespread use of thermally upgraded paper [98]. However, there is no chemical bond
interaction between alcohol markers and stabilizers [94,99], so methanol and ethanol can
be used as indicators of cellulose degradation to track different stages of aging regardless
of the type of insulation material or the content of nitrogen additives. In addition, studies
have shown that methanol may be a better early marker than furfural [94,100,101]. Because
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it appears from the first stage of cellulose degradation (DPv > 900), the entire cracking stage
of insulating paper is accompanied by the formation of methanol.

Methanol was routinely used in 2012 to monitor the insulation status of power trans-
formers in Hydro-Québec and Électricité substations, located in Quebec and France, re-
spectively [92]. Surprisingly, methanol has a higher adsorption capacity on insulating
paper compared to carbon-oxygen gases, and it tends to rebalance after an oil change.
After analysis of laboratory aging results and comparison with actual transformer oil
samples, it was found that the content of methanol is often higher than ethanol [102]. How-
ever, the ethanol concentration detected in some actual transformer oil is higher than the
methanol concentration and has certain specificity for judging the condition of insulating
materials [99]. Bruzzoniti et al. [103] detected ethanol as well as methanol when testing
transformer oil samples in service. When the temperature exceeds 250 ◦C, levoglucosan,
the main by-product of cellulose, is further decomposed into a large amount of ethanol,
resulting in ethanol content higher than methanol [94,99,104]. Rodriguez-Celis et al. [104]
sampled a retired transformer with insulating paper (there were carbonized areas due to
local overheating). It was found that the DPv at the sampling site could not reflect the
state of the winding hot spot, whereas the generation of ethanol may be related to the
hotspot and thermal faults of transformer paper insulation. Therefore, there is potential
to use ethanol to monitor and distinguish between normal and abnormal aging of the
cellulosic insulation.

3.3.2. Characteristics of Low Molecular Alcohol Compounds

The literature [94,105,106] summarized the basic physical and chemical properties of
methanol and ethanol, as well as the degradation of basic compounds constituting cellulose
paper into alcohol chemical compounds. The degradation of paper into low molecular
alcohol compounds is well-known in the paper industry. However, by 2007, the relationship
between methanol with ethanol and the aging of insulating paper was confirmed by
laboratory thermal aging experiments (Figure 7d,e,g), macroscopic experimental analysis
of the generation path (Figure 7g), stability experiment (Figure 7f), oil-paper distribution
experiment and a series of studies and measurements on insulating oil samples of in-service
transformers (Figure 7a–c) [94,102]. The linear relationship (regardless of insulating paper
type) between methanol and the number of 1,4-β-glycosidic bonds in cellulose molecules
was obtained for the first time.

It is worth noting that Wang and her research group pointed out [25] that the methanol
content in oil in the early stage of paper insulation aging is higher than furfural. However,
during the late aging period (DPv < 250), methanol may undergo esterification reactions
with acids dissolved in the oil, resulting in a reduction in its content. Moreover, it was
found that the insulating oil may also produce ethanol during the aging process, which
weakens the application value of methanol and ethanol in monitoring the aging of paper
insulation [105]. The concept of using methanol to dry insulating paper emerges at the right
time with the comprehensive development of insulating paper drying technology [107].
Whether this will lead to the adsorption of methanol molecules on insulating paper in
advance remains to be further studied. In a word, there is no doubt about the disadvantages
of the new indicators, and the deficiencies still need to be proved and corrected by a large
amount of data in the future.
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Figure 7. Summary of the basis for methanol and ethanol as chemical indicators of cellulose degra-
dation. (a) experimental conditions for the detection of methanol and ethanol, (b) comparison of
CO+CO2, furfural and methanol content in field transformers, (c) the relationship between the
normalized concentration of methanol and the temperature for different types of insulating paper,
(d) variation of methanol concentration with time under multivariate laboratory conditions, (e) rela-
tionship between methanol and ethanol and aging time, (f) comparison of the stability of moisture,
methanol, ethanol and furfural, (g) association of methanol with cellulosic 1,4-β glycosidic bonds.

3.4. Acid Compounds Analysis
3.4.1. Research on Organic Acids

Mander et al. [108] showed the degradation process of paper insulation materials
during thermal aging in Figure 8. The process is that cellulose is degraded to glucose, then
to furan compounds to furoic acids and finally small chain carboxylic acids are formed. The
acid in oil comes from the degradation of oil and paper insulation, and the change of acid in
oil can more comprehensively reflect the aging status of the transformer oil-immersed paper
insulation system [109]. In addition, the mass fraction of the acid products accumulated
in the insulating paper is a dozen or even hundreds of times that of the acid products in
the insulating oil. In the field, the acid compounds generated by the aging of the oil-paper
insulation increase with the operating time. Furthermore, the production of carboxylic acid
has been shown to decrease the degree of polymerization [10,17,109].
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Figure 8. Pathway of cellulose to generate small molecule carboxylic acid.

Figure 9 shows the chemical reaction is the principle of cellulose acid hydrolysis
reaction proposed by Xiang et al. [110], which was verified by Lundgaard et al. [17].
According to the reaction mechanism, it can be found that the degradation rate of the
insulating paper depends on the moisture content and the number of free H+ in the
acid molecule. Acid compounds combine their protons with water (transport into water
molecules) to form hydronium ions, which is the basic mechanism of acid hydrolysis.
Hydronium ions “play hard to get” by transferring the only protons into the cellulose, and
the remaining water molecules can hydrolyze with the cellulose [111]. As demonstrated by
Lelekakis et al. [112], the aging rate of transformer insulation paper mainly depends on the
moisture content of the paper and has no direct relationship with the acid value content of
insulation oil. In other words, the acid is recovered in the aging reaction but is consumed
by water molecules.
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3.4.2. Characteristics of Organic Acids

Lundgaard pointed out [17,109] that five organic acids were mainly produced in the
aging of oil-paper insulation, which are formic acid, acetic acid, levulinic acid, naphthenic
acid, and stearic acid. The first three acids are low molecular acids (LMA) which are easily
soluble in water and are called water-soluble acids, while the latter two acids are high
molecular acids (HMA) which are insoluble in water and are called water-insoluble acids.

Figure 10a,b illustrates the chemical structures and basic characteristics of the five
organic acids, respectively. Ivanov et al. [113] showed that low molecular acids were mainly
concentrated in insulating paper and high molecular acids were mainly concentrated in
insulating oil. Study [114] explored the correlation between the blank oil sample and
five acids and the DPv of insulating paper. The acidity of water-soluble acid was found
to be stronger than that of water-insoluble acid, causing greater harm to the mechanical
properties of paper insulation materials. Furthermore, Kouassi et al. [115] investigated
the effects of three different concentrations of low molecular acids on the degradation of
insulation systems based on a thermal aging experiment. The results show that compared
with acetic acid and levulinic acid, paper absorbs formic acid more easily, which makes the
aging rate of insulating paper more significant.
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(i) Dissolution characteristics: the low molecular acid can fully dissolve in the in-
sulating paper, and simultaneously destroy the amorphous and crystalline areas of the
insulation paper, which greatly accelerates the degradation rate of the insulating paper. The
high molecular weight acid is not aggressive and does not affect the insulation paper too
much. (ii) Diffusion characteristics: it has been pointed out in the literature [116] that low
molecule acids have a fast diffusion rate and are easily absorbed by the insulating paper,
and high molecular acids, represented by stearic acid, have a slow diffusion rate and are
easily absorbed by transformer oil. Low-molecule acids can influence water distribution
between oil and paper, whereas high-molecule acids have little to no effect. (iii) Polarity
level: the adsorption capacity of acid compounds and insulating paper is analyzed from
another aspect. Free hydroxyl groups in cellulose paper have a strong affinity for polar
compounds. Both low molecular and high molecular acids are composed of a strong polar
carboxyl group and a non-polar alkyl group. It can be seen that the larger the molecular
weight, the smaller the proportion of the carboxyl group, and the weaker the molecular
polarity [109,117].

3.5. Ketone Compounds Analysis
3.5.1. Characteristics and Research on Acetone

Acetone is C3H6O, with a melting point of −95 ◦C and a boiling point of 56 ◦C. It
is a colorless liquid with a special smell and can dissolve acetate and nitrocellulose. The
experimental study has obtained the correlation between the residual average degree of
polymerization, the amount of (CO2 + CO), furfural, and acetone content of the insulating
paper at 60% residual tensile strength as is shown in Figure 11.

In the early days, acetone indicator use to monitor the insulation performance of
cellulose paper was rarely studied. Finally, Awata et al. [118] carried out the determination
of acetone concentration in insulation oil in 1997. Okabe et al. [119] collected 98 insulation
oil samples from field transformers. According to the results of the oil sample composition,
the concentration of acetone was about 100 ppb or even more than 1000 ppb in many
samples aged for 10 years or more. In addition, the detection concentration of acetone is
higher than ethanol, and the acetone content in equipment below 275 kV has a tendency
to increase with aging time. Moreover, it was found that the concentration of acetone in
the insulating oil has a good correlation with DPv and the experimental value was in good
agreement with the actual measured value. However, when Jalbert et al. [94] compared
the stability of several indicators, they discovered that acetone became rapidly unstable
after 450 h at 110 ◦C, and inferred that the production of acetone mainly depended on
the oxidation deterioration of insulating oil by comparing with the blank oil sample. This
is contrary to the study of Okabe et al. The formation mechanism of acetone indicator
remains to be studied in the future.
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3.5.2. Research on Methyl Ethyl Ketone

Okabe et al. [119] also found a ketone when analyzing chemical products in trans-
former insulating oils, which can also better characterize the aging state of insulation. The
results show that the concentration of methyl ethyl ketone is the highest in all chemical com-
pounds regardless of the operation time of the transformer. It is concluded that methyl ethyl
ketone is an effective indicator for evaluating insulation aging based on a comparison and
theoretical analysis of component concentrations (the higher the detectable concentration,
the more obvious the volume resistivity and dielectric loss tangent characteristics).

3.6. Sugar Analysis
3.6.1. Classification and Interrelationship of Sugars

Sugars are carbohydrates composed of three elements: carbon, hydrogen, and oxygen.
In the study of Kbyemela [120] and Goto et al. [121], it was found that the hydrolysis and
thermal degradation products of cellulose and hemicellulose included monosaccharides
dominated by pentose and hexose, such as mannose and rhamnose, fucose, xylose, arabi-
nose and galactose, and oligosaccharides (such as cellobiose, levoglucosan, glucose, and
fructose, etc.). These sugars are not necessarily the final products. Studies have found
that some sugars can be converted to other sugars under certain conditions. For example,
Jumppanen et al. [122] carried out related studies on the further catalytic isomerization
of arabinose to ribose, and galactose can be further deoxygenated to fucose. In addition,
glucose, fructose, and mannose can be converted to each other.

3.6.2. Characteristics and Research on Sugars

Scheirs et al. [123] demonstrated the presence of sugar in transformer oil samples in
1998. It is proved that sugar is produced before furfural as the first step decomposition
product of cellulose and is not easily absorbed by the insulating paper, and the detection
results are more sensitive and accurate. By studying the change of sugar concentration with
the aging of insulating paper, it is undoubtedly of important practical significance to make
a rapid diagnosis of the transformer insulation state at the early stage. Lessard et al. [124]
found that cellobiose and levoglucosan not only adsorbed on insulating paper but were
also more stable compared to furfural. There is a relationship between the logarithm of the
two sugar concentrations and the degree of polymerization, which also provides a new
idea for judging the aging of transformer paper insulation. Lessard et al. [125] revealed that
mannose and rhamnose produced by the decomposition of transformer insulation paper
were dissolved in transformer oil in a subsequent study. Moreover, the logarithm of the
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two sugar concentration was linearly related to the degree of polymerization of insulating
paper, as shown in Table 2.

Table 2. Detection of sugars in oil.

Sugars Retention
Time (min) DPv Appearance Maximum Concentration

Level Attained (ppb)

Levoglucosan 2.2 1300 1000
Cellobiose 12.4 1300 10,000
Mannose 5.4 1300 13,500

Rhamnose 4.2 728 3000

To be sure, the actual transformer oil samples also contain ribose and fucose. However,
it is regretful to find that the concentration of the two sugars in the oil sample is higher or
lower than that in the blank oil sample, and the concentration is not related to the aging
state of the transformer, so it is not the product of the insulating paper. On the other hand,
the total sugar concentration gradually increases with aging time. When the temperature is
higher, the faster the total sugar content increases. Moreover, the total sugar concentration
below 90 ◦C is significantly correlated with the aging time. The conclusion shows that
the degree of polymerization of the insulating paper and the logarithm of the total sugar
concentration have a good linear relationship, and the total sugar concentration increases
linearly with the decrease of the DPv [124–126].

3.7. Others

At present, some scholars have verified that aldehydes, such as acetaldehyde, are
produced during the aging of insulating paper [30], and evaluated the effects of alde-
hydes on the properties of insulating oil. However, the relationship between acetalde-
hyde/ormaldehyde and the degree of polymerization of paper insulation materials has not
been discussed in detail. On the other hand, the reference [127] used infrared spectroscopy
to monitor the change of functional groups in the aging process of insulating oil. Accord-
ing to the appearance of characteristic peaks in a certain range during the reaction, the
aldehyde group absorption peak at 1720 cm−1, the characteristic absorption peak of C-H
stretching vibration at 2720 cm−1, and the change of hydrocarbon group absorption peak
at 3400~3600 cm−1, it is determined that aldehyde compounds are generated during the
aging of the transformer oil.

The moisture content of solid and liquid insulation is well known to play a significant
role in transformer life [128]. Hohlein et al. [129] studied the influence of moisture on
the polymerization degree of insulating paper and found that the moisture content had
a significant influence on the degradation of cellulose paper and the formation of furan
compounds under the normal operation of the transformer. According to research [10],
an increase of 0.5% in the moisture concentration of transformer oil-paper insulation can
result in halving the mechanical strength of the insulation paper and doubling the rate of
thermal aging. Equation (3) can be derived from empirical data. Fofana [130] and Fabre
et al. [19] pointed out that the aging rate of cellulose paper was positively correlated with
moisture content. The paper insulation moisture content in the whole operation process
can be from less than 0.5% at the beginning to 4–8% under the limit (at the late stage of
aging). Several scholars predicted that at the end of the transformer life (temperature is
80 ◦C), the moisture content in the insulating paper is about 5% and that in the insulating
oil is about 0.1% [19,131,132].

[H2O] =
0.5 log(DP0/DPt)

log 2
(3)

Other chemical indicators can be generated when the moisture in the insulating paper
increases, the acidic components generated by the aging of transformer oil, or the oxygen
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reacts with the carbon atoms in the fiber molecules due to contact with the air [17,30], such
as aldehydes, amines, etc. At this time, the cellulose hydrolysis speed is accelerated, which
further leads to the decrease of DPv, and the fiber becomes shorter, weakening the fiber
strength, and thus affecting the mechanical strength of insulation materials. Therefore, the
applicability of using other indicators to characterize transformer insulation is a subject
worth exploring.

4. Monitoring the Aging Condition of Paper Insulation
4.1. Study on Production Mechanism of Indicators from the Microscopic Perspective

Because of the benefits of clear microscopic modeling and precise calculation, molecu-
lar simulation is a computer-aided technology developed in the 1950s and 1960s that has
been widely used in many fields such as physics, chemical engineering, material science,
and life science. If molecular simulation technology is used, the degradation products of
paper insulation and oil insulation are distinguished by analyzing the aging ways and meth-
ods of polymer compounds under different stresses. This can play an effective theoretical
support role in monitoring the state of high-voltage insulation.

The first cellulose map was obtained in 1913 when molecular simulation was gradually
introduced into the study of the aging mechanism of transformer oil-paper insulation [133].
Meyer et al. proposed an epoch-making model of cellulose molecular structure of insulating
paper in 1928 [134]. Cellulose is the basic component of insulating paper. From the perspec-
tive of molecular microstructure, the aging of cellulose is related to the horizontal break of
hydrogen bonds between molecules and within molecules, and the longitudinal break of
molecular chain caused by the rupture of 1,4-β-glycosidic bonds. In short, the mechanical
life of insulating paper is determined by the average length of the cellulose chains.

The main research method of the aging micro-mechanism of transformer insulating
paper is to simulate the temperature rise of the molecular models of the crystalline and
amorphous regions in cellulose [135,136]. The simulation technique can observe the chemi-
cal reaction paths and the products of each temperature section that cannot be obtained in
the macroscopic experiment, which provides strong support and guidance for the results
of thermal aging experiments. A large number of scholars compared the crystalline and
amorphous regions and analyzed the intensity of molecular chain motion and the changes
in the number of hydrogen bonds in the two regions at different temperatures. It was found
that the cellulose molecules had stronger interaction forces in the crystalline region, the
rehearsing density was well organized and the thermal stability was strong. Moreover, the
molecular arrangement in the amorphous region is disordered and the interaction between
molecules is small. The physical and chemical properties are susceptible to temperature
and other environmental factors, which prompts the aging of insulating paper to begin with
the amorphous region. The reaction molecular dynamic force field (ReaxFF) proposed by
Van-Duin et al. [137] provided an effective tool for the study of hydrocarbon cracking. The
reaction force field defines the interaction between atoms as a function of the bond level. It
not only has the advantage of fast simulation speed but also can simulate the formation
and breaking of chemical bonds during chemical reactions. This lays the groundwork
for simulating chemical indicators during cellulose degradation. The current ReaxFF can
handle systems with a million atoms and a time scale of 100 ns.

Reaction molecular dynamics simulation provides an effective way to study the degra-
dation of oil-paper insulation from the atomic level and also provides a new idea for the
diagnosis of transformer aging and faults. Figure 12 summarizes the thermal degradation
products and reaction pathways of cellulose, hemicellulose, and lignin, which are the
main compounds of insulating paper, by simulating the aging process of the transformer
oil-paper insulation system [138]. In addition, the molecular dynamics simulation and
quantum mechanics model combined with nuclear magnetic resonance (NMR) were used
to determine the specific positions and degradation products of the major components of
cellulose xylose [139,140] and glucose [141,142] after protonation.
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At present, scholars have studied the effects of moisture, temperature, and oxygen con-
tent on the microscopic mechanism of oil-paper insulation. For example, Lundgaard [109]
and Tian [143] et al. analyzed the microscopic mechanism of synergy between acid com-
pounds and water molecules and the law of the diffusion behavior of organic acids based
on molecular simulation. Davydov et al. [144] studied several factors affecting laboratory
accelerated thermal aging. The study found that there was an exponential relationship
between insulation life and temperature, but the proportion of moisture in the oil-paper
was constantly changing.

In addition, Hohlein et al. [129] studied the effect of oxygen content and showed that
the aging rate under aerobic conditions was three times that of anaerobic conditions. Liao
et al. [145] simulated the diffusion motion mechanism of the compound model of dissolved
gas in oil from the microscopic level. It is proved that water molecules can eventually
diffuse into cellulose and form hydrogen bonds with glycosidic bonds, destroying the
originally stable hydrogen bonding network of cellulose. Tanaka et al. [146] compared the
arrangement of cellulose molecules with and without water. Under high temperatures,
Li et al. [147] simulated the pyrolysis process and product changes of insulating oil and
cellulose paper. After dehydration, cleavage, and polycondensation, the cellobiose repeat
unit was completely decomposed into small molecular products, such as formic acid, CO2,
and H2O. Zhang et al. [148] performed a pyrolysis simulation of cellobiose on the basis of
the reaction force field and the Monte Carlo method and analyzed the generation pathway
of the methanol indicator at the atomic level. Furthermore, it is consistent with the previous
research results, indicating that methanol is suitable for the indication of early insulation
aging, and later becomes unstable or even disappears.
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4.2. Monitoring Technology of Chemical Indicators
4.2.1. Monitoring of Furan Compounds

In labs, almost all the furfural-relevant test data could be acquired under carefully
controlled experiment conditions. (i) The most commonly used method for determining
furfural is high-performance liquid chromatography (HPLC). Furfural and furan com-
pounds are eluted from the column with acetonitrile-water mixed solvent after the sample
is enriched by Solid Phase Extraction Cartridge (SPE), and the measurement results are
accurate and reliable [60,80,82,149]. (ii) According to the characteristics of the larger solu-
bility of furfural in water, furfural in insulating oil can also be purified and enriched by
water as an extractant, with aniline acetate as the chromogenic agent. The red product of
furfural and chromotropic agent in oil can have obvious characteristic absorption peaks at
a specific wavelength, and then the content of furfural will be quantitatively determined by
a spectrophotometer [150,151]. Of the above two test methods, although HPLC has high
accuracy, it requires complicated and time-consuming pretreatment, and a lot of manpower
and material resources to maintain. Spectrophotometry has strong anti-interference ability
and a simple operation, but the accuracy is not very satisfactory.

In recent years, Abu-Siada [152] and Lei et al. [153] proposed an extraction-free furfural
detection method based on ultraviolet-visible spectroscopy (UV-Vis). The absorption peak
of furfural was separated from the spectrum of the components in the oil, and the influence
of other oil compounds on furfural was reduced. The results show that the method has
a good linear relationship between furfural concentration and characteristic absorbance.
Chen et al. [154] also investigated the application of Confocal laser Raman spectroscopy
(CLRS) in furfural concentration detection, identifying that the CLRS method was simpler
and faster than HPLC, with a detection limit of 0.1 mg/L. The currently reported 5-HMF
determination method is similar to the furfural detection method, and the common methods
include gas chromatography and spectrophotometry [155,156].

Many countries have formulated relevant evaluation standards, which stipulate the
threshold of furfural concentration in transformer oil. China power industry standards
stipulate that for transformers that have been operating for 20 years, attention should be
paid to furfural concentration greater than 1 mg/L. According to DL/T 596 “Preventive
Test Regulations for Power Equipment”, when the furfural concentration in operating trans-
former oil is greater than 4 mg/L, it indicates that the aging condition of paper insulation
has been relatively serious [157]. Xue et al. [158] tested the data of 77 step-up transformers
with rated voltages ranging from 100 to 500 kV in the China State Grid, obtaining statisti-
cal data for transformers with varying operating years and furfural concentrations after
regression analysis.

4.2.2. Monitoring of Carbon-Oxygen Gases

Carbon monoxide and carbon dioxide are good paper detection indicators. Studies
have shown that the content of CO and CO2 is directly related to the degree of polymer-
ization of insulating paper. Furthermore, the ratio of the contents of the two gases is an
important feature for monitoring the degradation degree of cellulose [83,85,86,123,159].
Norazhar et al. [24] made a detailed summary of the dissolved gas detection technology
and analyzed the advantages and disadvantages of each method. At present, the detec-
tion methods for dissolved gas in oil are widely accepted as gas chromatography (GC),
hydrogen on-line monitoring, and photo-acoustic spectroscopy (PSA).

According to Duval et al., if the CO2/CO ratio is lower than six and accompanied by a
significant increase in ethylene, the paper degradation rate can be inferred to be higher [10].
Further research [160] revealed that the value of CO2/CO in oil for transformers in normal
operation is typically greater than seven. When the value of CO2/CO is less than six,
it may indicate that the existence of fault leads to rapid aging of the insulating paper.
When the value of CO2/CO is less than two, it may indicate that there is a serious paper
insulation fault in the transformer. The relevant guidelines of China provide the relationship
between the total amount of carbon monoxide and carbon dioxide generated and the ratio
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of CO2/CO to the state of insulating materials [161]: (i) for open transformers, the carbon
monoxide content generally does not exceed 300 mg/L. (ii) The carbon monoxide content
in diaphragm transformer oil is usually higher than that in open transformers. When
CO2/CO is greater than 0.5, the transformer may be abnormal. (iii) For nitrogen-type
transformers, when it exceeds 0.2, the transformer may be abnormal. Mcshane et al. [162]
found that when the content of CO + CO2 was about 1 mL/g, the average residue rate of
polymerization degree was 50%. When the content of CO + CO2 was about 3 mL/g, the
average residual rate of polymerization degree was about 30%.

4.2.3. Monitoring of Low Molecular Alcohols

Over time and the test of reality, methanol and ethanol have been identified as oil-
soluble by-products generated by the aging of oil-immersed insulation materials in power
transformers [25], and their existence provides reliable information for the diagnosis of
transformer insulation. A simple, rapid, direct, and accurate detection method is essential,
mainly including high-performance liquid chromatography (HPLC), gas chromatography
(GC), gas chromatography-mass spectrometry (GC-MS), spectrophotometry, solid-phase
micro-extraction (SPME) and headspace sampling-gas chromatography-mass spectrom-
etry (HS-GC-MS). Although the spectrophotometric method is easy to operate and can
obtain results quickly, the reproducibility is relatively poor and the accuracy is relatively
low [163]. High-performance liquid chromatography (HPLC) and gas chromatography
(GC) require time-consuming preparatory work, which reduces detection efficiency [163].
In addition, some scholars use the hydrogen flame ionization detector (FID), which has
a high sensitivity to organic compounds, simple structure, and fast response. By com-
paring mass spectrometry detectors with hydrogen flame ion detectors, it was found
that the mass spectrometry detectors were better and have a wider detection range [103].
Finally, a large number of outstanding scholars confirmed that the headspace sample
equipped with a gas chromatography-mass spectrometer (HS-GC-MS) was the best detec-
tion method [94,102,103,164,165].

Table 3 displays the results of recent studies on the detection and quantitation limits
of ethanol and methanol in insulating oil using various methods [166]. By including an
internal standard in the sample, the influence of sampling error on quantitative results
can be greatly reduced. The principle is to quantify the compound by the area ratio of the
target component with the internal standard peak. Studies [102,166] found that deuterium
ethanol (ethanol d-6) and 2-propanol can be used as an internal standard of methanol and
ethanol. The two compounds are completely separated from the target product and are not
produced by the aging of the insulating paper. It is also widely used in practice analysis
because of its good stability. Matharage et al. [167] also applied HS-GC-MS to compare
the accuracy of the internal and external standard methods for methanol measurement
results, respectively. With the increasing innovation of technology, Fu et al. [168] recently
proposed a new method for the determination of methanol based on an ultraviolet-visible
spectrometer, which is based on the extraction of methanol from oil samples and oxidation
with potassium permanganate. Finally, spectrometry can be used to determine methanol
after the reaction of chromic acid with the oxidized product formaldehyde to form the
purple compound.

Table 3. Detection limits and quantification limits of ethanol/methanol under different methods.

Research Scholars Method EtOH/MeOH
MDL (ng g−1)

EtOH/MeOH
ML (ng g−1)

J. Jalbert [102] GC-MS 3.6/4 13/14
M. Bruzzoniti [103] GC-MS 3.1/1.3 9.3/3.9
M. Bruzzoniti [103] GC-FID 26.8/12.1 79.6/36

H. Molavi [166] GC-MS 155/144 495/458
Z. Wang [167] GC-MS 21.1/19.5 67.1/62.0
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4.2.4. Monitoring of Acid Compounds

There is no standard method for detecting hydrophilic low molecular acids in insulat-
ing paper at the moment. Literature [114] proposed direct titration with KOH isopropanol
solution, but no specific test method flow was given. The method for determining the acid
value in oil is relatively mature, with chemical titration being the most common method.
The core idea is expressed by the mass (in mg) of KOH required to neutralize the acidic
compounds contained in 1 g of oil [109], also known as the neutralization number, with
units of 10−3. However, such as Lundgaard [109] and Lelekakis [112] et al. studied the
effect of acid on the transformer insulation life and pointed out that the neutralization
number cannot represent the strength and corrosiveness of the acids, nor can it distinguish
the type of acids [115]. In addition, Ingebrigsten et al. [169] found through experiments that
only 15% of the neutralization value of acid concentration in insulating oil is hydrophilic
low molecular acid generated by the degradation of insulating paper.

4.2.5. Monitoring of Ketone Compounds

Wang et al. [170] used gas chromatography to determine propanol in insulating oil,
which was simple, fast, and reliable because acetone has a low boiling point and is easy
to gasify and separate. Following a series of tests, the minimum detection limit of this
method was 0.036 mg/L, and the relative standard deviation was 4.2%, which fully met
the requirements for determining acetone in transformer oil samples. After a one year
inspection of the field transformer, it was verified that the measured acetone volume ranged
from 0 to 1.44 mg/L. In recent years, Gu et al. [171] proposed a method of conical laser
raman spectroscopy (CLRS) to detect the acetone concentration in transformer insulating oil.
The characteristic peaks of acetone were analyzed by comparing acetone plus insulating oil
samples, insulating oil samples, and acetone samples. Considering the degree of migration,
superposition, and vibration mode, the Raman spectral peak at the high intensity of 780
cm−1 was used as the characteristic spectral peak to determine the quality and quantity
of acetone. CLRS has a wider detection limit range than traditional methods and is a non-
destructive detection method, providing a new technique for on-site analysis of acetone
concentration in oil.

4.2.6. Monitoring of Sugar Compounds

An ion chromatograph equipped with a pulse amperometric detector is a better
method for detecting sugar in oil [125]. It can solve well the shortcomings of low sensitivity
and poor selectivity, and the early pretreatment is simple. Hu et al. [172] proposed an ultra-
violet spectroscopy method for determining mixed sugar concentration. By establishing a
calibration model of the wavelength spectrum and the content of the corresponding compo-
sition, the concentration of sugar in the unknown sample can be predicted by inputting the
ultraviolet spectral information into the model. In addition, the method does not require
the use of other chemical reagents and has high-level safety and reliability.

5. Perspectives

The status of different organs in the body is assessed by extracting blood and compar-
ing the contents of each component with the health warning threshold, just like in a person’s
routine medical examination. The same is true for insulating oil, which is periodically
sampled and evaluated for the remaining life of the transformer and various failure types
utilizing chemical indicators dissolved in the oil. Currently, using the chemical indicators
in the oil to analyze the transformer’s operational status and send out accident warnings is
an irreplaceable and effective detection approach. It is also a trustworthy safety measure
for the power grid’s online monitoring. In this paper, we express our views on the future
research direction of this field for the reference and discussion of researchers. In addition,
Figure 13 presents the logic of this work summarizing the existing research and prospect of
chemical indicators in oil.
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(i) The dynamic equilibrium and distribution law of chemical indicators in oil-paper are
also changed as a result of the complex operating conditions and diverse influencing
factors. Therefore, the equilibrium/diffusion mechanism of chemical indicators is the
key to aging evaluation and the main focus to determine the accuracy of field detec-
tion [36,59,99,105,115]. After a change to the oil, the oil filter, and the oil supplement,
it is crucial to modify the chemical indicator’s concentration. In addition, it is well
known that the concentration of the chemical indicator in oil that can be detected is
related to its distribution ratio between oil and paper, as well as to the chemical indica-
tor’s solubility in oil and the insulating paper’s adsorption capacity for the chemical
indicator. So, it is essential to establish the kinetic equilibrium model of the chemical
indicator to the oil-paper system in the following three aspects: (1) The adsorption
and diffusion mechanism of the chemical indicators in the insulating paper; (2) the
diffusion principle of chemical indicators between the oil-paper interface; (3) The
solubility and diffusion ability of chemical indicators in insulating oil.

(ii) With the help of the basic theory of interdisciplinary mature platforms (such as classi-
cal mechanics, relativity, quantum mechanics and electromagnetism, molecular chem-
istry, surface science, and so on), the mechanism of cellulose degradation is further
explored and the relationship between various chemical indicators and transformer
operating faults can be revealed [137,138]. In addition, the development of detection
technology for chemical indicators should also be taken into account [154,165,167,168],
in order to design the phase analysis platform which is simple to operate and easy to
carry for the field transformer to measure chemical indicators in oil.

(iii) Existing studies to analyze the aging degradation mechanism of insulating paper cellu-
losic mostly depend on molecular reaction dynamics simulation software [136,145,148].
However, current molecular reaction simulation studies are only carried out under
the influence of a single environmental factor. In the future, we can further integrate
multiple factors for analysis, such as superposition temperature, electric field, and
environmental factors. Secondly, the molecular reaction dynamics model is analyzed
from the micro level, and the interaction between molecules in the insulating paper
cannot be comprehensively simulated. The research direction can be extended to the
mesoscopic scale. The process of insulating paper to generate chemical indicators can
be simulated from the micro, mesoscopic and macro multi-scale levels.

(iv) A common trend for the present is the development of new, environmentally friendly
insulating oil and modified insulating paper. The chemical indicator of aging degrada-
tion of the improved oil-paper insulation system is different from that of the traditional



Energies 2023, 16, 1396 23 of 31

oil-paper insulation system. (1) It is found by comparing the fault gas of traditional
mineral oil and synthetic ester that the propane content in the synthetic ester is signifi-
cant and can be used as the key gas for thermal faults, whereas the role of propane
in mineral oil as an indicator is minimal [55]. (2) Under the same aging conditions,
the gas yield and acid content of vegetable oil are higher than that of mineral oil, but
the furfural content of vegetable oil is lower than that of mineral oil [31]. (3) The
chemical indicators of modified paper and traditional paper are also different. The
concentration of furfural degraded by the modified insulating paper is much lower
than that of the traditional insulating paper under the same aging state [98]. However,
there is no difference in the content of low-molecular alcohols produced during the
aging process regardless of the type of insulating paper. Therefore, it is necessary
to study the chemical indicators generated during the deterioration process of the
improved insulating oil and paper as well as the analysis of the formation path and
the equilibrium diffusion mechanism of chemical indicators.

(v) Considering the influence of multiple factors (temperature, water, aging degree,
etc.) on cellulose degradation, the kinetic Equation, the Arrhenius Equation and
the existing aging evaluation equation based on chemical indicators can be further
modified [45–47]. In addition, the chemical indicator between oil and paper in turn
accelerates the deterioration process of insulating paper and needs further research.
At present, due to the differences in experimental models and environments adopted
by many researchers, there are no universally acknowledged results in this field.

(vi) The transformer winding hotspot temperature is generally 80–140 ◦C, which is much
higher than the normal oil temperature. Therefore, the aging state of the paper insula-
tion in the hotspot area is serious, which is the ‘weak area’ of the whole transformer
paper insulation, and its operation risk is the greatest. However, the traditional electri-
cal detection method has the disadvantage of power failure of the hanging hood. So,
it is interesting to explore the relationship between chemical indicators in oil and the
winding hotspot’s aging state. The existing research also found that the formation of
the ethanol indicator is closely related to the winding hotspot area [99]. The authors
also observe that the methanol concentration rises gradually along the axial height
of the winding (from the top to the bottom) through non-uniform thermal aging
experiments [173].

(vii) There are many kinds of chemical indicators dissolved in oil, so it is possible to
determine the weight coefficient of each chemical indicator to represent the aging
degree of insulating paper through the weighting method. On the basis of the above, a
model for the coupling of multiple chemical indicators to characterize the aging state
of insulating paper can be established [8]. The establishment of a multiple chemical
indicator model can greatly improve the transformer insulation status’s evaluation
method. This is a crucial direction for our future development.

6. Conclusions

This paper outlines chemical indicators for monitoring the aging condition of oil-
impregnated transformer paper insulation, including its generation path, research status,
basic characteristics, and defects, as well as the development of monitoring methods. The
factors affecting paper insulation failure and the evolution of insulating paper degradation
kinetic equations are discussed based on the aging distribution of transformer insulation.
It is emphasized that the aging condition of paper insulation is critical in determining
transformer service life, and the mechanical properties of insulating paper serve as the
foundation for monitoring the aging degree. This paper primarily introduces and analyzes
the research progress on the central issues such as the electrical and physico-chemical
properties, aging properties, and monitoring techniques of chemical indicators dissolved
in oil. Moreover, it summarizes the research on the formation path of the chemical in-
dicators produced by cellulose degradation based on the reaction molecular dynamics
microscopic mechanism.
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The transformer oil is easy to sample and can be carried out in a way that the equip-
ment power is not cut off. Thus, the aging status of the transformer paper insulation can be
effectively monitored by using the relationship between the chemical indicator dissolved
in the oil and the DPv of the insulating paper. However, the interpretation of chemical
indicators for determining the condition of paper insulation in power transformers remains
a field with many challenges. The following are the key concerns about the perspectives of
the chemical indicator method.

First of all, the winding has a temperature gradient at different heights due to the
winding structure layout and insulating oil convection heat dissipation. So, the insulating
paper under different positions of heat is not the same, resulting in a non-uniform aging
state of the insulating paper along the height of the winding. However, the existing
research on the chemical indicators method mainly focuses on assessing the insulation state
of transformers with uniform aging. The condition of the insulating paper at local hotspots
cannot be accurately expressed. In addition, the chemical indicators of dissolved oil under
uniform aging and non-uniform aging processes are also different. Therefore, correcting
the aging kinetic model obtained under the uniform aging state is also an important
research direction.

Secondly, many factors have a significant impact on the concentration of the chemical
indicator dissolved in insulating oil. If affected by non-aging factors (temperature, water,
oxygen, etc.), the concentration of the chemical indicator will change with its equilibrium
distribution ratio between oil and paper. When the influence of non-aging factors on the
chemical indicators in the oil is eliminated, the accuracy of monitoring the aging degree of
insulating paper can be significantly improved. Based on the above, scholars have studied
the distribution of chemical indicators under various non-aging factors and obtained many
new findings and conclusions. However, comparing the equilibrium distribution ratio and
migration law of each chemical indicator between oil and paper under different factors
needs to be further clarified.

Mineral oil has been the main liquid insulation material used in transformers for
decades, but it contradicts the concept of being green. Natural ester, also known as vegetable
insulating oil, has excellent properties such as environmental protection, high-temperature
resistance, good compatibility, etc. Currently, there are more than 600,000 transformers
with vegetable insulating oil around the world [174]. The highest operating voltage level in
the in-service transformer exceeds 400 kV (420 kV vegetable insulating oil transformer was
successfully tested and put into operation at the German power grid operator TransnetBW’s
Bruchsal Kandelweg substation near Karlsruhe). Moreover, with the widespread popular-
ization of modified insulating paper and vegetable insulating oil, the insulation conditions
of the oil-paper system have become more complicated. Fortunately, the improved oil-paper
system not only meets environmental requirements but also slows the aging rate of the
insulating paper, which can improve the transformer’s service life and overload tolerance.
However, the types and content of chemical indicators produced by the improved oil-paper
insulation also change accordingly. Furthermore, the current standard of monitoring the
operation state of the transformer utilizing chemical indicators cannot meet practical needs.
As a result, it is essential to investigate the judgment criteria of chemical indicators in oil
under various faults.

To sum up, we believe that chemical indicators can achieve more exciting practical
applications through in-depth research into chemical indicator mechanisms, advancements
in detection technology, design of laboratory non-uniform thermal aging experiments, and
improvement of the aging kinetics equation and insulation life evaluation model.
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