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Abstract: The area of a Microgrid (µG) is a very fast-growing and promising system for overcoming
power barriers. This paper examines the impacts of a microgrid system considering Electric Vehicle
Grid Integration (EVGI) based on stochastic metaheuristic methods. One of the biggest challenges
to slowing down global climate change is the transition to sustainable mobility. Renewable Energy
Sources (RESs) integrated with Evs are considered a solution for the power and environmental issues
needed to achieve Sustainable Development Goal Seven (SDG7) and Climate Action Goal 13 (CAG13).
The aforementioned goals can be achieved by coupling Evs with the utility grid and other RESs using
Vehicle-to-Grid (V2G) technology to form a hybrid system. Overloading is a challenge due to the
unknown number of loads (unknown number of Evs). Thus, this study helps to establish the system
impact of the uncertainties (arrival and departure Evs) by proposing Stochastic Monte Carlo Method
(SMCM) to be addressed. The main objective of this research is to size the system configurations using
a metaheuristic algorithm and analyze the impact of an uncertain number of Evs on the distribution
of residential power in Tripoli-Libya to gain a cost-effective, reliable, and renewable system. The
Improved Antlion Optimization (IALO) algorithm is an optimization technique used for determining
the optimal number of configurations of the hybrid system considering multiple sources, while the
Rule-Based Energy Management Strategy (RB-EMS) controlling algorithm is used to control the flow
of power in the electric power system. The sensitivity analysis of the effect parameters has been
taken into account to assess the expected impact in the future. The results obtained from the sizing,
controlling, and sensitivity analyses are discussed.

Keywords: Microgrid (µG); renewable energy sources; Vehicle-to-Grid (V2G); Sustainable Development
Goal Seven (SDG7); Improved Antlion Optimization (IALO); Rule-Based Energy Management Strategy
(RB-EMS); Stochastic Monte Carlo Method (SMCM)

1. Introduction

Electrification is considered to improve human lifestyles. Due to the cumulative
increases in fossil fuels, most of the results of Research and Development (R&D) studies are
considering Renewable Energy Sources (RESs) integration with Electric Vehicles (Evs) [1].
The foregoing integration is utilized to overcome power and environmental limitations [2].
EV is considered an essential e-mobility to reduce Greenhouse Gas (GHG) emissions
through the high penetration of RESs [3], where Evs could provide an ancillary service that
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can be classified into power and energy services [4]. In ref. [5], several ancillary services
and optimization methods, along with the EV charging infrastructure, are comprehensively
discussed. Various nations including the USA, Japan, Kenya, Algeria, Nigeria, Turkey,
Ethiopia, Germany, Spain, Canada, India, Indonesia, China, Malaysia, Brazil, Denmark,
Netherlands, Morocco, and the UK are adopting Evs [6]. All the aforementioned countries
are exploiting Evs, however, the EV broader market comes from Germany, the UK, China,
and the USA (Austin, TX, USA). In spite of the price of Evs is still high due to the high cost
of batteries and other EV’ components in comparison with Internal Combustion Engine
Vehicles (ICEVs), drivers are still buying Evs [7]. Additionally, the lifetime of the battery
and charging infrastructure are remaining a limitation of Evs battery [8]. Microgrids
(MG) are considered as connecting multi-sources in either form (grid-connected or grid-
isolated) systems with Vehicle-to-Grid (V2G) technology that is also known as Vehicle-Grid-
Integration (VGI) [9]. Whereas there is no standard definition for MG among researchers,
however, all agree as an interconnection of loads and distribution resources. Furthermore,
there is a definition from the USA Department Of Energy (DOE) which is “a group of
interconnected loads and distributed energy resources within clearly defined electrical
boundaries that acts as a single controllable entity with respect to the grid, which can
connect and disconnect from the grid to enable it to operate in both grid-connected or
isolated-mode” [10].

Globally, in most developed nations, RESs are integrated with Evs to form V2G as
a cutting-edge technology [11]. The co-connected RESs with the charge station help to
alleviate congestion on the electric network [9]. Evs have dual functions as load and energy
storage, however, it makes an impact on the grid either positive or negative due to the
unknown load (uncertain) [12]. The positive impacts that are feasible on the environment,
grid, and customers can be estimated using the Stochastic Monte Carlo Method (SMCM),
one of the methods that deals with uncertainties [13], while the negative impact can be
on load profiles, voltage, and frequency imbalances, which can be addressed by a very
well-planned system. The SMCM, also known as the multiple probability simulation
and named after a famous gambling city (Monaco), involves large numbers of computer
simulations with randomly selected input [14]. It is a stochastic method used when the
input data has a random variable, such as charging and discharging different Evs, for
long-term or complex data [15]. The reason for utilizing stochastic methods is due to the
goal of gaining information out of randomness. Furthermore, due to the popularity of
the results provided by stochastic methods in power system analysis. The revolution in
the transportation sector is rising among researchers by using different types of energy
sources to meet a clean and protected environment [16]. Moving toward sustainable
mobility is one of the most significant obstacles to reducing global warming and allows
achieving climate change plans, such as Sustainable Development Goal Seven (SDG7)
and Climate Action Goal 13 (CAG13) [17]. An EV is used to emulate the pollution and
energy crisis [18]. As a result of current discussions among scholars to solve environmental
challenges (melting polar ice, increasing sea levels, and GHG emissions), Evs are involved.
Furthermore, with the depletion of non-renewable energy sources, they have been looking
for alternatives to improve living standards. Due to the aforementioned statement, the oil
price has increased globally.

According to the No Free Lunch (NFL) theory, the optimization tools considered in
this study are not adequate for handling sizing problems and other concerns [19]. In terms
of sizing optimization, algorithms can be classified into metaheuristics and heuristics, as
they are used to find the best configuration of the hybrid system [20]; metaheuristic and
heuristic terminologies can be used interchangeably [21]. Furthermore, metaheuristics is a
fascinating field of study that has made significant advances in the solving of intractable
optimization problems [22]. Several metaheuristic algorithms have been reported in the
literature to address optimization problems, along with numerous techniques [23]. The
Ant Lion Optimization (ALO) Algorithm [24], the Cuckoo Search Algorithm (CSA) [25],
and Particle Swarm Optimization (PSO) [26] are considered benchmarks. The Improved
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Antlion Optimization (IALO) as ALO variants has been used in the literature several times
with its variants [27]. Energy Management Strategies are classified into three classifications:
Optimization-Based (OB), Rule-Based (RB), and Learning-Based (LB) in order to control
and guarantee the smooth spreading of power among the system components [28].

The major contribution of the article is sizing the hybrid system components using
IALO and controlling the flow of power in the system using RB-EMS. Furthermore, es-
tablishing the impact of Evs on the grid using SMCM while considering power level 2
on various energy sources in the residential area, due to the lower price compared with
commercial charging, is significant. A sensitivity analysis of the key affected sources is
also considered. The rest of the article is structured as follows: the introduction is replaced
in Section 1, the proposed system and description of input modeling data are positioned
in Section 2, the EMS is presented in Section 3, and Section 4 is denoted for the SMCM
tool to deal with the uncertain number of Evs integrated into the system. The optimiza-
tion method and the objective function along with the constraints presented in Section 5.
Section 6 presents the results and discussions of sizing components and SMCM, followed
by the sensitivity analysis that measures the effect of increasing or decreasing the EV. Finally,
the article’s summary conclusion is drawn, followed by an acknowledgment and a list
of references.

2. The Proposed System and Input Modeling Data

The case study is the capital city of Libya (Tripoli) that’s located in North Africa with
3 million inhabitants and four seasons [29]. The aforementioned city is conducting ICEVs as
a mobility system, which causes environmental barriers [30]. Due to the increasing price of
fuel and continuous electricity interruptions, Evs are the alternative solution by integrating
with RESs and climatology data. The climatology data was obtained from the Global Solar
Atlas (GSA) and evaluated using MATLAB, as shown in the next subsection. The utilized
climatology data are solar irradiance (G), wind speed (v), ambient temperature (Tamb), and
load demand (PL) of domestic loads in order to estimate the output power from various
sources. While the load demand data is acquired from the General Electric Company of
Libya (GECOL) as the only supplying electricity company [31]. Data analysis is needed for
a better understanding of consumer load and the requirements of the available RESs. The
climatology conditions in the seasons (winter, spring, summer, and autumn) are differing
from site to site in the country. Where winter is referring to the cold season without
snowing in the case study and the temperature rich up to 7 ◦C. While the second season
of the year is spring, which indicates the warmest season at 25 ◦C. Summer is the third
season, which refers to the hot season with temperatures of almost 45 ◦C. Lastly, autumn
is the introduction to winter, with a temperature range of up to 20 ◦C. The architecture of
the proposed hybrid system considering EV and Energy Storage Battery System (ESBS)
with Photovoltaic (PV), Wind Turbine (WT) integrated into the utility grid is demonstrated
in Figure 1.

Figure 1. The architecture of the proposed hybrid system.



Energies 2023, 16, 1358 4 of 23

2.1. Climatology Input Data

The daily seasonal and contour plots of the annual load profile in (kW) of the study
area are considered according to the seasonal variations shown in Figure 2. The considered
seasons are spring (March-April-May), summer (June-July-August), autumn (September-
October-November), and winter (December-January-February). The load demand data
is exploited in the mathematical equations to estimate the output power from other inte-
grated sources.

Figure 2. Load demand of the case study: (a) Seasonal and (b) Annual Counterplot.

The amount of solar-radiated energy incident on the surface per unit area and per unit
time is called irradiance, and the case study is rich in terms of solar irradiance over the
years, as shown in Figure 3. The average duration of sunlight in Libya is more than 3000 h
per year, according to a report by the Libyan Renewable Energy Authority (LREA) [32].
The solar panel considered to obtain the output power in this study is a PV module
(STP275S-20/Wem), as per the specification tabulated in Table 1 [33], where the output
power obtained from the PV can be calculated by Equation (1).

Figure 3. Monthly solar irradiance data for the case study.
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Table 1. Input components and economic parameters data.

Parameters Specification Value Units

Photovoltaic
[33]

Initial power at STC 275 W

Initial Cost 2.15 $/WP

Lifetime 25 Years

Maintenance cost 20 $/year

Nominal operating cell temperature 45 ◦C

Temperature coefficient −3.7 × 10−3 1/◦C

Module efficiency 16.9 %

Replacement cost 0 $/year

Battery
[34]

Lifetime 2 Year

Hourly self-discharge rate 0.007 %/hour

Initial cost 280 $/kWh

O&M Cost 1 $/%

Rated capacity 45.2 kWh

Maximum DOD 70 %

Max SoC 100 %

Min SoC 30 %

Replacement cost 280 $/year

Maintenance cost 5 $/year

Converter
[35]

Lifetime 15 Years

Efficiency 92 %

Initial cost 2500 $

Economic parameters details [35]

Project lifetime 25 Years

Inflation rate 5 %

Interest rate 3 %

Wind Turbine
[36]

Cut-in wind speed 3 m/s

Cut-out wind speed 25 m/s

Rated power of wind turbine 7.5 kW

Rated wind speed 13 m/s

Replacement cost 0 $/unit

Electric Vehicle
[37,38]

Maximum SoC 0.95 %

Minimum SoC 0.2 %

Lithium-ion battery 250 Wh/kg

Electric Grid
Power importing price (sell) 0.05 $/kWh

Power exporting price (purchase) 0.04 $/kWh

PPV(t) = P(PVrated)
×

G(t)

1000
×
[

1 + αt

(
Tamb + (G(t)×(

NOCT−20
800

)
− TCSTC

)]
(1)

where the PPV(t) refers to the obtained output power from the PV (Watt) at a time (t),
P(PVrated)

is the PV-rated power in (Watt), G(t) represents the solar irradiance through the
year (W/m2), 1000 (W/m2) is the rated radiation at the earth’s surface, the irradiance on the
cell surface (800 W/m2), αt is the temperature coefficient, which equals (−3.7 ×10−3), Tamb
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refers to the ambient temperature (◦C), TCSTC is the cell temparuture at Standard Test
Condition (STC) [39]. Additionally, 20 refers to the air temperature in (◦C) while the
considered value of Nominal Operation Cell Temperature (NOCT) is 45 (◦C) in this study
(depending on the PV module specified by the manufacturer).

The monthly data set of ambient temperature collected from GSA is demonstrated in
Figure 4. It uses to measure the yielded power from the PV along with the solar irradiance
as exploited in Equation (1) [40].

Figure 4. Monthly ambient temperature data for the case study.

The second RESs used in this study is wind energy, where the kinetic energy of
the wind is used to obtain the output power from the WT through (Eocycle EO20). The
description details of the aforementioned WT are presented in Table 1. The monthly wind
speed data collected for the study area is demonstrated in Figure 5, where the output power
obtained from the WT can be calculated by Equation (2).

PWT (t) =


0

Pr
v(t)−vcut−in
vr−vcut−out

Pr

v(t) ≤ vcut−in or v ≥ vcut−out
vcut−in < v < vr

vr < v(t) < vcut−out

(2)

where the PWT (t) denoted as the output power from the WT in (Watt), Pr represents the
WT-rated power in (kW), vr is the nominal wind speed in (m/s) vcut−out is the cut out
(m/s), vcut−in defined as the cut in speed that measures in (m/s) [39].
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Figure 5. Monthly wind speed data of the case study.

2.2. Energy Storage Battery

It is a chemical device that transfers chemical energy to electric power and vice
versa. The two batteries considered in this study are Lithium-Ion (Li-Ion) and Lithium-ion
Phosphate (LiFePO4) with their datasheets reported in ref. [41], where Li-Ion is considered
an EV battery while the considered deep-cycle battery is LiFePO4. It is the responsible
device for steadying the power balance and absorbing transients within the range of the
maximum and minimum State of Charge (SoC) of the battery [42]. It depends on the charge
and discharge cycle number of the battery, which computes the lifespan of energy storage.
The battery is considered necessary in the system to deal with the intermittent nature of
Renewable Sources (RS). Additionally, the EV battery specification is considered to obtain the
SoC, charging decision, and energy demand, as shown in Table 1. The charge and discharge
amounts of the battery (SoC) can be calculated by Equations (3) and (4), respectively.

SoC(t) = SoC(t − 1).(1 − σ) +

(
(PPV(t) + PWT(t))−

PL(t) + PEVDem

ηinv

)
×ηb (3)

SoC(t) = SoC(t − 1).(1 − σ) +

(
PL(t) + PEVDem

ηinv
− (PPV(t) + PWT(t))

)
×ηb (4)

The SoC (t) refers to the state of charge of the battery at a time (t), PL denoted as
the average load demand, ηb is the efficiency of the battery which equals 95%. The PPV
and PWT are representing the generated output power from the RESs in kW. The σ is the
self-discharge rate of the battery which equals 0.007%/hour [41]. The link between EVs
and the grid is the battery that forms V2G technology, which is the core factor of the EVs in
terms of energy density in comparison with ICEV batteries [43]. The development of EVs
driven by clean energy is the key to solving power and climate challenges.
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2.3. Converter

When a system has both AC and DC components, power converters such as DC/AC
and AC/DC are necessary; the description of the converter is placed in Table 1. The
considered loads in this study are residential (AC), solar PV panels (DC), and batteries that
produce DC output. The converter size is determined by combining peak load demand (Pm

l )
at a time (t) with inverter efficiency (ηinv), while the inverter rating (Pinv(t)) is determined
using Equation (5) [44].

Pinv(t) =
Pm

l (t)
ηinv

(5)

2.4. Residential Charge Facility

Certainly, the utilized future transportation is EVs for large fleet vehicles or light-duty
vehicles that need to be charged in charging stations in order to move. The conceptual
meaning and utilization of a charging station is to deliver and receive electricity from the
grid to the EV in a bidirectional way in various forms of charging stations (commercial or
residential). The considered type of charging in this study is a residential charger not a
commercial due to the differences in tariff, time of charging, and no services fees needed.
The utilized power level for charging the vehicles is level 2 with 208–240 VAC, along with
the power demand of the EV that can be calculated by Equation (6) [17].

PEVDem =
CEV

bat ×
(

SoCEV
max − SoCEV

min

)
T

(6)

where the PEVDem represents the amount of the power demand of EVs in Electric Vehicle
Charging Facilities (EVCF) that refers to the home charger, CEV

bat is the EV battery capac-
ity in (kWh), SOCEV

max and SOCEV
min (0.2% and 0.95%) are the maximum and minimum

(SoCEV
min ≤ SoCEV ≤ SoCEV

max). The state-of-charge of EV batteries ranges from [0, 1] using
the normal distribution (N), where T refers to the difference between the arrival time and
the departure time (T = TimeEV

arrive − TimeEV
Departure) of EVs (charging time duration). Fur-

thermore, the departure should be greater than the arrival time (TimeEV
Departure > TimeEV

arrive)
that can be determined by the SoCEV [45].

2.5. Utility Grid

The utility grid is a general supplier using fossil fuels (oil, gas, or coal) for running
electric appliances; at the same time, it may cause some interruptions or environmental
problems, and BT and RESs can be utilized [45]. While there is an absence of RESs energy
and the battery is not charged or sufficient to meet the demand, the grid can supply the
system. The system can be supplied from the main grid, which has different prices for
buying and selling [34]. The control parameters (design variables) that are set before
running the optimization algorithm are tabulated in Table 1 [46,47].

Rgrid =
8760

∑
t=1

rate f eed−in × Egrid(selling) (7)

Cgrid = Cp ×
8760

∑
t=1

Egrid(purchased) (8)

In Equation (7) the Rgrid represents the revenue of selling energy from the utility grid
for 8760 h, rate f eed−in is the rated tariff of the study area [48], Egrid(selling) indicates as the
sell energy that can be obtained by Equation (9), while in Equation (8) presented the Cp
which refers to the cost of purchasing 1kW of energy from the grid. The total amount of
purchased energy from the grid can be acquired by Equation (10).

Pgrid
S (t) = [PPV (t) + PWT(t)+[(SoCBT (t)− SoCmax

BT (t))× ηinv ]]−PEVDem (9)
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Pgrid
P (t) = PEVDem(t)− [PPV (t) + PWT(t) +

[(
SoCBT (t)− SoCmin

BT (t)
)

×ηinv

]]
(10)

Continuously, Equation (9) represents the amount of sold energy (Pgrid
S ) considering

the EV and BT in time (t), while the purchased energy (Pgrid
P ) considering the aforemen-

tioned components calculated by Equation (10).

3. Energy Management Strategy

As a result of human-based knowledge, algorithms called Energy Management Strat-
egy (EMS) rely on a system depending on if-then statements and nature-inspired meta-
heuristic algorithms in combination [49]. EMS is a term for information management
integrated into such a system; it offers the functionality required to ensure that energy is
supplied by generation, transmission, and distribution at the lowest possible cost. EMS is
thought to supply the load requirement through a variety of techniques [50]. Furthermore,
it classifies into three groups, which are Rule-Based, Optimization-Based, and Learning-
Based, as presented in the literature with their subclassifications [28]. Furthermore, it
reduces the system operation cost, balances BT SoC power, and is resource-dependent [51].
While using the integration operation between RESs with the grid, some challenges will be
faced, such as overloading [52], to overcome the aforementioned integration limitation by
using EMSs to control and monitor the energy systems of RESs. Where the acquired results
from controlling strategies are not accurate without considering the design variable as key
features by exploiting sizing algorithms [53]. The optimization algorithms are coupled with
EMS in order to smoothly flow the power into the proposed system [54]. The implemented
RB-EMS in the system considered four operation modes as listed below considering 10 EVs,
while the further explanation for the proposed method is placed in Table 2.

Table 2. The proposed Rule-Based-Energy Management Strategy operation modes.

Operations If Then

Mode 1
(RESs2V) PPV(t) + PWT(t) > Pl(t) PPV(t) + PWT(t) to Pl(t) and EV(t)

Mode 2
(BT2V) PBT(t) > [PWT(t) + PPV(t) − Pl(t)] ∗ ηinv

PBT(t) > [PWT(t) + PPV(t)− Pl(t)] ∗
ηinv to Pl(t) and EV(t)

Mode 3
(G2V) Egrid < EVdem Egrid < EVdem to EV (G2V)

Mode 4
(V2G) Egrid > EVdem Egrid > EVdem to grid (V2G)

• Mode 1: Exploiting the RESs (PV and WT) to charge the EV and home appliances.
• Mode 2: Exploiting the BT (LiFePO4) to charge the EV and home appliance.
• Mode 3: Exploiting the utility grid to form (G2V).
• Mode 4: Exploiting the EV battery (Li-ion) to form (V2G).

4. Stochastic Monte Carlo Method Analysis

The Stochastic Monte Carlo Method (SMCM) is a stochastic tool developed by Neu-
mann and Ulam and implemented in various fields to estimate the randomness of the
utilized components [55]. SMCM got attention among scholars due to its flexibility, runtime,
and accuracy in solving a wide range of optimization problems in various fields [56]. It is
also applied in project management, the sciences, finance, and artificial intelligence [57].
The SMCM is utilized to estimate the process of power flow and battery state for charging
and discharging (SoC) of the EVs for the period of one year when the behavior of Evs
is uncertain [14]. SMCM is exploited due to the random variable data in order to gain
results in uncertain situations [45]. To simulate the V2G systems data with the utilization
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of SMCM by creating uniform random (uniform distribution) data between (0,1) sized
with (8760.1) using Microsoft Office Excel as a powerful structured tool [58]. The SMCM
flowchart of (V2G and G2V, RESs2V, no EV, and BT2V) is demonstrated in Figure 6 to gain
the estimation result of various EV integration scenarios when integrating 10 Evs. The
operation of if-then conditions for charging and discharging along with the aforementioned
scenarios is figured out in Figure 7. The EV operator charger must charge the EV’s battery
until the EV is satisfied (SoCEV) before the Evs depart from the EVCF [59].

Figure 6. Flowchart of the Vehicle-to-Grid operation using SMCM.
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Figure 7. IF-Then conditions operations for SMCM.

5. Solving Optimization Methods and Objective Functions

Since there are three searching types of optimization methods, namely stochastic,
deterministic, and hybrid methods, stochastic is considered in this study [21]. The afore-
mentioned methods differ from each other in terms of providing the best solution to
optimization problems in various fields. The first mentioned is utilized in hybrid renew-
able energy systems as considered by enormous scholars to address the limitation of the
deterministic method such as avoiding local optima. While the second is not suitable for
optimization problems with various local optima, which is disposed by local optima [21].
The pros of deterministic-based models are low computational cost and reliable results,
whereas the cons are highly dependent on the initial solution, which is why it has been ex-
ploited in limited studies. Additionally, the last-mentioned method can be used to combine
the mentioned algorithms and others. To form a hybrid system in order to gain an accurate
result by solving complex optimization problems. The considered algorithm for sizing the
system components counted as stochastic based which is enhancement of ALO namely
the Improved Antlion Optimization (IALO) Algorithm [27,60]. While the benchmarks are
Antlion Optimization (ALO) [24,61], Cuckoo Search Algorithm (CSA) [25], and Particle
Swarm Optimization (PSO) [26] as briefly explained below.
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5.1. Optimization Methods

The swarm-based algorithms are utilized in this study to size the system components
using IALO along with the validation algorithms (ALO, PSO, and CSA).

• ALO

The ALO is a nature-inspired metaheuristic algorithm that was introduced by Ali
Marjalili in 2015 to address optimization problems considering Roulet Wheel Selection
(RWS). It mimics the hunting behavior of antlions in nature [24].

• IALO

The IALO is an improved version of the ALO which replaces the RWS with Levy
Flight (LF) in order to address the randomness while also balancing exploration and
exploitation [61,62].

• PSO

It is a very well-known swarm-based algorithm that studies the animal’s behavior,
such as fish schooling and bird flocking. It was introduced by Kennedy and Eberhart in
1995 [26].

• CSA

It is a population-based algorithm that mimics the behavior of cuckoo birds in nature.
It was introduced by Xin-She Yang and Suach Deb in 2009 to solve structural optimization
tasks [25].

5.2. Objective Functions

The presented objective function in this study aims to gain a cost-effective, reliable,
and renewable hybrid system considering the mentioned components.

• Cost of Electricity

It can be defined as the per capita cost or cost of electricity (COE) and can be mathe-
matically expressed in Equation (11) [63].

COE =
(CRF ∗ ∑x NPCx) + Cgrid−Rgrid

Eserved + Egrid−selling
(11)

where the COE is the cost of electricity, which is measured in $/kWh, and the (NPC) refers
to the Net Present Cost in ($) includes the costs (O&M, replacement cost, and capital cost)
for x of years [64]. The CRF refers to the Capital Recovery Factor calculated in Equation (12)
with the help of the interest rate (i) of the case study for the lifetime of the project (n).
Furthermore, Eserved presents the average load demand of the study area, and Egrid−selling
is the primary load served in (kWh/year) [65].

CRF =
i(1 + i)n

(1 + i)n − 1
(12)

• Losses Power Supply Probability

It refers to the reliability and ranges between 0 and 1, where 1 refers to unsatisfied
demand and 0 is satisfied as mathematically expressed in Equation (13) [15].

LPSP =
∑N

i=1 [PL(t)− (PWT(t) + PPV(t) + SoCBT(t) + SoCEV(t))]

∑N
i=1 PL(t)

(13)

where LPSP refers to loss power supply probability that measures the reliability of the
power system in (%), SoCBT is the state of charge of the deep cycle battery at a time (t),
SoCEV refers to the state of charge of the EV battery at a time (t).
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5.3. Renewable Energy Fraction

Due to the intermittency of the climatology conditions, the yielded power from the
RESs sources is not stable. The technique of measuring the output power from renewable
sources is known as Renewable Energy Fraction (REF). The aforementioned technique
refers to the transferred power from RESs to load as presented in Equation (14) [34].

REF =
∑8760

1 (PPV + PWT) ∗ ∆t

∑8760
1

(
PPV + PWT + Pgridpurchased

)
∗ ∆t

(14)

The Pgridpurchased
, PWT , and PPV are the purchasing power from the grid, output power

from the wind followed by the output power yielded from the utilized PV, respectively.

6. Results and Discussion

MATLAB R2016b (Natick, Massachusetts, USA) and Microsoft Office Excel (Las Vegas,
Nevada, USA) are running on an Intel I Core I i5-8250U CPU @1.60 GHz to implement the
obtained results for the proposed algorithm and its counterparts along with the analysis.
The action of load shifting when integrating Evs and without EV integration, as shown in
Figure 8, is useful to gain increased energy efficiency, sustainability, and energy savings [50].
As presented in Figure 8, it can be seen that the EV integrations are making some extra loads,
as presented in red, while the domestic load without the EV consideration is presented in
blue. The number of vehicles in the EVCF can be increased or decreased, which depends
on the randomness of arrival and departure Evs. Based on the proposed hybrid system in
Figure 2, the acquired sizing result for the considered configuration is presented in Figure 9
and will be further discussed. The SoCEV for Evs in the arrival case and departure during
the proposed hours are presented in Figure 10. The output power from the utilized sources
is placed in Figure 11. While the effect of V2G operation using SMCM analysis under
charging and discharging operation in terms of load demand is simulated in Figure 12. The
contribution of energy sources has been taken place in Figure 13. Eventually, the sensitivity
analysis result is considered in Figure 14.

Figure 8. Load changes with EV and without EV integration.
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Figure 9. System configuration results: (a) Sizing and; (b) objective function COE and REF.

Figure 10. Cont.
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Figure 10. Normal distribution of EV: (a) of arrival; (b) EV arrival time, and; (c) EV departure time.

Figure 11. Daily output power from PV, WT, BT, and PL.
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Figure 12. SMCM analysis result for the scenarios (RESs2V, No EV, G2V, V2G, BT2V).

Figure 13. Configuration energy contributes.

Figure 14. Sensitivity Analysis: Comparison between PPV and PWT against COE.

The output generated power from the utilized sources for the proposed hybrid system
is presented in Figure 11. Various samples can be taken as (a) refers to the status at 9 a.m.,
(b) represent the outpower at 11 a.m., sample (c) refers to 16 p.m., and at 17 p.m. for
sample (d).
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6.1. Sizing Result

The proposed algorithm (IALO) for sizing performs better in terms of system sizing
configuration, as illustrated in Figure 9a. While the proposed objective functions (COE,
LPSP, REF) consider RB-EMS coupled with the proposed (IALO) and counterpart algo-
rithms (ALO, PSO, CSA), as shown in Figure 9b, show lower cost due to the provided
advantages of IALO. The REF is almost similar or closed due to the high renewability in
the considered area of the case study. The third objective was LPSP and resulted in 0%,
which means the load was satisfied because of the multiple integrated sources.

6.2. Stochastic Monte Carlo Method Analysis Result

The time prediction of arrival and departure EVs along with the SoC of the EV’s
battery are acquired by Equations (15)–(18) based on SMCM as a valuable method for
providing an accurate result, as shown in Figure 10a–c [45]. A Microsoft Office Excel tool is
used to deliver the results in this study.

TimeEV
arrive ∼ N(µEVa , σEVa) (15)

TimeEV
Departure ∼ N(µEVa , σEVa) (16)

SoCEV
arrive ∼ N(µEVa , σEVa) (17)

SoCEV
Departure ≥ 0.2 × CapEV (18)

where N refers to the normal distribution, SoCEV
Departure and SoCEV

arrive are the SoC of the EV’s
battery for departure and arrival time, µ and σ are the mean and standard deviation of the
arrival and departure EV and the TimeEV

arrive and TimeEV
Departure refers to the estimated arrival

and departure times of the EVs that were modeled by the Probability Density Function
(PDF). Furthermore, the CapEV is the EV battery capacity [15].

The charging power level for the charging home area is 11.5 kW, which refers to Level
2, and its efficiency is 86.5% [7]. The impacts of EVs on the grid considering the stochastic
method are resulting in a reduction in the LPSP [66]. Based on the arrival and departure
times of the EV users, the daily utilized distance should be taken into consideration to
prevent driver anxiety and count the EV charging duration [67]. The yielded energy in
(kWh) from the utilized various sources (energy consumed from the grid (G2V), RESs
energy (RESs2V), energy exported from EV (V2G), and energy consumed by the BT (BT2V))
in the hybrid system. The amount of exchanged power among the utilized sources is
presented in Figure 11, which reduces the energy consumption for the long term from
18,700.3 kWh/Year –13,794.4 kWh/Year. The energy consumed by chargers shows an
increase due to the high demand considering EVs and other appliances, followed by the
RESs, energy from the grid, then the exported energy from the EVs, respectively. The
presented output power from the components in Figure 11 are PPV (green), PWT (red), PL
(Brown), PBT (blue).

The SMCM was utilized in the grid-connected system to provide a better understand-
ing of impacts on the load and examine the performance of the integration system under
various scenarios taken into consideration. The randomness of the SMCM is conserved to
analyze the uncertain SoC of the number of EVs integrated with RESs under a residential
load [56]. Furthermore, the assessments on load, charging, and discharging, the amount
of integrated energy from the RESs and grid, and amount of exchanged energy from and
to the EV (V2G and G2V), RESs2V, and BT2V are investigated and presented in Figure 12.
The presented results refer to V2G (black), G2V (red), No EV (yellow), RESs2V (blue), and
BT2V (green).

As presented in the previous figure for the first 24 h of the year (in winter), sample (a)
at 2 am that presents Mode 1 (RESs2V) for supplying the demand with (7 kWh) at the same
time, there is some energy produced from the EV battery (6 kWh) but it is not sufficient to
meet the demand. Mode 3 (G2V) in sample (b) meets at 6 am by supplying the demand
from the utility grid with (7 kWh). Eventually, at 3 pm sample (c) is presented by activating
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Mode 2 (BT2V) with (9 kWh). Although Mode 4 has not been met during the first 24 h of
the year, depending on the SoCEV, it has been met during the year.

Based on the collected climatology data and the presented mathematical models for the
components considered, Figure 13 demonstrates the energy contribution from each source.
Furthermore, from the presented pie with various percentages of the system components,
the grid contributes (22%) in the first 24 h due to its availability in considered hours that
form the G2V technology. Additionally, BT contributes (11%), which forms B2V, EV demand
(19%), and V2G (16%) at the considered hours. Furthermore, the considered RESs (PV and
WT) contributed to charging the EV and the BT for the first 24 h with (10%) for PV and
(22%) from the WT, respectively.

6.3. Sensitivity Analysis

The sensitivity analysis is presented for a hybrid grid-connected system and employed
to provide a better understanding of impacts on the load and examine the performance
of the integration system. Furthermore, it is utilized to evaluate the influence of various
configurations on system operation by conducting two parts as will be presented in the
subsection for the key affected components of the system result. The first one is the impact
of uncertainty on the output power from the RESs (PPV and PWT) due to climatology
changes (wind speed, solar irradiance, and temperature). The second one is related to the
comparison of COE with REF and LPSP in the case of insufficient power provided by the
RESs along with the EV integration.

6.3.1. Impact of Changes in Climatology Condition

The impact of changes in climatology conditions on energy production has been
investigated and analyzed in this section. The selected configurations have been chosen
due to the listed reasons.

• The climatology changes are considered to overcome the worse days (unsunny or
unwind days) scenario.

• The energy storage battery is the less lifespan component carried out for sensitivity
analysis due to the backup in the case of insufficient RESs power.

• The integration of EVs potentially affects the output power result (when charging
and discharging).

Based on the acquired result from RB-EMS-IALO for the microgrid (refers to the IALO
sizing result presented in Figure 9a). Due to the uncertain changes in RESs (PV and WT)
from the proposed algorithm, the components have been investigated. It can be seen that
the presented changes from 1 (100%) to 0.1 (10%) refer to the generation changes from the
RESs, the cost is increasing. Moreover, 1 refers to the base case (a point where no increase
or decrease occurred), as has been taken from the IALO sizing results. The most affected
microgrid sources in the system are PV and WT due to the climatology changes, and the
relationship between the PV output power and wind turbine. The curve of sensitivity is
considering the PPV and PWT in contradiction with the COE as demonstrated in Figure 14
with the consideration of 10% changes.

6.3.2. Impact of Deep Cycle Battery and EVs Integration on the Grid

It can be seen from Figure 15a that the increase in REF could potentially affect the
COE result. As the high renewability is demonstrated in the case study, the increase in
the REF reduces the cost. Based on the COE calculated by RB-EMS-IALO, increasing the
number of EVs increases the COE, as shown in Figure 15b. Integrating the various number
of EVs influences the load. Ultimately, due to the fact that the COE and LPSP are trade-offs,
the COE against the LPSP is demonstrated in Figure 14c. Furthermore, in this study the
considered increase in LPSP is taken as 10%, whenever the LPSP is increasing the COE is
increasing and vice versa. Additionally, when the SoC of BT (parameter variation) increased
by 10% as proposed, the COE increased, as presented in Figure 15d.
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Figure 15. Sensitivity Analysis: (a) Comparison of COE and REF of the microgrid system; (b) COE
against EV increase; (c) COE against LPSP, and; (d) SoC against the COE.

7. Conclusions

In this paper, the mode of V2G that can adjust grid load is studied based on sizing the
uncertain number of EVs using the SMCM and the effect on the grid load. Electric vehicles
(EVs) can be used as loads to absorb excess output or as distributed energy resources to
send some of their stored energy back to the grid, according to the Vehicle-to-Grid (V2G)
concept. The contributed result was acquired from the use of advanced computer software,
which is MATLAB and Microsoft Office Excel, for a hybrid system consisting of EV, RESs
(PV and WT), BT, and grid. Additionally, this paper outlines the usage of Photovoltaics (PV)
and WT as Renewable Energy Sources (RESs) to address fossil fuel challenges by integrating
EVs. Where fossil fuels have begun to decline, causing a slew of power and environmental
challenges can be addressed with alternative energy sources. Integration of RESs with
other sources solves the limitations faced in power and environmental systems. In order
to deal with the complexity of PV-wind hybrid systems, nature-inspired metaheuristic
optimization approaches (IALO) were exploited and coupled with RB-EMS to meet the
objective functions, and hybrid optimization techniques will be vital. Sensitivity analysis
for the most affected sources in the system in terms of power generation (PV and WT) due to
the climatology changes and load fluctuation is conducted. Since the scope limitation of this
work is considering by implementing the proposed system on residential load using IALO
to size the system components coupled with RB-EMS to meet the objective functions. Future
suggestions may consider other nature-inspired algorithms to size the system components,
such as the Grasshopper Optimization Algorithm (GOA) and Lion Optimization Algorithm
(LOA). Estimating the behavior of an EV takes into account other randomness methods,
such as the Markov Decision Process (MDP), as well as the integration of another type of
storage rather than a single storage, such as the Fuel Cell (FC).
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