
Citation: Sherozbek, J.; Park, J.;

Akhtar, M.S.; Yang, O.-B.

Transformers-Based Encoder Model

for Forecasting Hourly Power Output

of Transparent Photovoltaic Module

Systems. Energies 2023, 16, 1353.

https://doi.org/10.3390/en16031353

Academic Editor: Sanjay Gopal

Ullattil

Received: 27 December 2022

Revised: 23 January 2023

Accepted: 24 January 2023

Published: 27 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Transformers-Based Encoder Model for Forecasting Hourly
Power Output of Transparent Photovoltaic Module Systems
Jumaboev Sherozbek 1 , Jaewoo Park 1, Mohammad Shaheer Akhtar 1,2,* and O-Bong Yang 1,3,*

1 Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju 54896, Republic of Korea
2 New and Renewable Energy Materials Development Center (NewREC), Jeonbuk National University,

Buan-gun 56332, Republic of Korea
3 School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
* Correspondence: shaheerakhtar@jbnu.ac.kr (M.S.A.); obyang@jbnu.ac.kr (O.-B.Y.)

Abstract: Solar power generation is usually affected by different meteorological factors, such as solar
radiation, cloud cover, rainfall, and temperature. This variability has shown a negative impact on
the large-scale integration of solar energy into energy supply systems. For successful integration
of solar energy into the electrical grid, it is necessary to predict the accurate power generation by
solar panels. In this work, solar power generation forecasting for two types of solar system (non-
transparent and transparent panels) was configured by the smart artificial intelligence (AI) modelling.
For deep learning models, the dataset obtained from the target value of electricity generation in
kWh and other features, such as weather conditions, solar radiance, and insolation. In PV power
generation values from non-transparent and transparent solar panels were collected from 1 January to
31 December 2021 with an hourly interval. To prove the efficiency of the proposed model, several deep
learning approaches RNN models, such as LSTM, GRU, and transformers models, were implemented.
Transformers model for forecasting power generation expressed the best model for non-transparent
and transparent solar panels with lower error rates for MAE 0.05 and 0.04, and RMSE 0.24 and 0.21,
respectively. The proposed model showed efficient performance and proved effective in forecasting
time-series data.

Keywords: transformers; solar energy; time-series; energy forecasting; LSTM; GRU

1. Introduction

Maintaining a balance between efficiency and energy generation is one of the essentials
for the reliable operation of solar power plants (SPP) [1]. The present solar generation
facilities cannot guarantee the total electric power output at specified time. It is important
that the forecast of the amount of energy generation and supply to the grid is highly relevant.
Few research works have recently introduced the concept of energy meteorology (“energy-
meteorology”) [2] as a new scientific discipline, the subject of which is the quantitative
assessment of power generation based on renewable energy sources (RES) especially solar
energy at hourly to minutes time intervals. In particular, several attentions have been paid
to the hourly short-term forecast for solar energy generation forecasting. It is known that
solar energy has a lot of advantages over other traditional energy sources, such as coal and
natural gas; however, the power generation by photovoltaic arrays is highly variable [3,4].
Generally, the variability in solar power generation depends not only on solar radiation
and temperature, but also on other meteorological factors, such as wind speed, hours of
sunshine, humidity, cloud cover, and precipitation [5]. In addition, the Sun is an intermittent
power source as it absorbs sunlight which is normally available in daytime. Such variability
and intermittency of solar energy still challenge its large-scale integration into the energy
system. So far, the energy from sun faces the unexpected changes by unwanted factors and
negatively affecting the balance of the network, which resulting in increasing operating
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costs. Due to its irregular and unmanageable nature, an accurate solar power generation
forecast is essential for the grid operator and companies supplying electrical energy from
a photovoltaic system. Therefore, it is essential to develop an algorithm to maintain the
stability of the power supply system. System stability can be achieved by creating methods
to predict generated power and estimate future production. There are still several flaws and
dependencies in the current PV power generation systems, such as temperature, humidity,
and wind, which are typically caused by solar irradiation [6].

Solar energy generation forecasting methods are divided into four categories:

• Meteorological methods: Indirect methods based on numerical weather forecasting and
processing of satellite images allow first to predict the intensity of solar radiation, then
convert it into the output power of a photovoltaic system.

• Statistical methods: These methods use statistical approaches, such as the autoregressive
moving average model (ARMA) [7], auto-regressive integrated moving average model
(ARIMA) [8], and exponential smoothing (ES) [9]. These models can be used to
directly predict the power output of photovoltaic arrays without the need first to
predict solar radiation.

• Machine learning methods: These approaches use machine learning algorithms, such as
k-nearest neighbors, neural networks (NN) [10], support vector machine (SVR) [11],
and pattern sequence-based forecasting (PSF) [12], to predict output directly the power
of photovoltaic batteries. As a rule, there are two approaches to applying machine
learning methods: building one forecasting model or combining several forecasting
models to form an ensemble of forecasting models.

• Hybrid methods: These methods combine models or different components from the
previous three categories. Unlike ensembles that combine machine learning models,
hybrid ones typically combine machine learning meteorological, and statistical models
or their components. The use of machine learning methods, such as RNN [13] and SVR,
and statistical methods, such as ARIMA and ES, are widespread for building models
to predict solar plant capacity. However, most of these methods are based on one
general prediction model for all meteorological conditions and their corresponding
daily photovoltaic characteristics.

This work is focused on investigating the performance of existing modern deep
learning methods for predicting solar power generation and create new methods for better
forecasting results with improved performance. The time-series prediction model proposed
in this study has a transformer structure. The original transformer architecture (Vanilla
Transformer) [14] is an auto-encoder. The encoder receives a sequence with positional
information as input. The decoder receives part of this sequence and the encoder output.
However, the architecture of some transformer-based models consists only of an encoder.
As a result, transformers maintain direct links to all previous temporal values, allowing
information to reproduce over longer sequences. Another work related to transformer
model has been studied [15] on the problem of forecasting influenza-like diseases. The
author compared some results of various models working with time series. The base
architecture is the same as the original transformers model. Adam was used as an optimizer
in this work. For regularization, the authors added dropout and a dropout rate of 0.2 for
each layer. In the other work [16], the authors applied the idea of creating a generative
model for forecasting, where they applied generative adversarial neural networks. As
a result, the error of a conventional transformer is about three times less than ARIMA
(0.036). Herein, PV power generation forecasting for two solar panels (non-transparent
and transparent) has been done by deep learning approaches in which some working AI
models with time series are compared. Among various working models, the architecture
original transformer shows the best AI model for both solar panels.
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2. Experimental and Methods
2.1. Dataset

The original PV data was collected at New and Renewable Energy Materials Devel-
opment center (NewREC) located in Buan-gun, Jeollabuk-do, Republic of Korea. In this
work, the PV power generation data was extracted from two different solar modules, i.e.,
non-transparent and transparent modules, as shown in Figure 1 and details of modules
summarized in Table 1. The period of collected PV data is from January to December 2021
on an hourly basis and contains weather-related information along with module energy
generation outputs.
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Figure 1. Real photographs of (A) Non-transparent and (B) Transparent Photovoltaic Modules.

Table 1. Physical characteristics of PV modules.

Type Non-Transparent Transparent

Module output 400 W 405 W
Module size 2039 × 1001 × 40 mm 2039 × 1001 × 40 mm

Module weight 22.2 kg 22 kg

The main reason for collecting PV power generation data from two different modules
in this work is to evaluate their different energy generation capability. In the case of a
transparent module, the energy output is slightly higher than that of the non-transparent
module due to its capability to absorb solar radiation from both sides. Bifacial transparent
solar modules allow photovoltaic cells to capture reflected sunlight on the back surface.
The light passes right through and collides, then bounces back towards the panels with
a highly reflective surface (white roof, sandy, or rocky light soil). In our case, the surface
of installed solar panels is a cement, which can reflect solar irradiation with a higher
reflection rate. Table 1 shows the physical characteristics of PV modules. As seen in
Figure 2, the transparent PV panels present the higher PV power generation as compared
to non-transparent PV panels during the same period.
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The weather data is utilized as a feature during the training process for energy fore-
casting, as shown in Figure 3.
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with their average values.

2.2. Attention Based Encoder

Various computational algorithms have been developed at the academic and private
sectors to increase forecasting accuracy. Transformers, a new technique in neural networks
develop non-recursive modeling algorithms that specialize in predicting future elements
within sequences. Transformers are initially positioned as a neural network for processing
and understanding natural language [17]. One of the simplest examples is Google’s BERT
language model, which is developed in 2018 [18]. However, in the four years since their
inception, they have gained popularity, and have appeared in many other aspects of Deep
Learning.

The traditional models, such as RNN models, are hard to train due to vanishing/exploding
gradient problems, wherein older inputs have almost no effect on the output of the current
stage. Additionally, the data in these models process sequentially, resulting in a poor
possibility of parallelization. Even though using more powerful GPUs will not increase the
speed of the training process. As a result, the processing a large amount of data is difficult.
Utilizing Transformers architecture has considerable advantages over traditional RNN
models. The main advantages of Transformers over LSTM [19] are reduced complexity by
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eliminating recurrence and parallelization technique, which improves overall computation
efficiency.

In this work, the Transformers model was implemented for time-series PV power
generation forecasting, and, furthermore, compared results with traditional recurrent
neural network models, such as LSTM and GRU [20].

The advantage of RNN over traditional Feed-Forward Networks (FFN) is saving
the input of the current layer and feeding it back in the loop form to predict the layer’s
output. RNN is widely applied to solve issues of Feed-Forward Networks where FFN
cannot handle sequential data. RNN also accepts not only current input, but previously
received input as well. It is due to RNN’s internal memory, which memorizes historical
information. However, these advantages over FFN may result in some drawbacks [21]. The
Vanishing Gradient problem is the main disadvantage of using RNNs, where gradients
used to compute weights become closer to zero. The deeper the model, the closer gradient
to zero, resulting in a much longer computation time. The occurrence of this problem is
due to certain activation functions, such as tangent hyperbolic or sigmoid functions, which
squishes large input space into small output space.

To resolve these problems, a Transformer-based network is implemented, in which
the recurrence is not utilized for sequential calculation. Moreover, its computation is
parallelized, resulting in the acceleration of the training process. The transformer has an
architecture in which several encoders are primarily accumulated. An encoder is called
a Multi-Head Attention. It consists of a layer and a Feed Forward Neural Network layer.
As mentioned above, the Attention module has parallelized computation repeatedly, and
each repeated process is called an ‘attention head’. Primarily, the attention module has
its Query, Key, and Value parameters, which are passed through the scaled dot product
attention independently. Afterward, every Head is concatenated and combined with a
final weight matrix. This technique is called Multi-Head Attention and is powerful for
encoding multivariate time series. (Refer to [4] for more details). Figure 4A,B visualizes the
implemented model with the original encoder algorithm.
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The mathematical formula can be defined as:

Multihead(Q, K, V) = Concat(head1, . . . , headh)W
O (1)

where headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
.

Learnable parameters of Multi-Head Attention layer:

WQ
1..h ∈ RD×dk , WK

1..h ∈ RD×dk , WV
1..h ∈ RD×dv and WO ∈ Rh∗dk×dout (2)

where D is the input dimensionality.
The overall workflow of the power generation forecasting system is described in

Figure 5. In this work, the pre-processing stage required observation of the collected
dataset to analyze all dependent variables. Dependent variables as features are wind,
humidity, temperature, solar radiance, solar insolation, and time. In the second step, the
data divided into two parts as collected two target variables (label) from non-transparent
and transparent type solar modules. Afterward, thoroughly inspecting the raw dataset,
the pre-processed dataset was split into training and test subsets in random shifted order.
Furthermore, the training subset feeds into the model for the training process and accuracy
results obtained on the test dataset.
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3. Results and Discussions
3.1. Performance Evaluation

Transformer models have shown state-of-the-art performance on many time series
forecasting problems [22,23]. To evaluate the effectiveness of the proposed method, experi-
ments were conducted using one year of data (from 1 January to 31 December 2021) from
NewREC located in Buan-gun, Republic of Korea. For each day, data were collected only
during daylight hours, from 5 am to 7 pm. The original PV data is collected at one-hour
intervals. Upon completion of the prediction process on the test dataset, the result is
compared with the actual and predicted values with implemented Deep Learning models,
including LSTM, GRU, and Transformer models.

To evaluate the accuracy of the implemented model on the test dataset, we utilized
MAE as the loss function and RMSE and MSE as accuracy metrics, as these are the primarily
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used metrics in the time-series models. These metrics provide a good summary of the
model’s capability to make a prediction on unseen data.

The loss function can be expressed as:

MAE =
∑n

i=1|yi − ŷi|
n

(3)

where yi is the actual value and ŷi is the predicted one. The mean absolute error MAE is
the average of the absolute errors between the predicted and actual values, reflecting the
actual predicted error. The lower the error value, the better the model.

Two coefficients used to assess the accuracy of predictive models are presented in
formulas (4) and (5), respectively:

MSE =
1
n

N

∑
i=1

(yi − ŷi)
2 (4)

where N is the number of observed samples, yi is the actual number, and ŷi is the predicted
value by the model. The essence of the metric is to minimize the sum of squared deviations
of the actual values from the predicted ones (Sum of Squared Errors).

RMSE =

√
∑N

i=1(yi − ŷi)
2

N
(5)

RMSE error is simply the square root of the MSE error. Unlike MSE, it has the same
units as the original values of the dataset. As a result, it also operates with smaller absolute
values and has a faster computation time.

Table 2 presents the overall metrical results of the implemented models (traditional
RNN models-LSTM, GRU, and Transformers) for non-transparent and transparent solar
panels. Additionally, the accuracy results of traditional RNN models-LSTM and GRU, and
our best implemented Transformer model summarized in terms of MSE, MAE, and RMSE
values. It is seen that the implemented Transformer model outperforms the other two
models in terms of the accuracy of forecasted values.

Table 2. Evaluation metric results for Non-Transparent and Transparent modules.

Non-Transparent Module Transparent Module
Model/Metrics MSE MAE RMSE Model/Metrics MSE MAE RMSE
LSTM 0.070 0.217 0.27 LSTM 0.057 0.19 0.23
GRU 0.657 0.210 0.26 GRU 0.052 0.18 0.22
Transformers 0.057 0.187 0.24 Transformers 0.04 0.17 0.21

3.2. Visualization Results

Upon completion of the training process, the result is compared with the actual values
of the test dataset. We visualized the test results of the implemented Transformer model
in Figures 6 and 7 for both Transparent and non-Transparent module types, respectively.
Figures show the actual hourly generated electricity compared to the forecasting models’
predictions. We can observe that forecasts match the actual data, particularly in the winter
season, when the system does not generate much power.

3.3. Feature Importance

In our dataset, we have six features to train our model. The followings are temperature,
wind speed, wind direction, humidity, irradiance, and insolation. It is a well-known fact
that not all dataset features will equally impact the performance of the trained model.
Therefore, determining which features have the most predictive power is another critical
step in model-building. A higher score on the feature means a more significant effect on
the model‘s ability to predict target variables.
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Figure 8 demonstrates the average impact value of each feature of our dataset. The
top three features with the highest impact are irradiance, insolation, and temperature. By
analyzing this data, one can understand the relationship between the features and target
variables. In support, the low impact features on the model can be deleted after checking
the relationship with variables. As a result, the model would become lighter and increasing
the speed the model’s prediction of the target variables.

To further analyze the impact score of each feature, each instance of the test dataset on
the model’s performance using SHAP [24] values have been observed. Figure 9 demon-
strates the feature importance analysis of all 708 instances of the test dataset. As mentioned
above, the most critical features are irradiance, insolation, and temperature, and most of
their instances positively affect the prediction ability of the model. However, it can be seen
that some of the instances are negative numbers, which means the overall accuracy loss.

Energies 2023, 16, x FOR PEER REVIEW 8 of 11 
 

 
Figure 6. Transformers model test result visualization of Transparent type module. 

 
Figure 7. Transformer model test result visualization of not-transparent type module. 

3.3. Feature Importance 
In our dataset, we have six features to train our model. The followings are tempera-

ture, wind speed, wind direction, humidity, irradiance, and insolation. It is a well-known 
fact that not all dataset features will equally impact the performance of the trained model. 
Therefore, determining which features have the most predictive power is another critical 
step in model-building. A higher score on the feature means a more significant effect on 
the model`s ability to predict target variables. 

Figure 8 demonstrates the average impact value of each feature of our dataset. The 
top three features with the highest impact are irradiance, insolation, and temperature. By 
analyzing this data, one can understand the relationship between the features and target 
variables. In support, the low impact features on the model can be deleted after checking 
the relationship with variables. As a result, the model would become lighter and increas-
ing the speed the model’s prediction of the target variables. 

Figure 6. Transformers model test result visualization of Transparent type module.

Energies 2023, 16, x FOR PEER REVIEW 8 of 11 
 

 
Figure 6. Transformers model test result visualization of Transparent type module. 

 
Figure 7. Transformer model test result visualization of not-transparent type module. 

3.3. Feature Importance 
In our dataset, we have six features to train our model. The followings are tempera-

ture, wind speed, wind direction, humidity, irradiance, and insolation. It is a well-known 
fact that not all dataset features will equally impact the performance of the trained model. 
Therefore, determining which features have the most predictive power is another critical 
step in model-building. A higher score on the feature means a more significant effect on 
the model`s ability to predict target variables. 

Figure 8 demonstrates the average impact value of each feature of our dataset. The 
top three features with the highest impact are irradiance, insolation, and temperature. By 
analyzing this data, one can understand the relationship between the features and target 
variables. In support, the low impact features on the model can be deleted after checking 
the relationship with variables. As a result, the model would become lighter and increas-
ing the speed the model’s prediction of the target variables. 

Figure 7. Transformer model test result visualization of not-transparent type module.
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4. Conclusions

This research presents a method for predicting the PV power generation of photo-
voltaic stations in eastern part of Korea by the Transformers algorithm. The original dataset
for deep learning models is obtained from the target value of electricity generation in kWh
and other features, such as weather conditions, solar radiance, and insolation. All PV power
generation data were collected from two operational PV panels, such as non-transparent
and transparent solar panels. Deep learning models with time series algorithms were de-
signed to forecast the hourly PV power generation of non-transparent and transparent solar
panel systems. The study results show that the developed predictive model has a mean
absolute error (MAE) of approximately 0.18 kWh and 0.17 kWh for both non-transparent
and transparent type modules over the predicted interval. The root mean square error of
the model (RMSE) is 0.24 kWh and 0.21 kWh, respectively. The developed model makes
it possible to increase the efficiency of the operation of photovoltaic stations and reduce
economic losses. In addition to a higher power generation capability, the transparent
module is less prone to be heated up, making it possible to do without cooling devices and
lowering the cost of building a solar system overall. Moreover, we can further improve the
predictive model to reduce the prediction error by considering accumulated experience,
more detailed analysis of the input data, and precisely tuning neural networking layers.
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