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Abstract: Introduction: Wind speed and solar radiation are two of the most well-known and widely
used renewable energy sources worldwide. Coal, natural gas, and petroleum are examples of fossil
fuels that are not replenished and are thus non-renewable energy sources due to their high carbon
content and the methods by which they are generated. To predict energy production of renewable
sources, researchers use energy forecasting techniques based on the recent advances in machine
learning approaches. Numerous prediction methods have significant drawbacks, including high
computational complexity and inability to generalize for various types of sources of renewable energy
sources. Methodology: In this paper, we proposed a novel approach capable of generalizing the
prediction accuracy for both wind speed and solar radiation forecasting data. The proposed approach
is based on a new optimization algorithm and a new stacked ensemble model. The new optimization
algorithm is a hybrid of Al-Biruni Earth Radius (BER) and genetic algorithm (GA) and it is denoted
by the GABER optimization algorithm. This algorithm is used to optimize the parameters of the
proposed stacked ensemble model to boost the prediction accuracy and to improve the generaliza-
tion capability. Results: To evaluate the proposed approach, several experiments are conducted to
study its effectiveness and superiority compared to other optimization methods and forecasting
models. In addition, statistical tests are conducted to assess the significance and difference of the
proposed approach. The recorded results proved the proposed approach’s superiority, effectiveness,
generalization, and statistical significance when compared to state-of-the-art methods. Conclusions:
The proposed approach is capable of predicting both wind speed and solar radiation with better
generalization.

Keywords: renewable energy; Al-Biruni earth radius algorithm; genetic algorithm; parameter opti-
mization; machine learning; artificial intelligence

1. Introduction

Recent years have seen a meteoric rise in wind speed capacity, making it a potentially
game-changing renewable resource. In 2020, for instance, wind turbines accounted for
8.4% of all utility-scale power output in the United States; this number is projected to rise
to 20% by 2030 and 35% by 2050 [1]. Compared to conventional power sources, wind
energy’s main benefit is a reduction in CO2 emissions of roughly 189 million metric tons
and a save of water equivalent to nearly 103 billion gallons. Nonetheless, the integration
of wind speed into a power system is complicated by its erratic swings, which are caused
mainly by weather [2]. Accurate wind speed forecasting is essential to incorporate wind
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turbines into the electricity system. It has become increasingly important to create reliable
methods for predicting wind speed over the past two decades [3,4]. It is possible to classify
models into two broad categories: physical-based and data-driven [5]. To predict the
future of wind speed, physical models used atmospheric motion equations to estimate the
development of meteorological observations [6]. Forecasting wind speed with a physical
model based on numerical weather estimation may be broken down into two stages:
predicting wind speed and converting wind speed to wind speed [7]. However, designing a
physical model may be time-consuming and expensive, leading to subpar forecast accuracy
at the regional scale [8]. Functional dependencies are derived directly from the data
to construct a model that represents the relationships between wind speed and other
input variables [9,10], as opposed to physical techniques based on relatively complicated
differential equations. Integrating wind turbines into smart-grids and optimizing the
control of electricity production relies heavily on accurate predictions of wind speed. Many
data-driven methods have been created to estimate better how much energy the wind will
generate. Short-term wind speed forecasting uses traditional time-series approaches such
as the auto-regressive moving average (ARMA) model and its variations [11,12]. In [13], an
ARMA model was used to predict hourly wind speed. The performance was excellent at
predicting events up to an hour in the future but degraded beyond that. These kinds of
models are straightforward to create and easy to put into action. It is important to note that
while classic time-series models (such as ARMA and its derivatives) can achieve satisfactory
performance when wind speed data exhibit regular changes, the prediction inaccuracy
is glaring when the wind speed time series shows irregular variations. Short-term wind
speed forecasting is addressed in [14], where a coupled technique is given that utilizes
ARMA and an artificial neural network (ANN). Based on the research results, it is clear
that the coupled approach offers superior forecasting performance above both ARMA and
ANN when used alone.

On the other hand, the total electromagnetic energy from the sun across a given
frequency range is known as solar irradiation. One of the most plentiful and flexible
renewable energy sources, solar energy, may be harnessed in two ways: directly and
indirectly. However, solar energy is the best alternative to conventional energy since it is
both cheap and safe for the environment [15–18]. Renewable energy sources, such as solar
and wind, are becoming increasingly popular for generating clean power because of their
ability to cut down on fossil fuel consumption significantly, hence substantially lowering
carbon emissions [19–21]. Total solar energy output is expected to exceed 8000 GWatt in
2050 [22–25] according to the Renewable Energy Policy Network for the 21st Century. The
restriction creates a substantial barrier for the generated photovoltaic energy (PV) that must
be continually supplied into the grid since solar irradiation is variable and intermittent,
resulting in high output-power fluctuation [26,27]. Mega-project investments in solar and
wind energy have the potential to revolutionize the industry. The elements that affect solar
energy output must be investigated before any renewable energy production facility can be
designed. Factors that affect solar radiation are well-understood and are being considered
in all parts of the world. To accurately predict the amount of energy that can be generated
from solar panels, researchers have found that the widespread application of Machine
Learning (ML) or Deep Learning (DL) techniques is the most efficient way to study the
relationship between solar radiation and environmental parameters. To help scientists
create the optimal circumstances and methodologies for solar radiation forecasting, data
from around the world has been collected and produced in several databases. The location,
weather requirements, ML method, and quantity of chosen parameters are thus crucial
factors in predicting. That is to say, depending on the particular factors employed and their
overall number, the forecasting technique may vary from location to location.

In this paper, the following research question forms the main motivation of this
work. The research question is: how to develop a generalized model capable of predicting
solar radiation and wind speed with improved accuracy. To achieve the goal of this
question, we propose a novel approach for generalizing the prediction of wind speed and
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solar radiation robustly based on a new optimization algorithm based on Al-Biruni Earth
Radius and Genetic Algorithm for optimizing the parameters of a new stacked ensemble
model. The evaluation of the proposed approach is performed in terms of two datasets
containing data for wind speed and solar radiation. The recorded results emphasize the
generalization capability of the proposed approach by which the wind speed and solar
radiation are predicted accurately when compared to other prediction models and using
other optimization methods.

This paper is structured as follows: an overview of the various approaches presented
in the literature to predict wind speed and solar radiation is provided in Section 2. Section 3
describes the basic data sources and methods used in developing the proposed methodol-
ogy. The proposed methodology is explained in Section 4. The conducted experiments and
their results are then presented and discussed in Section 5. Section 6 concludes the paper
by presenting its findings and the future perspectives.

2. Literature Review

This section highlights the relevant works presented in the literature addressing
the wind speed and solar radiation predictions. The section starts with the wind speed
prediction review and the solar radiation prediction review.

2.1. Wind Speed Prediction Review

Wind speed forecasting using machine learning approaches has progressed in recent
decades. Authors in [28] described a two-stage experiment to enhance wind speed forecast-
ing. To estimate wind speed 30 h in advance, an adaptive wavelet neural network (AWNN)
is initially used to deconstruct wind time-series using wavelet decomposition. We then use
a feed-forward neural network to determine an appropriate relationship between wind
velocity and generated electricity. The latter allows for the conversion of predicted wind
speed into predicted wind speed. They demonstrated that, compared to a feed-forward
neural network, the AWNN method provides the best approximation and the fastest train-
ing capacity. Using Gaussian processes and numerical weather prediction, authors in [29]
suggested a technique to wind speed forecasting. K-means clustering was examined by the
authors of [30] with a cluster selection technique for improved feature extraction from wind
time-series data. Next, a data mining–discrete wavelet transform–multilayer perceptron
neural network hybrid wind speed forecaster is developed. They emphasized that cluster
selection accelerates forecasting since the relevant part of the data is used to train the
forecaster rather than the entire dataset. In addition, authors in [31] developed a Markov
approach with support-vector-machine (SVM) enhancements for making short-term pre-
dictions about wind speed. To estimate the typical development of wind speed, finite-state
Markov techniques based on data analytics are initially carried out. Subsequently, the SVM
forecast is integrated suitably into the finite-state Markov models. According to [32], an
ANN model can forecast wind speed with high accuracy. It also outperforms analytical
models because of its adaptability and capacity to simulate process non-linearity. The
approach in [33] combines the wavelet transform with neural networks with tapping delay
to predict wind speed better. A caveat is that the wavelet transform requires batch data.
Therefore, this method can’t be used in real-time. For very short-term probabilistic wind
speed forecasting, it introduces an approach based on sparse vector autoregression [34].
For multi-step-ahead forecasting of wind speed generation, authors in [35] employed a
mean trend detector and a mathematical morphology-based local predictor. The authors
of [36] proposed wind speed forecasting using machine learning techniques. Wind speed
predictions were made using a variety of statistical methods, including most minor abso-
lute shrinkage and selection operator, K-nearest neighbors (kNN), and random forest (RF)
regression. They demonstrate the potential use of machine learning models outside their
training environments. These models, however, are static and do not account for histori-
cal information. It is important to remember that considering time-lagged values might
enhance forecast accuracy when the temporal dependency in time-series data is modest
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or substantial. The potential for improved prediction accuracy utilizing delayed data was
established by several data-driven approaches in the literature, including lagged-ensemble
machine learning [37,38] and dynamic principal component regression [39].

As a result, several machine learning methods have been created in the literature by
combining the best features of diverse models to boost prediction accuracy. Specifically,
authors in [40] suggested a hybrid technique based on an orthogonal test and SVM to
anticipate the wind speed ramp. Compared to the Spearman-SVM, Grey Correlation Degree-
SVM, and principle components analysis-SVM, their accuracy in making predictions was
much higher. They showed that by increasing the temporal resolution from 0.5 h to 24 h,
the forecast is improved using the suggested technique. The authors of [41] predicted wind
speed using a combination of the Least Squares Support Vector Machine (LSSVM) and the
Gravitational Search Algorithm (GSA). To be more precise, GSA was used to determine
the best hyperparameters for LSSVM. Accuracy for short-term wind speed prediction is
improved by the hybrid (LSSVM- GSA) over ANN and SVM. Artificial neural networks,
support vector regression, regression trees, and random forest are the four machine learning
algorithms utilized in [42] for forecasting wind energy output. Based on the findings, the
SVR may be the most effective method if just one parameter is used to evaluate success. The
authors developed wind speed prediction under the missing data scenario in [43], which
addressed a prevalent problem with time-series data. Here, an expectation-maximization-
based multiple-imputation approach is used to estimate missing data. The GPR model is
then used to estimate wind speed using the newly imputed data. The outcomes proved that
the method could accurately forecast wind speed even when crucial information is lacking.
To predict wind speed, a deep learning framework based on a bidirectional gated recurrent
unit model was recently implemented [44]. Results demonstrate the method’s potential
for automatically simulating the connection between wind speed, direction, and power.
Wind speed prediction is enhanced by using a Long Short-Term Memory (LSTM) model
trained on data that has been reduced using principal component analysis (PCA) [45]. As a
prediction tool, the PCA-LSTM outperformed the backpropagation neural network and the
SVM model.

2.2. Solar Radiation Prediction Review

It has been found that various ML and DL applications yield significantly mixed
results when applied to solar radiation predictions. The authors utilized five different
machine learning models [46]: the Feedforward model, the echo state model, the 1D-
Convolutional model, the LSTM neural network model, and the Random Forest (RF) model.
Six factors were considered: the amount of cloud cover, temperature, relative humidity,
dew point, wind direction, and time spent in the sun. For hourly forecasting, the RMSE is
6.60 percentage points. However, the study may not be as accurate as it might be because
key factors were overlooked. In [47], sun irradiance is predicted at many sites using the
convolutional LSTM approach, with an RMSE of less than 15% achieved. However, the
suggested DL method may need further training (transfer learning) if alternative settings
are considered. However, DL applications have been widely used in recent years with
great success. Using the hybrid DL model described by the authors [48], we compared the
RMSE values obtained for one-year solar radiation forecasts at intervals corresponding
to the four seasons. However, the study only investigated brief time intervals to develop
solar irradiance forecasts. The authors of this study use support vector machine (SVM) and
RF models to estimate the output of individual PV generators and evaluate their relative
performance. To predict solar irradiance from known meteorological variables, including
temperature, humidity, precipitation, and wind speed, utilized both the Support Vector
Machines (SVM) and Random Forest (RF) models [49]. It has been shown that a combination
of a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) can
accurately predict solar radiation with an RMSE of 0.0987 when using input datasets
including temperature, wind speed, humidity, and ground temperature [50]. In [51], an
auto-regressive time-series (ARTS) model was used to make predictions based on local and
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worldwide meteorological data (air temperature and wind speed) from December 2017 to
May 2018. The model had an accuracy of 80%. However, just the air temperature and wind
speed are considered in this study’s forecasting procedure. Air pressure, zenith angles,
temperatures, and humidity were all considered by the authors of [52].

According to the cross-correlation coefficient, predicted and observed quantities of
solar radiation had a correlation of 0.947. Using convolutional LSTM networks, authors
in [53] investigated solar radiation predictions one day in advance. Over two years of
continuous recording, five parameters—temperature, pressure, humidity, wind speed, and
wind direction—were used as inputs to a long short-term memory (LSTM) neural network.
The RMSE for the prediction turned out to be a very respectable 0.0865. However, the
performance of the suggested models is not examined in long-term forecasts. In [54], we
saw a proposal for an ANN-based forecasting model that considered temperature, dew
point, relative humidity, and wind speed. For a forecast spanning 14 days, a MAPE of 0.53
percent was attained. The LSTM is also commonly employed in the same sector, namely
solar irradiation predictions. In [55], LSTM, Convolutional Neural Networks (CNNs), Long
Short-Term Memory (LSTM) Networks, and a CNN-LSTM hybrid model were all trained
separately to forecast the sun irradiance of Johannesburg City. The findings showed that the
Convolutional LSTM performed best, with a normalized RMSE of only 1.62%. (correspond-
ing to an RMSE of 7.18). To make accurate forecasts of solar irradiance, the authors of [56]
employed a convolutional neural network (CNN), a bidirectional LSTM, and a stacked
LSTM. Humidity, height, temperature (at the station and outside), pressure (at sea level and
at the station’s altitude), and wind speed are the inputs. The authors found that stacked
LSTM has the lowest MAE for estimating solar irradiance using data from September 2019
through February 2020. Predictions for temperature, precipitation, and wind speed were
made using data collected during four years in [57], yielding an MAE of 0.708. The authors
tested a stacked bidirectional LSTM (SBLSTM) method for daily and weekly forecasts to
predict future loads. They suggested three ways to significantly boost SB-performance:
LSTM’s expanding the processed dataset, allowing the capture of variants not included
in the restricted accessible dataset, and adopting alternative topologies. Researchers have
demonstrated that image processing algorithms can accurately anticipate the future loca-
tion of clouds and sun blockage by monitoring moving clouds [58]. By integrating image
processing and machine learning, the researchers suggested a framework for predicting
future sun irradiation variations. To analyze complete sky photos with 6-month datasets,
CNNs were utilized, and the resulting RMSE was 6.11.

2.3. This Research

The proposed approach presented in this paper is based on optimizing the parameters
of a stacked ensemble model to boost the forecasting accuracy. The stacked model contains
two levels of prediction models, the first level consists of LSTM and BILSTM models,
whereas the second level contains the Hermite neural network. The proposed optimization
algorithm presented in this paper is based on a modification applied to Al-Biruni Earth
Radius (BER) optimization algorithm using the Genetic Algorithm (GA). The proposed
optimization algorithm is referred to as GABER optimization algorithm. The proposed
model is compared with other prediction models and optimization algorithms and the
results proved its superiority, effectiveness, and generalization of the proposed approach in
predicting the wind speed and solar radiation measures accurately.

3. Data Sources and Methods

This section presents the data sources employed in this research and discusses the
main methods used in building the proposed methodology.

3.1. Wind Speed Data Source

In this work, we evaluate a dataset for wind speed forecasting to predict hourly
speed at seven different wind farms for up to 48 h in advance. Global Energy Forecasting
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Competition 2012—Wind Forecasting is the name of the dataset employed in this work and
located on Kaggle [59]. Figure 1 shows the correlation heatmap of the features included in
the wind speed dataset.

Figure 1. Heatmapof the correlation between the features of (a) solar radiation dataset and (b) wind
speed dataset.

3.2. Solar Radiation Data Source

Kaggle’s HI-SEAS (Hawaii Space Exploration Analog and Simulation) dataset is
used to simulate weather conditions for this work (Solar Radiation Prediction, Task from
NASA Hackathon). It is a meteorological station dataset covering the period of September
2016 through December 2016 (the gap between Missions IV and V) [60]. Radiations,
temperatures, pressures, and other meteorological variables are all included in the dataset.
Figure 1 shows the correlation heatmap of the features of the solar radiation dataset
employed in this work.

3.3. Data Standardization

The purpose of data standardization is to raise the quality of collected data by requiring
the consistent use of a defined set of metrics. In this research, the following standardizing
formula is employed [61]:

ˆdata =
dataset− µ

σ
(1)

where σ is the standard deviation and µ is the average value of the dataset distribution.

3.4. Feature Selection

Feature selection refers to the challenge of narrowing down a large pool of candidate
features to a manageable amount that will allow for a more precise data model to be built.
Using a transfer function to derive probability values to swap members of the vector that
can be 0 (not selected) or 1 (selected), a vector of ones and zeros is defined as a subset of
features, and the feature selection problem is formulated. Each dimension of the dataset
corresponds to the length of the vector. In addition, a fitness function is established to rate
the specific collection of features. Since the goal of feature selection is often to minimize
the number of selected features while optimizing the correctness of the data model, this
problem is known as a multi-objective optimization problem [62]. The objective is modeled
as a fitness function that is used to measure the quality of the selected features [63].

3.5. Long Short-Term Memory (LSTM)

The application of LSTMs to time series prediction problems is where they truly shine.
Backpropagation in recurrent neural networks can be plagued by the disappearing and
exploding gradient problem, although LSTMs are purpose-built to mitigate this problem.
It is safe to say that LSTM is a kind of RNN with a memory cell in each neuron, so the
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network may either remember prior data or discard it. There are three gates: an input gate,
which determines how much data from the previous layer is stored in the cell; an output
gate, which determines how the next layer learns about the state of the current cell and a
forget gate, which determines what data from the current state of the memory cell is to
be forgotten. The LSTM mechanism is graphically represented in Figure 2. While LSTM’s
overall structure is similar to regular RNNs, the cells are constructed differently. During the
RNN training process, the gradient disappearance and gradient explosion problems may
be successfully addressed using LSTM’s novel structure [64–67]. The following notation
represents how a time point is processed within an LSTM cell. The LSTM’s sigmoid layer,
also known as the forget gate layer, is responsible for filtering out any extraneous data from
the cell state.

f f = σ
[
w f (ht−1, xt) + b f

]
(2)

where w f is the weight, ht−1 is the output from the previous time stamp, xt is the new
input, and b f is the bias. The sigmoid layer, also called the input gate layer, is responsible
for determining and updating the new information that will be saved in the cell’s state.
After then, the tanh layer generates a vector of potential new state values.

it = σ[wi(ht−1, xt) + bi] (3)

ĉi = tanh[wc(ht−1, xt) + bi] (4)

Figure 2. The typical structure of LSTM network.

The ct−1 cell state is upgraded to the ct state. A factor of ft amplifies the previous
condition, and any decisions to forget from before are omitted as well. The it ∗ ĉt component
is then included. Based on the relative degree to which each state value has been altered,
this yields the new candidate values.

ct = ft ∗ ct−1 + it ∗ ĉt (5)

The cellular state will be processed through a sigmoid layer to determine which
sections will be output. The output of the sigmoid gate is multiplied by the cell state that
has been tanh-transformed (to force the values to be between−1 and 1) before being output.

ôi = tanh[wo(ht−1, xt) + bi] (6)

3.6. Bidirectional LSTM

For better prediction accuracy, the bidirectional LSTM (BiLSTM) combines forward
and backward information of the input sequence based on the LSTM [68,69]. Meanwhile,
the unidirectional LSTM model utilizes the prior information to forecast the following
information. To generate output for a given time, the forward LSTM layer must know the
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input sequence before and after that time, while the backward LSTM layer must know
the input sequence before and after that time. It is possible to perform operations like
sum, average, and link on the vectors produced by two LSTM layers. The vertical path
symbolizes the one-way flow from the input layer to the hidden layer and subsequently
to the output layer. At the same time, the horizontal direction concurrently calculates the
forward LSTM hidden vector (ht) and the reverse LSTM hidden vector ht for each time
step t. To derive the Bi-LSTM model’s final prediction result, the authors here employ an
approach based on linking two hidden states, as represented by Equations (7)–(9).

−→
h t = LSTM(xt,

−→
h t−1) (7)

←−
h t = LSTM(xt,

←−
h t+1) (8)

yt = W−→
h y

−→
h t + W←−

h y

←−
h t + by) (9)

The forward LSTM weight is denoted by W−→
h y

, the backward LSTM weight by W←−
h y

,

and the output layer bias by by. LSTM(.) stands for the LSTM function. Figure 3 depicts the
BILSTM network architecture.

Figure 3. The typical structure of BILSTM network.

3.7. Hermite Neural Network

Here is an in-depth explanation of how the Hermite polynomial is used in the HNN
construction process. Theoretically, every nonlinear function may be approximated by
a neural network with an input layer, a hidden layer, and an output layer. However,
conventional neural networks are notorious for their convoluted architecture and poor
performance under pressure. On the other hand, the Hermite orthogonal polynomial has a
straightforward recurrence relation, no range restriction on the independent variable, and
minimal computing cost. Therefore, this research provides an HNN for wind speed and
solar radiation forecasting by integrating best square approximation theory and neural net-
work architecture, employing the Hermite orthogonal polynomial as the activation function
of the network’s hidden layer, and employing Al-Biruni Earth Radius (BER) optimization
algorithm to optimize the weights of the HNN. Figure 4 depicts the internal organization
of HNN. In this figure, the structure of the HNN is i− q− 1. The weight matrix the hidden
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layer receives from the input layer is denoted by W = [W1, W2, . . . , Wq]. For the neurons
of i = 1, 2, . . . , q, the weight vector is denoted by Wi = [W1, W2, . . . , Wq]T . In addition, the
activation function of the hidden layer is denoted by H(.) = [H0(.), H1(.), . . . , Hp(.)]. On
the other hand, the weight vector between the output layer and the hidden layer is denoted
by r = [r1, r2, . . . , rq]T and q = p + 1. The bias vector of the neurons is set as 0. Therefore,
hidden layer input is calculated as:

neti = XT
mWi (10)

Consequently, the neurons of the hidden layer has output expressed as:

oi = Hi−1(neti) (11)

The neuron of the output layer is measured as follows:

ŷ = [o1, o2, . . . , oq]
T (12)

Figure 4. The structure of Hermite neural network [70].

The loss function for the HNN training is the sum of the squared deviations between
the actual and target values. This loss function is calculated as L = ∑n

i=1(ŷi − yi)
2, where

the predicted valued is denoted by ŷi with corresponding target values denoted by yi. As a
result, the optimization process may be used to find the optimal values for W and r, two
of the network’s parameters, by minimizing the loss function L. Training impact is very
sensitive to the choice of initial parameters, which is a problem for most conventional
neural networks because gradient descent is used to maximize the networks’ weights. Even
more so, its convergence rate is modest, and it’s easy for premature phenomena to emerge.
The results of the experiments demonstrate that the accuracy criteria may be met by the
three hidden layer nodes of HNN. On the other hand, the accuracy of predictions will
not improve significantly even if the number of nodes is greatly increased and may even
become overfit. With additional variables to account for, the network’s architecture will get
more intricate, making parameter optimization more challenging and lengthening the time
needed to model the system. Therefore, HNN has been configured with a single hidden
layer and four hidden-layer nodes.
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The HNN doesn’t have the problem where it’s hard to determine the number of hidden
layers and neurons, as the network’s topology is straightforward, and there aren’t a lot of
variables to optimize. An intense search capacity, easy operation, and rapid convergence
speed are three theoretical features of the proposed optimization algorithm, which is an
improved version of the Al-Biruni Earth Radius optimization algorithm. The details of the
proposed optimization algorithm are presented and discussed in the next section.

3.8. Al-Biruni Earth Radius (BER) Algorithm

By dividing individuals in the search space into two groups dedicated to exploration
and exploitation, the Al-Biruni Earth Radius (BER) can improve search efficiency. To main-
tain a reasonable equilibrium between exploitative and inquisitive pursuits, agents engage
in a dynamic process of shifting the make-up of subgroups of agents. The exploration
percentage is 70% of the individuals, whereas the exploitation percentage is 30%. The
number of agents in both the exploration and exploitation groups has been raised to im-
prove their global average fitness. The exploration team uses mathematical methods to
look for promising new territory nearby. This is achieved by iteratively exploring all of the
alternatives until one is found that possesses an optimal level of fitness source [71].

Optimization algorithms attempt to find the optimal answer within specified limits.
By employing BER, we may think of each person in the population as a S vector. The search
space is the size Sd, and the optimization parameter or features d is represented by the
vector S = S1, S2, . . . , Sd ∈ R. The fitness function F has been suggested to measure an
individual’s success up to a given threshold. In these optimization stages, populations
are probed to discover the value of S∗ that maximizes fitness. A random sample of the
population is chosen as the first step (solutions). It is necessary to provide the fitness
function, the population size, the dimension, and the minimum and maximum acceptable
solution sizes before BER can optimize.

3.8.1. Exploration Operation

Exploration, as described in further depth below, is the process that finds intriguing
portions of the search space and keeps the search moving ahead past the local optimum.
Using this strategy, the group’s lone explorer will look for potentially fruitful new locations
to explore in the immediate area around their current location, bringing them closer to
the perfect answer. In addition to finding the best solution, exploration must evaluate
its effectiveness. To achieve this goal, one needs to investigate the wide variety of local
possibilities and pick the best for one’s health. This is achieved by the use of the following
equations in BER’s studies:

S(t + 1) = S(t) + D(2r2 − 1), D = r1(S(t)− 1) (13)

where S(t) is the solution vector at iteration t and D is the diameter of the circle inside
which the search agent will look for interesting regions. The range of x is from 0 to 180, and
the value of h is a scalar picked randomly between [0, 2]. As instances of coefficient vectors,
r1 and r2 may be found by solving the equation r = h cos(x)

1−cos(x) .

3.8.2. Exploitation Operation

The team responsible for seizing chances must work to enhance the approaches that
are already in place. Each cycle’s end finds the BER rewarding those who have worked
hardest to reach the most significant fitness levels. Here we will discuss the two distinct
methods used by the BER to achieve its exploitation goal. We can get closer to that solution
if we use the following equation to guide our steps toward the best answer.

S(t + 1) = r2(S(t) + D), D = r3(L(t)− S(t)) (14)
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The BER uses the equation presented below to carry out the abovementioned pro-
cedure. where S(t) is the solution vector at iteration t, L(t) is the best solution vector
and D is the distance vector, and r3 is a random vector constructed using the formula
r = h cos(x)

1−cos(x) that governs the movement steps towards exploring the space around the best
answer: this is the most intriguing of the possible solutions (leader). This motivates some
to look for solutions close to the ideal by exploring alternatives.

S’(t + 1) = r(S∗(t) + k), k = 1 +
2× t2

Max2
iter

(15)

with the optimal solution is denoted by S∗(t). You may choose the optimal S∗ implementa-
tion by contrasting S(t+ 1) with S′(t+ 1). If there has been no change in best fitness during
the preceding two iterations, the solution will be updated using the following equation.

S(t + 1) = k ∗ z2 − h
cos(x)

1− cos(x)
(16)

where z is a random number in the range [0, 1].

3.9. Genetic Algorithm (GA)

The standard GA is composed of two main steps namely, crossover and mutation.
The mutation step creates a new solution with features distinct from those of the parent
solutions. The mutation in nature results in the appearance of a trait previously unknown
in the offspring. This ensures that the algorithm will not converge to a single optimal
solution and that a wide variety of solutions will be generated [72,73]. In this work, we
utilized the mutation concept to improve the exploration of the search space throughout
the operation of the BER algorithm. This process is realized by mutating the positions
of solutions generating by the BER algorithm at a random rate. This mutation allows
exploring additional areas in the search space with potential optimal solutions, which
might not be explored using the standard BER algorithm. Consequently, optimal solutions
can efficiently be found using the proposed hybrid algorithm which is presented in the
next section.

4. The Proposed Methodology

The proposed methodology is depicted in Figure 5. In this figure, the proposed
methodology is based on two layers of forecasting. The first layer comprises a base learner
set (machine learning regression models). The second layer is composed of an optimized
machine-learning model called Meta-learner. The proposed modified BER model is the
optimization algorithm employed in optimizing the regression model, denoted by the
GABER optimization algorithm.
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Figure 5. Architecture of the proposed renewable energy prediction system.

4.1. Stacking Ensemble Model

There are many different kinds of ensemble learning algorithms, and one of them
is the stacking ensemble model [70]. While bagging and boosting algorithms combine
identical models, the stacking ensemble model uses a variety of base learners fused in a
specific way to get superior performance. As shown in Figure 5, the stacking ensemble
model is a predictive model that uses a learning mechanism. We begin by creating several
sub-datasets from the original dataset with nearly the same sample size. To train each
base learner, the sub-datasets are input into a first-layer forecasting model, generating
each learner’s forecast. The final forecasting results are achieved by combining the base
learners’ outputs into a new dataset, which is then fed into the second-layer meta-learner for
training. The first-layer forecasting model of the stacking ensemble model uses the k-fold
cross-validation training technique to reduce the likelihood of the over-fitting phenomena
occurring during the training phase. Here’s how the training itself goes down: Dataset S is
randomly split into K sub-datasets S1, S2, etc., where n is the total number of sub-datasets.
Using learner 1 as an example, we first verify each subset Si{i = 1; 2; . . . , K} independently,
then use K− 1 sub-dataset as a training set to acquire K forecasting outcomes, and then
aggregate these K sets of results into set D1 with the same length as S. The same operation
is performed on the dataset for the other base learners, and the results are combined. The
predicting performance of individual primary learners and the combined impact of several
essential learners must be considered to create the optimal stacking ensemble model. A
good base learner’s forecasting ability helps boost the total forecasting effect. The first
layer of the proposed stacking ensemble model uses LSTM and BiLSTM as its foundation
learners. To generalize and rectify the bias of multiple base learners for the training set, the
HNN model with optimization ability is used in the second layer of the stacking model.
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4.2. The Proposed Forecasting Model

Wind speed and solar radiation data are decomposed after preprocessing to reduce
forecasting errors. The flow chart of the proposed forecasting model based on the proposed
GABER optimization algorithm is shown in Figure 6. As shown in the figure, the steps of
the flowchart are listed in the following:

• The dataset is preprocessed to avoid outliers and adjust the scale of the samples in all
recordings.

• The dataset is divided into training and test sets with 5-fold cross-validation.
• The GABER-HNN model was used for training and forecasting based on the following

steps:

– The GABER and HNN parameters are initialized.
– The fitness value is computed, and the results are shown. Within the iteration

range, the parameters of the HNN are optimized, with the fitness value being the
mean square error gained from training the HNN network and being updated.

– The HNN is trained based on the optimal parameter combination.

• The optimized HNN is used to forecast the testing samples, and each sample’s result
is saved for analysis.

• A statistical analysis is performed to measure the effectiveness and superiority of the
proposed approach.

Figure 6. Flowchart of the steps included in the proposed renewable energy forecasting approach.

4.3. The Proposed Optimization Algorithm

The proposed Genetic Algorithm AL-Biruni Earth Radius (GABER) algorithm is
described in details in Algorithm 1 and the corresponding flowchart is depicted in Figure 7.
The GABER algorithm improves upon the BER and GA in terms of producing the best
possible solution while avoiding their respective disadvantages. To begin, we use the
notation Si(i = 1, 2, . . . , d) to determine the initial locations of algorithm agents. It also
specifies the maximum number of execution iterations, represented by Tmax, and the
parameters for the BER and GA algorithms. The term randGABER is used to describe a value
that may take any value between 0 and 1 with no predictable patterns. If randGABER >
0.5, the GABER algorithm will consult the BER equations to determine how the agents’
placements should be modified. To update the agents’ locations, the GABER algorithm will
employ the GA equations if randGABER ≤ 0.5.
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Figure 7. Flowchart of the steps of the proposed GABER optimization algorithm.
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Algorithm 1 : The proposed GABER algorithm

1: Initialize GABER population Si(i = 1, 2, . . . , d) with size d, iterations Tmax, fitness
function Fn, t = 1, GABER parameters

2: Calculate fitness function Fn for each Si
3: Find best solution as S∗

4: while t ≤ Tmax do
5: if (randGABER > 0.5) then
6: for (i = 1 : i < n1 + 1) do
7: Update r1 = h1

cos(x)
1−cos(x) , r2 = h2

cos(x)
1−cos(x)

8: Calculate D = r1(S(t)− 1)
9: Update positions to head towards the best solution using:

S(t + 1) = S(t) + D(2r2 − 1)
10: end for
11: for (i = 1 : i < n2 + 1) do
12: Update r = h cos(x)

1−cos(x) , r3 = h3
cos(x)

1−cos(x)
13: Calculate D = r3(L(t)− S(t))
14: Update the position of best solution using:

S(t + 1) = r2(S(t) + D)

15: Calculate k = 1 + 2×t2

Max2
iter

16: Update positions to investigate area around best solution using:
S’(t + 1) = r(S∗(t) + k)

17: Compare S(t + 1) and S’(t + 1) to select best solution S∗

18: if best fitness is not changed for last two iterations then
19: Mutate solution as S(t + 1) = k ∗ z2 − h cos(x)

1−cos(x)
20: end if
21: end for
22: else
23: Mutate positions of the solutions using:

S(t + 1) = k ∗ z2 − h cos(x)
1−cos(x) + 2

[
(S’(t + 1)− S(t))−

(
1− S’(t+1)+S(t)

S’(t)

)]
24: end if
25: Update the fitness function Fn for each Si
26: Find best solution as S∗

27: Update GABER parameters, t = t + 1
28: end while
29: Return S∗

4.4. GABER-Based Feature Selection

In selecting the best set of features for improving the classification accuracy, the
continuous output of GABER is converted into binary (0 or 1) using the following sigmoid
function. The binary version of the proposed GABER algorithm is denoted by bGABER.

P(t+1)
b =

{
1 if Sigmoid(PBest) ≥ 0.5
0 otherwise

,

Sigmoid(PBest) =
1

1 + e−10(PBest−0.5)

(17)

where PBest refers to the best position, and t is the iteration number.
The fitness function is used to measure the quality of the solutions resulting from

the optimization algorithm. The formulation of the fitness function is represented by the
following equation.

Fitness = v1Error + v2
|S|
|T| (18)
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where Error represents the classification error, |S| denotes the number of selected features
features, and |T| refers to the number of features. The factors v1 and v2 are in the range of
[0, 1], where v1 = 1− v2.

5. Experimental Results

In this section, the proposed GABER optimization algorithm and stacking ensemble
model are tested with extensive experiments to prove the effectiveness and superiority
of the proposed approach. The experiments are executed on Windows 10 and Python 3.9
with an Intel(R) Core(TM) i5 CPU at 3.00 GHz (manufacturer: Intel Corporation, California,
United States). The experiments were carried out in two separate case studies. In the
first case study, we compare the performance of the GABER method to that of baseline
models on the wind speed dataset. The proposed method is evaluated in terms of the
solar radiation dataset in the second case study. The settings for the GABER algorithm
configuration are presented in Table 1 and the settings of the other optimization algorithms
included in the conducted experiments are shown in Table 2.

Table 1. Configuration parameters of GABER algorithm.

Parameter Values

# Agents 10
# Iterations 80

# Repetitions 20
η ∈ [0, 1]

Mutation probability 0.5
Exploration percentage 70
k (decreases from 2 to 0) 1

Table 2. Configuration parameters of the competing optimization algorithms.

Algorithm Parameter Values

GA Cross over 0.9
Mutation ratio 0.1

Selection mechanism Roulette wheel
Iterations 80

Agents 10
PSO Acceleration constants [2,2]

Inertia Wmax, Wmin [0.6, 0.9]
Particles 10
Iterations 80

GWO a 2 to 0
Iterations 80
Wolves 10

WOA r [0, 1]
Iterations 80
Whales 10

a 2 to 0

5.1. Evaluation Metrics

The achieved results are assessed in terms of the criteria presented in Table 3. The
criteria listed in this table are used to evaluate the performance of the proposed feature
selection method [74–78]. In addition, in this table, the number of runs of the proposed
and other competing optimizers is indicated as M. The best solution at the run number j is
denoted by S∗j , size(S∗j ) refers to the size of the best solution vector. N denoted the number

of points in the test set. V̂n and Vn refer to the predicted and actual values, respectively.
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Table 3. Feature selection results evaluation criteria.

Metric Formula

Best Fitness minM
i=1S∗i

Worst Fitness maxM
i=1S∗i

Average Error 1
M ∑M

j=1
1
N ∑N

i=1 mse(V̂i −Vi)

Average Fitness 1
M ∑M

i=1 S∗i
Average fitness size 1

M ∑M
i=1 size(S∗i )

Standard deviation
√

1
M−1 ∑M

i=1
(
S∗i −Mean

)2

On the other hand, additional metrics are used to measure the performance of the
regression models employed to predict wind speed and solar radiation. These metrics
include root mean error (RMSE), mean absolute error (MAE), mean bias error (MBE), Pear-
son’s correlation coefficient (r), coefficient of determination (R2), Relative RMSE (RRMSE),
Nash Sutcliffe Efficiency (NSE), determine agreement (WI), where N is the number of
observations in the dataset; (V̂n) and (Vn) are the nth estimated and observed bandwidth,
and ( ¯̂Vn) and (Vn) are the arithmetic means of the estimated and observed values. These
metrics are evaluated using the equations presented in Table 4.

Table 4. Prediction results evaluation criteria.

Metric Formula

RMSE
√

1
N ∑N

n=1(V̂n −Vn)2

RRMSE RMSE
∑N

n=1 V̂n
× 100

MAE 1
N ∑N

n=1 |V̂n −Vn|

MBE 1
N ∑N

n=1(V̂n −Vn)

NSE 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(Vn− ¯̂Vn)2

WI 1− ∑N
n=1 |V̂n−Vn |

∑N
n=1 |Vn−V̄n |+|V̂n− ¯̂Vn |

R2 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(∑N

n=1 Vn)−Vn)
2

r ∑N
n=1(V̂n− ¯̂Vn)(Vn−V̄n)√(

∑N
n=1(V̂n− ¯̂Vn)2

)
(∑N

n=1(Vn−V̄n)2)

5.2. Wind Speed Prediction Results

The evaluation of the proposed approach for predicting wind speed is presented in
this section. The evaluation is performed using the proposed feature selection algorithm
and the proposed GABER-based optimized stacked ensemble model. The coming section
presents the recorded results with a description.

5.2.1. Feature Selection Results

The proposed feature selection method is evaluated using the wind speed dataset. The
measured results are presented in Table 5. In this table, it can be noted that the proposed
bGABER method achieved the best results when considering all the evaluation criteria of
feature selection presented in the previous section.
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Table 5. Evaluation of the proposed feature selection method using the wind speed dataset.

bGABER bBER bGA bPSO bGWO bWOA

Average Error 0.6680 0.6811 0.6865 0.6782 0.6942 0.6928
Average Select Size 0.8683 0.9617 0.9700 0.9700 0.9784 0.97003
Average Fitness 0.8043 0.8523 0.8575 0.8494 0.8652 0.86379
Best Fitness 0.7696 0.7888 0.7792 0.7792 0.7984 0.7984
Worst Fitness 0.9114 0.8946 0.9234 0.9234 0.9618 1.06756
Std Fitness 0.3233 0.3261 0.3373 0.3350 0.3377 0.3613
Processing Time (S) 13.513 14.336 14.896 14.456 14.82 15.132

The statistical difference and significance of the proposed feature selection are tested
using two statistical tests: the one-way analysis of variance (ANOVA) test and the Wilcoxon
signed-rank test. These tests are based on two hypotheses denoted by H0 and H1. The
results of these tests are presented in Tables 6 and 7, respectively. The results presented in
these tables indicate the statistical significance of the proposed approach in selecting the
best set of features that can improve the wind speed prediction results.

Table 6. ANOVA of the proposed feature selection method based on the wind speed dataset.

SS DF MS F (DFn, DFd) p Value

Treatment 0.005468 5 0.001094 F (5, 54) = 41.67 p < 0.0001
Residual 0.001417 54 0.00002624

Total 0.006885 59

Table 7. Wilcoxon of the proposed feature selection method based on the wind speed dataset.

bGABER bBER bGA bPSO bGWO bWOA

Theoretical median 0 0 0 0 0 0
Actual median 0.668 0.681 0.686 0.678 0.694 0.692
Number of values 10 10 10 10 10 10
Wilcoxon Test
Sum of signed ranks 55 55 55 55 55 55
Sum of +ve ranks 55 55 55 55 55 55
Sum of −ve ranks 0 0 0 0 0 0
p value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002
Exact or estimate? Exact Exact Exact Exact Exact Exact
Significant? Yes Yes Yes Yes Yes Yes
Discrepancy 0.668 0.6811 0.6865 0.6782 0.6942 0.6928

In addition, the plot shown in Figure 8 depicts the average error of the results achieved
by the proposed feature selection methods compared to the other five feature selection
methods. In this plot, the proposed feature selection method achieved the minimum
average error value, which reflects its effectiveness and superiority.

On the other hand, the plots shown in Figure 9 illustrate the performance of the
proposed feature selection method when tested on the wind speed dataset. In these plots,
the tiny residual error with reasonable fitting between the predicted and actual residuals
can be noted. In addition, the heatmap shows a significant impact of the proposed method
compared to the other feature selection methods.
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Figure 8. Average error of the results achieved by the proposed feature selection method compared
to other methods based on the wind speed dataset.

Figure 9. Visualizing the performance of the proposed feature selection method applied to wind
speed dataset.

5.2.2. Prediction Results

The prediction results are evaluated in Table 8. This table presents the prediction
results achieved by the proposed optimized HNN stacked ensemble compared to those
performed by LSTM, BILSTM, and non-optimized HNN ensemble. The results presented in
this table prove the effectiveness and superiority of the proposed approach. The proposed
approach achieves the minimum RMSE, MAE, MBE, and RRMSE values. The proposed
approach also achieves the maximum r, R2, NSE, and WI values. These results emphasize
the effectiveness of the proposed approach. In addition, a statistical analysis is performed
on the prediction results and presented in Table 9. In this table, the statistical analysis
results are compared to the other five optimization algorithms. The analysis results and
comparison show the superiority of the proposed optimized stacked ensemble.
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Table 8. Evaluation of the prediction results achieved by the proposed optimized stacked ensemble
model applied to the wind speed dataset.

RMSE MAE MBE r R2 RRMSE NSE WI

LSTM 0.0095 0.0069 −0.0006 0.9605 0.9226 19.1545 0.9218 0.8868
BILSTM 0.0031 0.0020 −0.0002 0.9952 0.9904 8.3202 0.9903 0.9630
Non-Optimized HNN Ensemble 0.0011 0.0007 −0.0001 0.9994 0.9989 3.3862 0.9989 0.9885
Proposed Optimized HNN Ensemble 0.0003 0.0003 0.0000 0.9997 0.9995 2.2035 0.9995 0.9922

Table 9. Statistical analysis of the prediction results achieved by the proposed optimized stacked
ensemble model applied to the wind speed dataset.

GABER BER GA PSO GWO WOA

Number of values 10 10 10 10 10 10
Range 0.00002 0.00014 0.0001 0.0002 0.000124 0.0001
Minimum 0.000333 0.000457 0.00052 0.000599 0.000785 0.000871
Mean 0.000343 0.000551 0.0005924 0.000699 0.0008039 0.0009126
Maximum 0.000353 0.000597 0.00062 0.000799 0.000909 0.000971
Median 0.000343 0.000557 0.000598 0.000699 0.000785 0.000912
75% Percentile 0.000343 0.000557 0.000598 0.000699 0.0008013 0.000922
25% Percentile 0.000343 0.000557 0.000598 0.000699 0.000785 0.0008885
Std. Deviation 0.000004714 0.00003534 0.00002636 0.00004714 0.0000422 0.00003011
Std. Error of Mean 0.000001491 0.00001118 0.000008336 0.00001491 0.00001335 0.000009522
Sum 0.00343 0.00551 0.005924 0.00699 0.008039 0.009126

Moreover, another set of experiments is conducted to study the statistical difference
and significance of the proposed optimized stacked ensemble. This set includes the ANOVA
and Wilcoxon signed-rank tests. The results of these tests are presented in Table 10 and
Table 11, respectively. From Table 10, the p-value is less than 0.005, indicating a statistical
difference between the proposed approach and other methods included in the conducted
experiments. Similarly, the p-value in the results recorded in Table 11 confirms the statistical
difference and significance of the proposed approach.

On the other hand, the wind speed prediction results are visually analyzed as depicted
in the plots shown in Figure 10. These plots show a promising performance of the proposed
approach in predicting wind speed. These plots include residual, homoscedasticity, quartile-
quartile (QQ), and heatmap. The residual and homoscedasticity show a minimal error in
predicting the wind speed, whereas QQ and heatmap plots show a robust prediction.

To clearly show the robustness of the proposed optimized stacked ensemble,
Figure 11 shows the RMSE values achieved by the proposed method compared to the
other five methods. The proposed method achieves the minimum RMSE value, reflecting
its robustness.

Table 10. ANOVA test applied to the prediction results achieved by the proposed optimized ensemble
model applied to the wind speed dataset.

SS DF MS F (DFn, DFd) p-Value

Treatment 0.000002024 5 4.048× 10−7 F (5, 54) = 353.3 p < 0.0001
Residual 6.188× 10−8 54 1.146× 10−9

Total 0.000002086 59
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Table 11. Wilcoxon test applied the prediction results achieved by the proposed optimized ensemble
model applied to the wind speed dataset.

GABER BER GA PSO GWO WOA

Theoretical median 0 0 0 0 0 0
Actual median 0.000343 0.000557 0.000598 0.000699 0.000785 0.000912
Number of values 10 10 10 10 10 10
Sum of signed ranks 55 55 55 55 55 55
Sum of +ve ranks 55 55 55 55 55 55
Sum of −ve ranks 0 0 0 0 0 0
p-value 0.002 0.002 0.002 0.002 0.002 0.002
Exact or estimate? Exact Exact Exact Exact Exact Exact
Significant? Yes Yes Yes Yes Yes Yes
Discrepancy 0.000343 0.000557 0.000598 0.000699 0.000785 0.000912

Figure 10. Visualizing the performance of the proposed optimized stacked ensemble in predicting
wind speed.
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Figure 11. RMSE of the results achieved by the proposed optimized stacked ensemble method
compared to other methods applied to the wind speed dataset.

5.3. Solar Radiation Prediction Results

The evaluation of the proposed approach for predicting solar radiation is presented in
this section. The evaluation is performed using the proposed feature selection algorithm
and the proposed GABER-based optimized stacked ensemble model. The coming section
presents the recorded results with a description.

5.3.1. Feature Selection Results

The solar radiation dataset is used to analyze the proposed feature selection approach.
Table 12 displays the measured data. According to this table, the proposed bGABER
algorithm outperformed the other methods in terms of all the assessment criteria of feature
selection.

Table 12. Evaluation of the proposed feature selection method when applied to the solar radia-
tion dataset.

bGABER bBER bGA bPSO bGWO bWOA

Average Error 0.3904 0.4035 0.4088 0.4006 0.4166 0.4152
Average Select Size 0.5907 0.6841 0.6924 0.6924 0.7008 0.6924
Average Fitness 0.5267 0.5746 0.5799 0.5718 0.5876 0.5862
Best Fitness 0.4920 0.5112 0.5016 0.5016 0.5208 0.5208
Worst Fitness 0.6338 0.6169 0.6458 0.6458 0.6842 0.7899
Std Fitness 0.0457 0.0485 0.0597 0.0574 0.0600 0.0837
Processing Time (s) 7.783 8.606 9.166 8.726 9.09 9.402

The ANOVA and Wilcoxon tests are used to examine the statistical differences and
significance of the proposed feature selection when applied to solar radiation prediction.
The H0 and H1 hypotheses form the basis for these examinations. Tables 13 and 14 display
the results of these analyses, respectively. The table shows that the suggested method is
statistically significant in choosing the appropriate collection of features to enhance solar
radiation prediction outcomes.

Table 13. ANOVA test of the results achieved by the proposed feature selection method when applied
to the solar radiation dataset.

SS DF MS F (DFn, DFd) p-Value

Treatment 0.007312 5 0.001462 F (5, 54) = 19.40 p < 0.0001
Residual 0.00407 54 0.00007538
Total 0.01138 59
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Table 14. Wilcoxon test of the results achieved by the proposed feature selection method when
applied to the solar radiation dataset.

bGABER bBER bGA bPSO bGWO bWOA

Theoretical median 0 0 0 0 0 0
Actual median 0.3904 0.4035 0.4088 0.4006 0.4166 0.4152
Number of values 10 10 10 10 10 10
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 55 55 55 55 55 55
Sum of +ve ranks 55 55 55 55 55 55
Sum of −ve ranks 0 0 0 0 0 0
p-value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002
Exact or estimate? Exact Exact Exact Exact Exact Exact
Significant? Yes Yes Yes Yes Yes Yes
Discrepancy 0.3904 0.4035 0.4088 0.4006 0.4166 0.4152

Figure 12 shows the results of testing the proposed feature selection approach on the
solar radiation dataset. The acceptable match between the predicted and actual residuals
is shown in these figures, with little residual error clearly shown in the figure. Compared
to alternative feature selection methods, the heatmap also demonstrates the suggested
approach’s substantial influence on the feature selection quality when applied to the solar
radiation dataset.

Figure 12. Visualizing the performance of the proposed feature selection method when applied to
solar radiation dataset.

The average error of the results produced by the proposed feature selection method in
contrast to the other five feature selection methods is also depicted graphically in Figure 13.
This graph demonstrates the usefulness and superiority of the suggested feature selection
approach by displaying the least average error value.
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Figure 13. Average error of the results achieved by the proposed feature selection method compared
to other methods based on the solar radiation dataset.

5.3.2. Prediction Results

Table 15 displays the outcomes of examining the forecasts. The table below shows
how the proposed optimized HNN stacked ensemble performed in prediction compared to
the LSTM, BILSTM, and non-optimized HNN ensemble. It is clear from this table that the
proposed method is superior and efficient. The suggested method minimizes the RMSE,
MAE, MBE, and RRMSE. Additionally, the suggested approach maximizes r, R2, NSE, and
WI. The outcomes demonstrated the efficacy of the proposed method. Table 16 displays the
results of a statistical analysis done on the predictions. This table compares the statistical
analysis’s results with five different optimization strategies. The comparison and analysis
findings support the idea that the proposed optimized stacked ensemble is the best option.

Table 15. Evaluation of the prediction results based on the solar radiation dataset.

RMSE MAE MBE r R2 RRMSE NSE WI

LSTM 0.00423 0.00307 −0.00026 0.96085 0.92293 15.46608 0.92217 0.88721
BILSTM 0.00138 0.00090 −0.00008 0.99552 0.99073 4.95515 0.99068 0.96332
Non-Optimized HNN Ensemble 0.00049 0.00031 −0.00003 0.99980 0.99926 3.23935 0.99925 0.98883
Proposed Optimized HNN Ensemble 0.00015 0.00011 0.00001 0.99990 0.99986 0.91144 0.99985 0.99260

Table 16. Statistical analysis of the prediction results achieved by the proposed optimized ensemble
model when applied to the solar radiation dataset.

GABER BER GA PSO GWO WOA

Number of values 10 10 10 10 10 10
Range 0 0.0001 0.00012 0.0001 0.0002 0.0003
Maximum 0.000153 0.000373 0.000439 0.000512 0.000717 0.000974
Mean 0.000153 0.0003614 0.000411 0.0004941 0.000617 0.000854
Minimum 0.000153 0.000273 0.000319 0.000412 0.000517 0.000674
Median 0.000153 0.000373 0.000419 0.000512 0.000617 0.000874
75% Percentile 0.000153 0.000373 0.000419 0.000512 0.000617 0.000874
25% Percentile 0.000153 0.000369 0.000419 0.0004923 0.000617 0.000849
Std. Deviation 0 0.00003146 0.00003293 0.00003806 0.00004714 0.00007888
Std. Error of Mean 0 0.00000995 0.00001041 0.00001204 0.00001491 0.00002494
Sum 0.00153 0.003614 0.00411 0.004941 0.00617 0.00854

The statistical variation and importance of the suggested optimized stacked ensemble
are also investigated in the second series of experiments. Among the tests that are included
are the ANOVA and Wilcoxon signed-rank tests. Tables 17 and 18 display the findings of
these statistical tests. The proposed method shows statistical significance in comparison to
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the other techniques used in the experiments (with p < 0.005), as shown in Table 17. The
p-value also confirms the statistical difference and significance of the suggested method in
the findings recorded in Table 18.

The plots shown in Figure 14 provide for visual analysis of the outcomes of the wind
speed predictions. These plots demonstrate the potential of the proposed method for
predicting solar radiation. The residual, homoscedasticity, QQ, and heatmap plots are also
included in the figure. The QQ and heatmap plots and the residual and homoscedasticity
statistics demonstrate highly accurate solar radiation forecasting.

Figure 14. Visualizing the performance of the proposed optimized stacked ensemble in predicting
solar radiation.

Table 17. ANOVA test applied to the results of the proposed optimized ensemble when applied to
the solar radiation dataset.

SS DF MS F (DFn, DFd) p Value

Treatment 0.000002846 5 5.692× 10−7 F (5, 54) = 285.4 p < 0.0001
Residual 1.077× 10−7 54 1.995× 10−9

Total 0.000002954 59

Figure 15 demonstrates the robustness of the proposed optimized stacked ensemble
by comparing the RMSE values attained by the suggested technique with those of the other
five methods. With the suggested strategy, the RMSE is minimized, demonstrating its
reliability.
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Table 18. Wilcoxon test applied to the results achieved by the proposed optimized ensemble when
applied to the solar radiation dataset.

GABER BER GA PSO GWO WOA

Theoretical median 0 0 0 0 0 0
Actual median 0.000153 0.000373 0.000419 0.000512 0.000617 0.000874
Number of values 10 10 10 10 10 10
Wilcoxon Signed Rank Test
Sum of signed ranks 55 55 55 55 55 55
Sum of +ve ranks 55 55 55 55 55 55
Sum of −ve ranks 0 0 0 0 0 0
p-value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002
Exact or estimate? Exact Exact Exact Exact Exact Exact
Significant? Yes Yes Yes Yes Yes Yes
Discrepancy 0.000153 0.000373 0.000419 0.000512 0.000617 0.000874

Figure 15. RMSE of the results achieved by the proposed optimized stacked ensemble method
compared to other methods applied to the solar radiation dataset.

6. Conclusions

To predict wind speed and solar energy radiation, this paper introduces a novel
optimization algorithm based on a modification applied to the recently emerged BER
algorithm inspired by the mutation of the genetic algorithm and is referred to as the
GABER algorithm. The proposed optimization algorithm is employed to optimize a new
stacked ensemble model consisting of two levels; the first is composed of two prediction
models, namely LSTM and BILSTM, and the second is composed of the HNN model. The
HNN model in the proposed stacked ensemble model is optimized using the proposed
GABER algorithm to improve the prediction accuracy of wind speed and solar radiation.
To show the superiority of the proposed approach, a set of experiments is conducted based
on five other optimization methods and three other prediction models in terms of the
wind speed and solar radiation datasets. Experimental results showed the superiority and
effectiveness of the proposed approach in predicting both wind speed and solar radiation.
This proved the generalization of the proposed method in accurately predicting renewable
energy. On the other hand, statistical tests were conducted to study the statistical difference
and significance of the proposed approach. The recorded results confirmed the expected
findings. The potential future perspectives of the proposed approach are to evaluate it in
terms of other datasets of significant scale to emphasize its generalization.
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Nomenclature
Machine learning models

ANN Artificial neural network
ARMA Auto-regressive moving average
AWNN Adaptive wavelet neural network
BER Al-Biruni earth radius algorithm
BiLSTM Bidirectional long short-term memory
CNN Convolutional neural network
DL Deep learning
GA Genetic algorithm
GABER Genetic algorithm with Al-Biruni earth radius algorithm
GSA Gravitational search algorithm
GWO Grey wolf optimization algorithm
HNN Hermite neural network
KNN K-nearest neighbors
LSSVM Least squares support vector machine
LSTM Long short-term memory
MAE Mean absolute error
MBE Mean bias error
ML Machine learning
NSE Nash Sutcliffe Efficiency
PCA Principle component analysis
PSO Particle swarm optimization algorithm
RF Random forest
RMSE Root mean square error
RNN Recurrent neural network
RRMSE Relative root mean square error
SVM Support vector machines
WOA Whale optimization algorithm
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