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Abstract: Conventional energy system models have limitations in evaluating complex choices for
transitioning to low-carbon energy systems and preventing catastrophic climate change. To address
this challenge, we propose a model that allows for the exploration of a broader design space. We
develop a supervised machine learning surrogate of a capacity expansion model, based on residual
neural networks, that accurately approximates the model’s outputs while reducing the computation
cost by five orders of magnitude. This increased efficiency enables the evaluation of the sensitivity
of the outputs to the inputs, providing valuable insights into system development factors for the
Canadian electricity system between 2030 and 2050. To facilitate the interpretation and communi-
cation of a large number of surrogate model results, we propose an easy-to-interpret method using
an unsupervised machine learning technique. Our analysis identified key factors and quantified
their relationships, showing that the carbon tax and wind energy capital cost are the most impactful
factors on emissions in most provinces, and are 2 to 4 times more impactful than other factors on
the development of wind and natural gas generations nationally. Our model generates insights that
deepen our understanding of the most impactful decarbonization policy interventions.

Keywords: decision making; deep learning; energy decarbonization; energy planning; K-means
clustering; machine learning; power systems; residual neural networks

1. Introduction

Global greenhouse gas emissions (GHGs) must reach net-zero by 2050–2070 to limit
warming to well below 2 ◦C in alignment with the Paris climate agreement [1] to prevent
further escalation of the climate crisis. Decarbonization of the energy system, across all
sectors, can be accelerated through the adoption of new technologies and policies across
all sectors [2], with the ultimate goal of transitioning the energy system from fossil fuel
reliance to sustainable and low-carbon energy sources.

Decarbonization of the power system is central to the decarbonization of the entire
energy system. This is because many fossil fuel displacement technologies are electrified
devices that rely on electricity, and they will not achieve significant emissions reductions if
the electricity they use is generated from high-carbon sources.

1.1. Modelling the Energy System Transition

Energy Systems Models (ESM) are widely used by researchers and engineering ana-
lysts to analyze complex and interrelated technical, socio-economic, and spatiotemporal
factors in the energy sector [3]. These models are particularly useful for assessing the
viability of energy systems, such as the electricity sector, to meet energy demand [4,5].
Conventional ESMs for the electricity sector are typically based on established principles
in the field, such as power systems engineering and economics, to optimize technically
feasible systems for the least-cost. Then, the insights gained from these models are used
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by decision-makers and policy analysts to explore alternative pathways and design and
evaluate policy related to the energy system [6].

Decision-makers require holistic insights to effectively and accurately evaluate system-
level policy responses in a timely manner. However, conventional ESMs are limited in
their ability to provide holistic analysis due to the high computational load required to
simulate scenarios of transformative systemic change, such as those needed to achieve
GHG targets or climate stabilization. These limitations are further compounded when
comparing multiple scenarios, making it difficult to identify high-level interactions within
the system for policy planning. For example, ESMs are not able to directly quantify the
generalized effect of an input parameter (e.g., price of wind energy) on a target output
variable (e.g., carbon emissions). Instead, many scenarios must typically be run to search
for a trend. Conducting comprehensive sensitivity analyses to assess the robustness of
findings is often computationally infeasible.

Therefore, there is a need to improve ESM methods to support the attainment of
Canada’s considerable decarbonization obligations by allowing for the prediction of the
complex relationships within key sectors and linkages to the broader socio-economic
landscape [7,8]. Increasing the computational efficiency of ESMs enables the generation of
broader, deeper, and more relevant quantifiable insights delivered by modelling a much
wider range of scenarios. A computationally efficient ESM:

1. Facilitates the development of robust, well-supported policy options, including iden-
tification of the most critical policy-planning inputs.

2. Provides insights into critical relationships within the energy system design space that
would have been previously inaccessible using conventional ESMs, altering the nature
of decarbonization conversations, and allowing for large-scale and impact-ranked
policy assessment.

We demonstrate that the creation of a novel type of ESM based on surrogate modelling
techniques using machine learning (ML) can achieve these goals.

1.2. Literature Review

When an engineering model is computationally expensive for a particular research
objective, surrogate modelling techniques can be used to create a lower computational
burden statistical model that accurately mimics the behavior of the base model. The ML-
based surrogate is trained on a data set containing inputs and outputs from the original
model, followed by validation. This surrogate model can then be used to predict the outputs
for a large number of input sets quickly, without the need for extensive computational
recourses. This significant reduction in required resources enables design space exploration
by widening the scope of the design phase, sensitivity analysis, uncertainty analysis, and
singular- or multi-objective optimization [9,10].

Surrogate models have been deployed in a variety of engineering disciplines, but
their use in describing energy systems is a relatively new area with significant potential.
Successful implementation of surrogate techniques have been reported in the context of
building energy system models [9]; ML techniques are widely used in this field for creating
efficient models, reducing computational cost, and providing faster predictions [11].

Machine Learning for Energy Systems Analysis

ML techniques have been shown to be effective in exploring a wide range of design
options and scenarios for energy systems [7]. Provided the training data set is adequately
populated in the region of the chosen input values, scenarios involving any combination of
chosen input parameter values can be quickly examined without the need for specialized
resources. Other ML methods such as classification [12], clustering [13], and outlier detec-
tion [14] are capable of extracting similarities and outliers, as well as clustering the results
and their input features based on the objective of the problem. Classification methods pro-
vide the model with the ability to accurately predict the class of a label for unseen instances
of data [15], clustering methods group unlabeled examples based on their similarities and
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outlier detection methods identify abnormal data. Examples of these techniques in energy
systems include the classification of power quality distribution at power system frequency
and out of power system frequency [16], outlier detection for identification of abnormally
high or low energy use in a building [17], and automatic identification of operational cycles
and patterns within complex building energy system [18].

Several studies have demonstrated the power of ML methods in representing energy
systems by imposing minimal assumptions on the historical or synthesized data, allowing
the extraction of complicated patterns that are difficult to explain mathematically from
physical principles. Mosavi et al. [7] reviewed publications that have used various super-
vised learning methods for a wide range of applications in renewable energy systems and
planning. Many of the works reviewed confirmed the ability of supervised algorithms,
specifically neural networks (NNs), to extract complex features from a batch of examples
in the energy systems context. Zhang et al. [19] compared a collection of ML algorithms
as surrogate models for electrical and heating networks with the objective of integrating
renewables into the Dutch energy system. Their results showed that the linear regression
model and the long short-term memory model had the highest performance the best in each
electrical and heating network. Sciazko [20] implemented various interpolation techniques
and NN architectures to develop surrogate models for a steam energy network, resulting
in the generalization of features of different types of surrogate models and the use of
a surrogate model for optimization with a genetic algorithm. Kim et al. [21] employed
NN to predict energy consumption in an actual building’s air conditioning system. The
model developed in this study enabled forecasting energy consumption with limited vari-
ables. The authors reported relatively high accuracy but acknowledged that a sufficient
amount of data and model improvement were necessary to achieve even higher accuracy.
Uselis et al. [22] studied the use of localized convolutional neural networks for geospatial
wind forecasting. They compared the recent state-of-the-art spatiotemporal prediction
models on the same data and concluded that convolutional layers can be extended with
localization. Harrison-Atlas et al. [23] used an ML technique, namely boosted regression
trees, for spatially-explicit prediction of capacity density advances geographic character-
ization of wind power potential. The study’s findings indicated that this methodology
could improve the characterization of spatial aspects of technical potential, a critical ele-
ment in delivering reliable and actionable conclusions from renewable energy scenarios.
Antonopoulos et al. [24] conducted a review of the use of artificial intelligence approaches
to model energy demand response with the aim of cost-effectively enhancing the flexibil-
ity and reliability of energy systems. This review outlines directions for future research
in this rapidly growing area by discussing the advantages and potential limitations of
artificial intelligence/ML techniques for different demand response tasks. Ahmad and
Chen [15] review the ML forecasting growth and their real-time applications in various
energy systems. The authors conclude that supervised learning approaches are suitable
for regression problems, like short-term load and price forecasting. NNs also have a wide
range of applications in the decarbonization of energy systems, such as decreasing carbon
emissions and enhancing energy storage. One example of their successful use is in the
efficient and reliable utilization of lithium batteries. In addition to serving as the primary
storage method for a decarbonized power system, batteries also hold a significant role in
the process of decarbonization [25].

This study builds upon previous successes in using surrogate modelling and ML
techniques to represent complex energy systems. The goal is to develop a computationally
efficient large-scale electricity system planning ESM that can provide holistic insights and
support the attainment of decarbonization goals.

1.3. Objectives and Contributions

The objectives of this research are as follows:

1. To develop a computationally efficient ESM to investigate complex relationships
within the Canadian electricity system.
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2. To leverage the expanded functionality of this modelling approach to produce high-
impact insights into key drivers of Canada’s decarbonization pathways.

To achieve the objectives of this research, we propose a method to explore the Cana-
dian electricity system design space using an ML surrogate of the Canadian Opportunities
for Planning and Production of Electricity Resources (COPPER) model [8]. With a compu-
tationally efficient model emulating the results of COPPER, complex relationships within
the electricity system are comprehensively explored, by pulling out emergent trends over
thousands of optimal solutions allowing for the identification of key factors, clustering
input-output correlations, and quantification of sensitive design variables. This effort
ultimately supports more evidence-based dialogue and informed policy for rapid national-
scale decarbonization.

Many of the successful applications of ML to renewable energy systems have focused
on analysis with a narrower scope, such as a single technology, sector, or geographical
region [7]. To the best of our knowledge, there is not yet any tool that utilizes ML methods to
investigate the complex interdependency of factors involved in large-scale energy systems
and the efficacy of sustainable energy policies Therefore, the contributions of this work are
as follows:

• We propose a pipeline that utilizes ML methods to reduce the computational burden of
a capacity expansion model at a national level by 5 orders of magnitude, with a mean
R-squared value of 0.93. Utilizing this tool, we investigate the complex interdepen-
dency of factors involved in large-scale energy systems and the efficacy of sustainable
energy policies.

• Using this model, we identify key variables affecting power systems and provide
sensitivity measures leading to a more robust analysis.

• We implement an easy-to-interpret method utilizing an unsupervised ML method and
comparative maps, allowing for the effective conveyance of results to stakeholders.

• We compare the outputs’ behavior to changes in all inputs. The impact of all inputs on
specific outputs is evaluated with a quantitative metric.

• The results of this study contribute a huge number of insights into Canada’s electricity
system development, some of which are further explored and understood through
advanced visualizations.

This paper has been divided into 6 sections. Section 2 elaborates on our methodology
in utilizing ML methods for exploring the vast design space. In Section 3.1, the performance
of the surrogate model is assessed in terms of accuracy, speed, and memory usage relative
to the base COPPER model. Then in Section 3.2, the results are visualized to qualify and
quantify the correlations of policy-relevant inputs to emergent system outputs, allowing for
the identification of key factors driving emissions and wind and natural gas (gas) generation
capacity. The results of the model development process and the ensuing analysis are then
summarized, and the implications of this work are discussed in Section 4.

2. Materials and Methods

In this work, we employed NNs as a surrogate modelling technique to describe the
Canadian electricity system.

2.1. Electricity System Capacity Expansion Modelling Using COPPER

COPPER is a recently developed long-term planning model that determines the least-
cost generation and transmission capacity mix over a specified period and timestep. This
calculation is based on a predefined set of inputs including projected demand, geographical
wind, and solar resource distributions, and modelled policies. COPPER was designed to
address research questions regarding various Canadian capacity expansion scenarios using
an objective function that minimizes total costs under technical power system constraints,
simulating across time steps to chart effective pathways. Scenarios can then be compared
through visualizations. It was chosen as the base model for this analysis due to its inclusion
of major carbon management policies aimed at reaching Canada’s goal of net-zero emissions.



Energies 2023, 16, 1352 5 of 21

The version of COPPER used in this work includes a carbon tax, coal power phase-out, and
gas-fired power plant performance standards.

COPPER is a powerful tool, and this scenario-based analysis method has been used to
evaluate and compare the effects of distinct carbon pricing options on the future generation
mix [8]. However, COPPER’s framework is computationally intensive and impractical for
isolating, quantifying, or ranking the impact of a carbon tax or other important policy
parameters relative to other design variables. Running a single scenario can require
16 to 32 CPUs, 64 to 132 GB of memory, and 11–72 h of computing time. To address
this issue, this work applies surrogate modelling techniques to the COPPER model to
make it more efficient for exploring research questions related to input sensitivities in the
Canadian climate policy design space. This includes the effects of altering technology costs
through subsidies, carbon tax values, and demand growth through efficiency regulations
on emissions and generation capacity.

2.2. Surrogate Model Development with Deep Neural Networks

A NN is a parametric function that transforms an input into a corresponding output
by utilizing stacked layers of linear parametric transforms combined with nonlinear “ac-
tivation” functions between the layers. Theoretically, NNs can model any base function
with enough parameters [26], including complex mappings between inputs and outputs
exhibited by energy systems models, with reasonable computation time and high accu-
racy [27,28].

NNs with more than two layers are referred to as deep NNs, and each added layer
allows the NN to capture more complex mappings. Among the various deep NN archi-
tectures introduced in literature [29], residual networks have gained popularity for their
performance and ease in training. The core feature of residual networks is the existence
of residual (skip) connections between various layers, which enables the NN to learn
more intricate relationships [30]. This is particularly crucial when attempting to model
complex interdependencies within the electricity system over time, as represented by the
COPPER model.

A typical training procedure involves providing a deep network with paired inputs
and corresponding outputs. The parameters of the NN are then optimized via gradient-
based learning [26] to minimize the discrepancy between the deep network outputs and
the supplied outputs. The optimization process typically involves selecting a random
subset of the training data, called the training batch, and an optimization process, such as
ADAM [26], that is specifically designed for NN training. We followed standard protocols
for deep NN training, as outlined in [27].

2.3. COPPER Surrogate Model Development

The model development was carried out in three phases: (1) data generation, (2) data
preparation, and (3) model training.

2.3.1. Data Generation

To train, validate, and test the surrogate NN options, a dataset of COPPER simulations
was generated. In this analysis, the carbon tax, capital costs by generation type, and annual
demand growth rate by province were selected as the most important design inputs based
on optimization constraints in COPPER [8]. These variables represent possible Canadian
climate policy pathways; specific carbon tax values, technology subsidies, efficiency regula-
tions, and demand-side interventions. These variables were initially sampled uniformly
over predefined ranges listed in Table 1.
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Table 1. Simulation dataset input range. The input values for running COPPER are randomly selected
in each of these ranges.

Input Variable Range Unit

Carbon tax 50–750 $/ton
Total demand growth 2050/2018 1.4–2.8 Ratio

Annualized capital cost of natural gas 106.687–130.396 $/kW
Annualized capital cost of diesel 159.148–194.514 $/kW
Annualized capital cost of coal 449.183–549.00 $/kW

Annualized capital cost of nuclear 795.514–972.295 $/kW
Annualized capital of cost biomass (waste) 465.161–568.531 $/kW

Annualized capital cost of gas simple cycle (gasSC) 83.478–102.029 $/kW
Annualized capital cost of wind 119.447–167.226 $/kW
Annualized capital cost of solar 85.602–142.670 $/kW

The lower and upper bounds for each input were determined in consultation with
subject matter experts considering the feasible ranges for policy tuning based on values
taken from the paper proposing CREST [31] and COPPER [8]. We increased these values
by approximately 25% for the upper bounds and decreased by approximately 25% for
the lower bounds, which is a common practice in sensitivity analysis to cover the whole
design space. A carbon tax range was selected based on the minimum and maximum
increase in each year present in scenarios developed for COPPER [8], which encompasses
Canada’s “A Healthy Environment and a Healthy Economy” (HEHE) [32] carbon pricing
plan. Capital costs are location-specific and exhibit wide variability between studies, so the
ranges selected for this analysis were also based on values taken from the papers proposing
CREST [31] and COPPER [8]. The ranges for capital costs of wind and solar were chosen
to be wider than in [8] in consideration of the uncertainty in the technological evolution
of these renewable energy sources and covering the design space. Demand growth varies
between provinces and was taken from [8,31], and it was also widened by 25% on either
side of the nominal value. In COPPER V5 was used in this work, and capital costs and
capacity factors are considered constant in each year. This work does not account for
technological evolution over time is not accounted for, adding a limitation to the validity of
this work.

Next, complete input datasets including the randomly sampled values of the design
inputs were used to generate COPPER simulation output datasets. Given the long duration
required for COPPER runs, the initial sample size was 1000 datasets, each consisting of a
full set of COPPER results in 2030, 2040, and 2050. For dataset generation, we applied the
default constraints in COPPER. These conditions include the application of the carbon tax to
gas prices; consideration of existing transmission between provinces with no interprovincial
transmission capacity expansion; consideration of existing hydro generating capacities with
no hydro generation capacity expansion. These constraints were selected to encompass
the most practical and non-contentious pathways, as the thorough examination of these
matters is not the primary focus of this analysis. Additional information on the parameters
used in the COPPER model can be found in reference [8].

The training dataset was derived from the COPPER simulation results. Specifically, the
annual carbon emissions by province and the capacity for wind and gas at both the provin-
cial and national levels were isolated. These variables were chosen as crucial indicators of
interest in policy formulation.

2.3.2. Data Preparation

The data were preprocessed for NN training through cleaning, normalization, and
standardization. Firstly, the model outputs were cleaned up by removing the missing
values (NaNs), constant values, and the output data outliers based on a 5-sigma margin.
Next, outputs were standardized based on their mean and standard deviation, to increase
the speed of model training and give equal weight to all the model outputs. Additionally,
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variance clipping was applied to the model outputs; where values with a standardized
variance of less than 0.001 were considered model noise and excluded from the training
process. The model inputs were normalized based on their maximum and minimum
values such that all inputs are in the range of 0 to 1. The data set of COPPER simulations
was generated and split into training (80%), validation (10%), and testing (10%) subsets.
Normalization of inputs and standardization of outputs were performed as per eqns.
(1) and (2), respectively:

For i in X:

x̂i =
xi − min(xi)

max(xi)− min(xi)
(1)

For i in Y:

ŷi =
yi − mean(yi)

std(yi)
(2)

2.3.3. Model Training

The model training algorithm aimed to minimize the loss function, which was defined
as mean-squared error (MSE) between the NN output predictions and the provided data
(calculated using eqn. (3)). Lower MSE values are indicative of greater model accuracy. To
prevent overfitting, the training and validation losses were compared during the model
tuning process. The NN architecture was selected based on empirical experimentation,
by ensuring that the validation loss did not increase over additional training epochs. The
model training platform was developed with the PyTorch Lightning library in Python [33],
and it was executed on a Graphics Processing Unit provided by Compute Canada.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (3)

2.3.4. Ablation Study to Determine Model Architecture

We experimented with a multi-layered NN architecture featuring residual blocks [30]
to regress the model outputs against the training dataset. The key design choices in
model architecture are the number of layers and neurons per layer, activation function
(sigmoid, ReLu, hyperbolic tangent, etc.), batch size, and learning rate [26]. Dropout was
used to reduce the risk of overfitting by random omissions of neurons during a neural
network’s training process [34]. A detailed examination of the impact of changes in design
parameters on the model’s performance is provided in Table 2, which presents a selection
of high-accuracy architectures identified during the experimental process, along with their
corresponding prediction errors.

Finally, the model architecture with 12 residual blocks was selected. Each block
consists of two linear layers, two batch normalizations, two ReLu activation functions, and
two dropout layers. This model is summarized in Table 3, and its architecture schematic is
shown in Figure 1.

2.4. Exploring Correlations in the Design Space

The proposed model was used to analyze the design space, quantify correlations
between outputs and inputs, and identify key factors affecting model results. Correlations
between each input and output were investigated using the COPPER surrogate model. The
inputs were randomly sampled 1000 times from a uniform distribution, with one input
being varied randomly while the other inputs were kept constant at their respective mean
values. The outputs of the surrogate model were then calculated, recorded, and plotted
against the chosen input variable. This process generated more than 2000 plots, which
collectively illustrate interdependencies between inputs and outputs. Due to the scale
of this analysis, a pipeline was implemented to process results effectively and identify
key insights. Two analytical and visualization techniques were applied to communicate
the findings:
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1. Clustering and mapping input-output relationships onto heat maps to provide quali-
tative depictions of the strength of each correlation.

2. Charting the normalized maximum derivatives of two key outputs in each time
step with respect to each input as a supplementary indicator showing the relative
quantified impact of all inputs on a target output.

Table 2. Model architecture experiment—a sample of higher accuracy architectures and associated
prediction errors for training and test datasets.

Architecture Training Error (MSE Loss) Test Error (MSE Loss)

1 linear + 12 Residual blocks, Neurons per block = 128, Dropout ratio = 0.5
Batch size = 128, Learning rate = 0.001 0.010 0.049

1 linear + 13 Residual blocks, Neurons per block = 128, Dropout ratio = 0.5
Batch size = 128, Learning rate = 0.001 0.018 0.06

9 linear blocks, Neurons per block = 128, Dropout ratio = 0.5
Batch size = 128, Learning rate = 0.001 0.012 0.08

10 linear blocks, Neurons per block = 128, Dropout ratio = 0.5
Batch size = 128, Learning rate = 0.001 0.02 0.09

1 linear + 12 Residual blocks, Neurons per block = 128, Dropout ratio = 0
Batch size = 128, Learning rate = 0.001 0.05 0.1

1 linear + 12 Residual blocks, Neurons per block = 128, Dropout ratio = 0.5
Batch size = 128, Learning rate = 0.001 0.04 0.09

1 linear + 12 Residual blocks, Neurons per block = 512, Dropout ratio = 0.5
Batch size = 128, Learning rate = 0.0001 0.03 0.1

1 linear + 12 Residual blocks, Neurons per block = 512, Dropout ratio = 0.5
Batch size = 128, Learning rate = 0.01 0.06 0.09

Table 3. Selected model architecture with the highest accuracy.

Architecture

1 linear + 12 Residual blocks
Neurons per block = 128

Dropout ratio = 0.5
Batch size = 128

Learning rate = 0.001
25,000 steps (2000 epochs)

2.4.1. Clustering and Dimensionality Reduction of the Results:

We used clustering and dimensionality reduction techniques to group similar relation-
ships that were found between each input and output. This allowed us to identify strong or
surprising correlations among the 2000 plots more efficiently, rather than having to review
each one individually.

Clustering is a data analysis technique used to group similar subgroups (clusters)
in the dataset. Firstly, we used the K-means algorithm to group data points based on
their similarity in terms of shape. This allows us to quantify correlation and identify the
key factors that affect the model results. K-means is an unsupervised ML algorithm that
iteratively identifies k distinct, non-overlapping clusters within the data set such that each
datum can be assigned to a group. The pattern of change (increase, decrease, etc.) in
input-output variation can then be identified through observation for each grouping.

After clustering the data, we used visualization techniques to help identify the unique
relationship of each group. We used the t-distributed stochastic neighbor embedding
(t-SNE) technique [35], which is a dimensionality reduction method that maps the high-
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dimensional data to a 2D plot, making it easier to visualize and understand the multi-
dimensional clusters. This technique helped us to more easily identify the characteristic
relationship of each group.

Then, the characteristic relationships observed within each group were labeled to
facilitate the interpretability of the large quantity of information to stakeholders effectively.
Eight distinct input-output relationship types were identified, as summarized in Table 4.
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Table 4. Input-output relationship types and interpretations.

Shape Sample Plot Interpretation

Negative
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tify key insights. Two analytical and visualization techniques were applied to communi-
cate the findings: 
1. Clustering and mapping input-output relationships onto heat maps to provide qual-

itative depictions of the strength of each correlation.
2. Charting the normalized maximum derivatives of two key outputs in each time step

with respect to each input as a supplementary indicator showing the relative quanti-
fied impact of all inputs on a target output.

2.4.1. Clustering and Dimensionality Reduction of the Results: 
We used clustering and dimensionality reduction techniques to group similar rela-

tionships that were found between each input and output. This allowed us to identify 
strong or surprising correlations among the 2000 plots more efficiently, rather than having 
to review each one individually. 

Clustering is a data analysis technique used to group similar subgroups (clusters) in 
the dataset. Firstly, we used the K-means algorithm to group data points based on their 
similarity in terms of shape. This allows us to quantify correlation and identify the key 
factors that affect the model results. K-means is an unsupervised ML algorithm that iter-
atively identifies k distinct, non-overlapping clusters within the data set such that each 
datum can be assigned to a group. The pattern of change (increase, decrease, etc.) in input-
output variation can then be identified through observation for each grouping. 

After clustering the data, we used visualization techniques to help identify the 
unique relationship of each group. We used the t-distributed stochastic neighbor embed-
ding (t-SNE) technique [35], which is a dimensionality reduction method that maps the 
high-dimensional data to a 2D plot, making it easier to visualize and understand the mul-
tidimensional clusters. This technique helped us to more easily identify the characteristic 
relationship of each group. 

Then, the characteristic relationships observed within each group were labeled to fa-
cilitate the interpretability of the large quantity of information to stakeholders effectively. 
Eight distinct input-output relationship types were identified, as summarized in Table 4. 

Table 4. Input-output relationship types and interpretations. 

Shape Interpretation 

The output will decrease with the selected input.

Strongly negative
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function, and two linear layers and the last layer is a linear layer—dimension of input and output 
layers are 38 and 54, respectively which is the number of selected inputs and outputs of COPPER. 

2.4. Exploring Correlations in the Design Space 
The proposed model was used to analyze the design space, quantify correlations be-

tween outputs and inputs, and identify key factors affecting model results. Correlations 
between each input and output were investigated using the COPPER surrogate model. 
The inputs were randomly sampled 1000 times from a uniform distribution, with one in-
put being varied randomly while the other inputs were kept constant at their respective 
mean values. The outputs of the surrogate model were then calculated, recorded, and 
plotted against the chosen input variable. This process generated more than 2000 plots, 
which collectively illustrate interdependencies between inputs and outputs. Due to the 
scale of this analysis, a pipeline was implemented to process results effectively and iden-
tify key insights. Two analytical and visualization techniques were applied to communi-
cate the findings: 
1. Clustering and mapping input-output relationships onto heat maps to provide qual-

itative depictions of the strength of each correlation.
2. Charting the normalized maximum derivatives of two key outputs in each time step

with respect to each input as a supplementary indicator showing the relative quanti-
fied impact of all inputs on a target output.

2.4.1. Clustering and Dimensionality Reduction of the Results: 
We used clustering and dimensionality reduction techniques to group similar rela-

tionships that were found between each input and output. This allowed us to identify 
strong or surprising correlations among the 2000 plots more efficiently, rather than having 
to review each one individually. 

Clustering is a data analysis technique used to group similar subgroups (clusters) in 
the dataset. Firstly, we used the K-means algorithm to group data points based on their 
similarity in terms of shape. This allows us to quantify correlation and identify the key 
factors that affect the model results. K-means is an unsupervised ML algorithm that iter-
atively identifies k distinct, non-overlapping clusters within the data set such that each 
datum can be assigned to a group. The pattern of change (increase, decrease, etc.) in input-
output variation can then be identified through observation for each grouping. 

After clustering the data, we used visualization techniques to help identify the 
unique relationship of each group. We used the t-distributed stochastic neighbor embed-
ding (t-SNE) technique [35], which is a dimensionality reduction method that maps the 
high-dimensional data to a 2D plot, making it easier to visualize and understand the mul-
tidimensional clusters. This technique helped us to more easily identify the characteristic 
relationship of each group. 

Then, the characteristic relationships observed within each group were labeled to fa-
cilitate the interpretability of the large quantity of information to stakeholders effectively. 
Eight distinct input-output relationship types were identified, as summarized in Table 4. 

Table 4. Input-output relationship types and interpretations. 

Shape Sample Plot Interpretation 

The output will rapidly decrease with the selected input.

Relatively insensitive
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function, and two linear layers and the last layer is a linear layer—dimension of input and output 
layers are 38 and 54, respectively which is the number of selected inputs and outputs of COPPER. 

2.4. Exploring Correlations in the Design Space 
The proposed model was used to analyze the design space, quantify correlations be-

tween outputs and inputs, and identify key factors affecting model results. Correlations 
between each input and output were investigated using the COPPER surrogate model. 
The inputs were randomly sampled 1000 times from a uniform distribution, with one in-
put being varied randomly while the other inputs were kept constant at their respective 
mean values. The outputs of the surrogate model were then calculated, recorded, and 
plotted against the chosen input variable. This process generated more than 2000 plots, 
which collectively illustrate interdependencies between inputs and outputs. Due to the 
scale of this analysis, a pipeline was implemented to process results effectively and iden-
tify key insights. Two analytical and visualization techniques were applied to communi-
cate the findings: 
1. Clustering and mapping input-output relationships onto heat maps to provide qual-

itative depictions of the strength of each correlation.
2. Charting the normalized maximum derivatives of two key outputs in each time step

with respect to each input as a supplementary indicator showing the relative quanti-
fied impact of all inputs on a target output.

2.4.1. Clustering and Dimensionality Reduction of the Results: 
We used clustering and dimensionality reduction techniques to group similar rela-

tionships that were found between each input and output. This allowed us to identify 
strong or surprising correlations among the 2000 plots more efficiently, rather than having 
to review each one individually. 

Clustering is a data analysis technique used to group similar subgroups (clusters) in 
the dataset. Firstly, we used the K-means algorithm to group data points based on their 
similarity in terms of shape. This allows us to quantify correlation and identify the key 
factors that affect the model results. K-means is an unsupervised ML algorithm that iter-
atively identifies k distinct, non-overlapping clusters within the data set such that each 
datum can be assigned to a group. The pattern of change (increase, decrease, etc.) in input-
output variation can then be identified through observation for each grouping. 

After clustering the data, we used visualization techniques to help identify the 
unique relationship of each group. We used the t-distributed stochastic neighbor embed-
ding (t-SNE) technique [35], which is a dimensionality reduction method that maps the 
high-dimensional data to a 2D plot, making it easier to visualize and understand the mul-
tidimensional clusters. This technique helped us to more easily identify the characteristic 
relationship of each group. 

Then, the characteristic relationships observed within each group were labeled to fa-
cilitate the interpretability of the large quantity of information to stakeholders effectively. 
Eight distinct input-output relationship types were identified, as summarized in Table 4. 

Table 4. Input-output relationship types and interpretations. 

Shape Sample Plot Interpretation 

Negative The output will decrease with the selected input. 

Strongly negative The output will rapidly decrease with the selected input. 

Relatively insensi-
tive 

The output’s variation with respect to the input is not significant relative to its varia-
tion with respect to other inputs. Note that these values are normalized, so this does 

not necessarily imply there is a constant relationship. 

The output’s variation with respect to the input is not significant relative to its
variation with respect to other inputs. Note that these values are normalized, so this

does not necessarily imply there is a constant relationship.

Positive
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The output will increase with the selected input. 

The output will rapidly increase with the selected input. 

There is no identifiable pattern in the correlation between the input and the output. 

The output increases, peaks, and then decreases with respect to the input. 

The output decreases, reaches a trough, and then increases with respect to the input. 

2.4.2. Relative Impact of Policy Parameters 
To quantify the relative impact of specific input parameters on selected outputs, we 

employed a mathematical technique known as maximum absolute derivatives of stand-
ardized outputs with respect to each normalized input. This method provides a quantita-
tive measure of the relative influence of each input parameter on the selected outputs by 
determining the peak sensitivity of an output to variations in specific input parameters. 
Calculation of maximum derivatives is a computationally demanding process that is 
made feasible using a surrogate model. We chose two outputs, wind and gas capacity over 
time, for this analysis as they are indicative of successful decarbonization in future energy 
system capacity expansion. The normalized maximum derivatives for these outputs with 
respect to all inputs were visualized using bar charts to identify which inputs have the 
greatest impact on these outputs, thus providing insights on how to achieve decarboniza-
tion. 

3. Results
The results of this work are presented in two sections. The first section covers the 

results of the surrogate model development, including the model evaluation, perfor-
mance, and limitations. The second section presents the results of the analysis that was 
conducted using the proposed model. 

3.1. COPPER Surrogate Model Performance 
In this section, we evaluate the results, performance, and computational cost of the 

surrogate model in comparison to the actual COPPER model and point out the limitations 
of the surrogate model. This section of the results will help to determine how well the 
surrogate model approximates the actual COPPER model, and to identify any output 
where the surrogate model may not be as accurate or efficient as the actual model. This 
comparison will give an idea about the validity of the proposed model and its limitations. 

The output will increase with the selected input.

Strongly positive
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The output will increase with the selected input. 

The output will rapidly increase with the selected input. 

There is no identifiable pattern in the correlation between the input and the output. 

The output increases, peaks, and then decreases with respect to the input. 

The output decreases, reaches a trough, and then increases with respect to the input. 

2.4.2. Relative Impact of Policy Parameters 
To quantify the relative impact of specific input parameters on selected outputs, we 

employed a mathematical technique known as maximum absolute derivatives of stand-
ardized outputs with respect to each normalized input. This method provides a quantita-
tive measure of the relative influence of each input parameter on the selected outputs by 
determining the peak sensitivity of an output to variations in specific input parameters. 
Calculation of maximum derivatives is a computationally demanding process that is 
made feasible using a surrogate model. We chose two outputs, wind and gas capacity over 
time, for this analysis as they are indicative of successful decarbonization in future energy 
system capacity expansion. The normalized maximum derivatives for these outputs with 
respect to all inputs were visualized using bar charts to identify which inputs have the 
greatest impact on these outputs, thus providing insights on how to achieve decarboniza-
tion. 

3. Results
The results of this work are presented in two sections. The first section covers the 

results of the surrogate model development, including the model evaluation, perfor-
mance, and limitations. The second section presents the results of the analysis that was 
conducted using the proposed model. 

3.1. COPPER Surrogate Model Performance 
In this section, we evaluate the results, performance, and computational cost of the 

surrogate model in comparison to the actual COPPER model and point out the limitations 
of the surrogate model. This section of the results will help to determine how well the 
surrogate model approximates the actual COPPER model, and to identify any output 
where the surrogate model may not be as accurate or efficient as the actual model. This 
comparison will give an idea about the validity of the proposed model and its limitations. 

The output will rapidly increase with the selected input.

Inconclusive (unknown)
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The output will increase with the selected input. 

The output will rapidly increase with the selected input. 

There is no identifiable pattern in the correlation between the input and the output. 

The output increases, peaks, and then decreases with respect to the input. 

The output decreases, reaches a trough, and then increases with respect to the input. 

2.4.2. Relative Impact of Policy Parameters 
To quantify the relative impact of specific input parameters on selected outputs, we 

employed a mathematical technique known as maximum absolute derivatives of stand-
ardized outputs with respect to each normalized input. This method provides a quantita-
tive measure of the relative influence of each input parameter on the selected outputs by 
determining the peak sensitivity of an output to variations in specific input parameters. 
Calculation of maximum derivatives is a computationally demanding process that is 
made feasible using a surrogate model. We chose two outputs, wind and gas capacity over 
time, for this analysis as they are indicative of successful decarbonization in future energy 
system capacity expansion. The normalized maximum derivatives for these outputs with 
respect to all inputs were visualized using bar charts to identify which inputs have the 
greatest impact on these outputs, thus providing insights on how to achieve decarboniza-
tion. 

3. Results
The results of this work are presented in two sections. The first section covers the 

results of the surrogate model development, including the model evaluation, perfor-
mance, and limitations. The second section presents the results of the analysis that was 
conducted using the proposed model. 

3.1. COPPER Surrogate Model Performance 
In this section, we evaluate the results, performance, and computational cost of the 

surrogate model in comparison to the actual COPPER model and point out the limitations 
of the surrogate model. This section of the results will help to determine how well the 
surrogate model approximates the actual COPPER model, and to identify any output 
where the surrogate model may not be as accurate or efficient as the actual model. This 
comparison will give an idea about the validity of the proposed model and its limitations. 

There is no identifiable pattern in the correlation between the input and the output.

Bell-shaped
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Positive The output will increase with the selected input. 

Strongly positive The output will rapidly increase with the selected input. 

Inconclusive (un-
known) There is no identifiable pattern in the correlation between the input and the output. 

Bell-shaped The output increases, peaks, and then decreases with respect to the input. 

Inverse bell-
shaped The output decreases, reaches a trough, and then increases with respect to the input. 

2.4.2. Relative Impact of Policy Parameters 
To quantify the relative impact of specific input parameters on selected outputs, we 

employed a mathematical technique known as maximum absolute derivatives of stand-
ardized outputs with respect to each normalized input. This method provides a quantita-
tive measure of the relative influence of each input parameter on the selected outputs by 
determining the peak sensitivity of an output to variations in specific input parameters. 
Calculation of maximum derivatives is a computationally demanding process that is 
made feasible using a surrogate model. We chose two outputs, wind and gas capacity over 
time, for this analysis as they are indicative of successful decarbonization in future energy 
system capacity expansion. The normalized maximum derivatives for these outputs with 
respect to all inputs were visualized using bar charts to identify which inputs have the 
greatest impact on these outputs, thus providing insights on how to achieve decarboniza-
tion. 

3. Results
The results of this work are presented in two sections. The first section covers the 

results of the surrogate model development, including the model evaluation, perfor-
mance, and limitations. The second section presents the results of the analysis that was 
conducted using the proposed model. 

3.1. COPPER Surrogate Model Performance 
In this section, we evaluate the results, performance, and computational cost of the 

surrogate model in comparison to the actual COPPER model and point out the limitations 
of the surrogate model. This section of the results will help to determine how well the 
surrogate model approximates the actual COPPER model, and to identify any output 
where the surrogate model may not be as accurate or efficient as the actual model. This 
comparison will give an idea about the validity of the proposed model and its limitations. 

The output increases, peaks, and then decreases with respect to the input.

Inverse bell-shaped
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Positive The output will increase with the selected input. 

Strongly positive The output will rapidly increase with the selected input. 

Inconclusive (un-
known) 

There is no identifiable pattern in the correlation between the input and the output. 

Bell-shaped The output increases, peaks, and then decreases with respect to the input. 

Inverse bell-
shaped 

The output decreases, reaches a trough, and then increases with respect to the input. 

2.4.2. Relative Impact of Policy Parameters 
To quantify the relative impact of specific input parameters on selected outputs, we 

employed a mathematical technique known as maximum absolute derivatives of stand-
ardized outputs with respect to each normalized input. This method provides a quantita-
tive measure of the relative influence of each input parameter on the selected outputs by 
determining the peak sensitivity of an output to variations in specific input parameters. 
Calculation of maximum derivatives is a computationally demanding process that is 
made feasible using a surrogate model. We chose two outputs, wind and gas capacity over 
time, for this analysis as they are indicative of successful decarbonization in future energy 
system capacity expansion. The normalized maximum derivatives for these outputs with 
respect to all inputs were visualized using bar charts to identify which inputs have the 
greatest impact on these outputs, thus providing insights on how to achieve decarboniza-
tion. 

3. Results
The results of this work are presented in two sections. The first section covers the 

results of the surrogate model development, including the model evaluation, perfor-
mance, and limitations. The second section presents the results of the analysis that was 
conducted using the proposed model. 

3.1. COPPER Surrogate Model Performance 
In this section, we evaluate the results, performance, and computational cost of the 

surrogate model in comparison to the actual COPPER model and point out the limitations 
of the surrogate model. This section of the results will help to determine how well the 
surrogate model approximates the actual COPPER model, and to identify any output 
where the surrogate model may not be as accurate or efficient as the actual model. This 
comparison will give an idea about the validity of the proposed model and its limitations. 

The output decreases, reaches a trough, and then increases with respect to the input.



Energies 2023, 16, 1352 10 of 21

2.4.2. Relative Impact of Policy Parameters

To quantify the relative impact of specific input parameters on selected outputs, we
employed a mathematical technique known as maximum absolute derivatives of standard-
ized outputs with respect to each normalized input. This method provides a quantitative
measure of the relative influence of each input parameter on the selected outputs by de-
termining the peak sensitivity of an output to variations in specific input parameters.
Calculation of maximum derivatives is a computationally demanding process that is made
feasible using a surrogate model. We chose two outputs, wind and gas capacity over time,
for this analysis as they are indicative of successful decarbonization in future energy system
capacity expansion. The normalized maximum derivatives for these outputs with respect
to all inputs were visualized using bar charts to identify which inputs have the greatest
impact on these outputs, thus providing insights on how to achieve decarbonization.

3. Results

The results of this work are presented in two sections. The first section covers the
results of the surrogate model development, including the model evaluation, performance,
and limitations. The second section presents the results of the analysis that was conducted
using the proposed model.

3.1. COPPER Surrogate Model Performance

In this section, we evaluate the results, performance, and computational cost of the
surrogate model in comparison to the actual COPPER model and point out the limitations
of the surrogate model. This section of the results will help to determine how well the
surrogate model approximates the actual COPPER model, and to identify any output
where the surrogate model may not be as accurate or efficient as the actual model. This
comparison will give an idea about the validity of the proposed model and its limitations.

3.1.1. Model Evaluation

A lower MSE loss generally indicates greater accuracy in predictions during model
tuning. However, it is not clear what MSE loss value should be considered a sufficiently
close approximation of the base COPPER model. To resolve this, we assess the quality of
the output regressions, which means comparing the results of the surrogate model with
the actual results of COPPER, to evaluate the quality of the prediction. For each ML model
output, we generated a scatter plot for comparison to the same output from the test dataset.
An ideal surrogate model would produce diagonal lines with R-squared values of 1 for
all plots. As a secondary metric, we report the minimum R-squared value overall output
regression plots and set an acceptance threshold of 93%.

Table 5 reports the performance results of the proposed model, including training,
validation, and test errors, as well as the R-squared value for the test data set. The R-
squared value is a measure of the goodness of fit of the model, with a value of 1 indicating
a perfect fit and a value of 0 indicating no fit. For each datum in the test dataset, R-squared
is calculated, and then the minimum, maximum, and mean are calculated over the test
dataset. This table shows the R-squared distribution statistics with a mean of 0.93 for
all regressions. These results give an overall idea of how well the model is performing
on various data sets. Figure 2 shows six selected regression plots out of 54 with the
minimum, maximum, and mean R-squared for the unseen test data set. These figures
demonstrate that even in cases where the R-squared value is low, the model still achieves a
high degree of accuracy in its predictions. Note, all values are normalized in the figure to
facilitate visualization.
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Table 5. Performance of the proposed model in terms of MSE losses and R-squared distribution for
the test data set.

Training Loss Validation Loss Test Loss Mean R-Squared R-Squared Standard Deviation

0.01 0.047 0.049 0.93 0.05
Energies 2023, 16, 1352 12 of 22 
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Figure 2. The selected regression plots—they show the relationship between the outputs of the 
proposed model and the actual values of the test data set. The x-axis represents the actual values 
of COPPER results, while the y-axis represents the predicted values of the surrogate model. The 
red line (x = y) corresponds to the highest level of accuracy, where the predicted and actual values 
are the same. The closer the blue dots are to the red line, the more accurate the predictions of the 
model are. (a,b) represent the lowest R-squared values among all 54 regression plots, (c,d) repre-
sent the average R-squared values, and (e,f) represent the highest R-squared values. These plots 
allow for visualization of the model’s performance and can be used to identify outputs where the 
model may not be performing as well. 

3.1.2. Computational Cost Evaluation 
Table 6 compares the run-time and required resources of the proposed model against 

COPPER to evaluate the computational cost of the model. The results show a significant 
reduction in computational time and required resources when using the proposed model. 

Figure 2. The selected regression plots—they show the relationship between the outputs of the
proposed model and the actual values of the test data set. The x-axis represents the actual values of
COPPER results, while the y-axis represents the predicted values of the surrogate model. The red
line (x = y) corresponds to the highest level of accuracy, where the predicted and actual values are
the same. The closer the blue dots are to the red line, the more accurate the predictions of the model
are. (a,b) represent the lowest R-squared values among all 54 regression plots, (c,d) represent the
average R-squared values, and (e,f) represent the highest R-squared values. These plots allow for
visualization of the model’s performance and can be used to identify outputs where the model may
not be performing as well.
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3.1.2. Computational Cost Evaluation

Table 6 compares the run-time and required resources of the proposed model against
COPPER to evaluate the computational cost of the model. The results show a significant
reduction in computational time and required resources when using the proposed model.
These results are important for a wide range of applications, as the reduction in computa-
tional time and resources can lead to cost savings and make the model more accessible to a
broader range of users.

Table 6. Comparison of COPPER and proposed model computational costs and run time.

Model CPU Memory Run-Time

COPPER 16–32 64–128 GB 11 h–72 h
Residual neural network 1 NA * 17.1 ms

* Except for saving the model and associated data.

3.1.3. Limitations of Machine Learning Models for Surrogate Energy Systems Analysis

The developed model is less sensitive to parameters with relatively small nominal
values across its variation range. This is because these small values approach zero when the
input dataset is normalized, leading to their contribution to the MSE in the network being
relatively small. As a result, the relative inaccuracy of small values is not a large driver of
network optimization or architecture choices, and it is not captured in an overall accuracy
metric. This means that the corresponding prediction accuracy for small-valued outputs
may be lower than for larger-valued outputs. This is particularly relevant for parameters
where there are small variations between provinces. This limitation should be considered
when interpreting the results of the model and when making predictions for small-valued
parameters. For example, the annual carbon emissions in Nova Scotia are much lower
than in Alberta due to differences in population and the carbon intensity of their power
grids. Because the model is less sensitive to small values and variations, the predictions for
Alberta will tend to be more accurate than for Nova Scotia. This is a common limitation
of ML. To overcome this limitation, one could consider collecting more data specific to
Nova Scotia or using different techniques such as weighting the loss function to give more
importance to specific regions like Nova Scotia or Alberta.

Another limitation of the surrogate model relates to the wider range of inputs that can
be changed in COPPER for the purpose of exploring specific scenarios of interest or adding
new constraints. In contrast, this surrogate model is limited to the initial input selection
chosen for this work. To address this limitation and the uncertainty associated with future
capital costs in future work, the selected variation ranges can be widened such as ±50%
instead of ±25%, or the analysis could be preceded by a systematic literature review of
capital cost projections that were considered beyond the scope of this analysis.

Furthermore, as COPPER improves and more features are added, the NN will need
to be retrained to continue to accurately model the Canadian electricity system, which
includes the computational cost of producing and updating the training data and retraining
the model. For example, we used COPPER V5 for our model development, in which
uncertainty of capital costs is not considered and they are constant for each year, but in the
latest version of COPPER technology evolutions are considered and capital costs are not
constant. Therefore, this model will need to be retrained and updated as COPPER evolves
to ensure its continued accuracy.

There are caveats associated with the analysis conducted in this work relative to
standard sensitivity analysis methods:

There is an inherent level of error (correlations aren’t R_squared = 1), so it is unclear
to what extent the model can accurately reproduce sensitivities.

The input parameters are varied one-at-time (OAT), and this is not considered suitable
for sensitivity analysis for a non-linear system. For a non-linear system, a more appropriate
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sensitivity analysis method would be global sensitivity analysis, which considers the
interactions between inputs and can provide more accurate results.

3.1.4. Limitations Relative to COPPER for Policymakers

Finally, the surrogate modelling methodology used in this work has some limitations
relative to the base COPPER model in relevance, intelligibility, and validity.

Firstly, the systematic errors identified above demonstrate that the surrogate model
is useful for identifying strong key relationships rather than specific numeric results. So,
the base COPPER model is more suitable to use in policy design projects where there are
numeric objectives. Similarly, the surrogate is the most successful at capturing large values.
This led to it producing the most accurate predictions for larger provinces and limiting its
relevance to smaller jurisdictions.

Secondly, due to the comparative nature of this analysis and the use of normalized
data to generate model outputs results in analysis where all findings are relative, and
no numeric results descriptive of the real system are presented in this work. As such,
the surrogate lacks some of the intelligibility of the base model, and the values must be
abnormalized to be interpreted in the context of the real system.

Finally, the linear programming method used by COPPER has structural validity that
the surrogate does not inherently have, as the deep NN structure of the model does not
reflect the structure of the real system. Further validation steps must be taken before results
developed using this model are implemented.

Each of these limitations could be addressed by simulating with COPPER to replicate
key results found using the surrogate model and validating that the simulation results
agree with the surrogate results. Then, these simulation results could be used for detailed
and nominal value-based policy planning activities more akin to typical COPPER uses.

3.2. Key Relationships in Canada’s Electricity System Design Space

The use of the surrogate model enabled the evaluation of the changes in system
outcomes for variations in policy design inputs in the electricity sector design space. A
broad array of insights can be drawn from this analysis about Canada’s mid-term electricity
sector decarbonization options, including findings regarding the effects of demand growth,
technology costs, and carbon taxes in each province between the present time and end
dates corresponding to the Paris Agreement targets.

The analysis firstly presents the relationships in a heat map format where the color
corresponds to the nature of the relationship, making it easy to identify the strongest
relationships affecting key system indicators at each timestep. This allows for a clear visual
representation of the data and facilitates the identification of key relationships. Secondly,
the outputs’ maximum derivatives with respect to each input are provided as a quantitative
metric for understanding the relative importance of policy-relevant inputs for the capacity
expansion of gas and wind generation. This allows for a more in-depth understanding
of the impact of different inputs on the electricity sector, providing valuable insights into
decision-making and policymaking.

3.2.1. Correlations between Inputs, and Emissions and Generation Output

The heat maps depicting the characteristic relationship between each input and each
output for the years 2030, 2040, and 2050 are presented in Figures 3–5, respectively. They
provide a visual representation of how each input affects each output at different timesteps.

The heat map grid size (i.e., the number of input and outputs for which a relationship
was classified) vary over the considered timesteps because, as stated above, values that are
constant or have very small variations in the training dataset at a timestep were removed
from model training process during data preparation based on 5-sigma threshold for
standard deviation. In other words, if any selected design output was not associated with
relatively significant variation in COPPER simulations, it has been excluded from the
surrogate model calculations.
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Figure 3. This heat map shows the relationship between the inputs (x-axis) and outputs (y-axis) in 
2030. It includes only design variables that have variations in the training dataset. The correlations 
are color-coded based on the shape of input-output correlation plots. The plots are scaled for each 
output based on the minimum and maximum values, so the relationships depicted in the heat map 
are relative to the specific output being considered. The heat map provides a visual representation 
of how each input affects each output and allows for easy identification of the strongest relation-
ships. 

 
Figure 4. This heat map shows the relationship between the inputs (x-axis) and outputs (y-axis) in 
2040. It includes only design variables that have variations in the training dataset. The correlations 
are color-coded based on the shape of input-output correlation plots. The plots are scaled for each 
output based on the minimum and maximum values, so the relationships depicted in the heat map 
are relative to the specific output being considered. The heat map provides a visual representation 
of how each input affects each output and allows for easy identification of the strongest relation-
ships. 
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The heat maps present a large amount of information that can be interpreted by
analyzing and comparing the pattern of change in output values given variation for each
input variable. This clustering can provide valuable insights into the types of relationships
between policy inputs and system outcomes. However, the surrogate analysis generates
a large amount of information and it would not be feasible to explore every relationship
in depth in this work. Therefore, this analysis should be considered as a starting point for
further research to identify the most important relationships and their implications.

The results suggest that the carbon tax is the most influential determinant of Canadian
electricity system outcomes between now and 2050. The carbon tax level is strongly
negatively associated with emissions in most provinces at all time steps. This confirms the
importance of Canada’s federal-level commitment to carbon pricing policies, such as the
Pan-Canadian Approach to Carbon Pollution Pricing [36].

The results further suggest that wind is the renewable energy source with the greatest
influence on Canada’s electricity grid development, particularly for 2030. The capital cost of
wind is shown to the positively correlated with emissions in some provinces and negatively
correlated with built wind capacity in most provinces. Of all the renewable energy subsidy
options, this analysis suggests that reducing the capital cost of wind across Canada results
in the greatest emissions reductions. This is a crucial insight for Canada’s 2030 electricity
system greenhouse gas targets, as it highlights the importance of reducing the cost of wind
energy to achieve emissions reduction goals.

3.2.2. Ranking of Factors Affecting Gas and Wind Capacity Development

In this section, we explore the factors that determine the expansion of gas and wind
energy generation capacity at the national scale. These key outcomes do not directly cor-
respond to current Canadian policy targets, such as annual GHG emissions. However,
they are responsible for significant contributions to Canadian energy generation and are



Energies 2023, 16, 1352 16 of 21

indicative of either the continuation of business-as-usual or realized decarbonization ef-
forts. By understanding the determinants of these outcomes, policy makers can identify
the most effective policies and strategies to promote decarbonization in the Canadian
electricity sector.

The analysis of system parameters and their potential impact on the future supply
mix in Canada is represented by the maximum derivatives of gas and wind capacities with
respect to each input. These values are normalized to determine the relative impact of each
variable and are used to rank policy options based on their relative impact. The negative
values indicate a negative correlation, positive values indicate a positive correlation, and
the absolute value of the maximum derivative represents the strength of the correlation.
The results are displayed in bar charts for Canada for the years 2030, 2040, and 2050
in Figures 6–8, respectively, which provide a clear visual representation of the relative
importance of each input variable in determining the expansion of gas and wind energy
generation capacity. This information can help policy makers identify the most sensitive
parameters and prioritize efforts to achieve decarbonization goals.
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Figure 6. National Gas and Wind Generation Capacity in 2030. Ranked factors affecting Canadian gas
and wind generating capacities in 2030 are presented in bar charts. These are quantitative measures
of the relative impact of system inputs on two key components of the Canadian energy supply
mix, with the parameters listed on the y-axis. These values, which show correlation intensity, are
normalized maximum derivatives of gas and wind capacities with respect to each input on the y-axis.
The negative values show the negative correlations, positive values show positive correlations, and
the absolute values of maximum derivatives represent the correlation intensity.
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terminants of Canadian electricity system outcomes between now and 2050 are the carbon 
tax and the capital cost of wind. The capital cost of wind plays a particularly significant 
role, exhibiting a relative impact on the expansion of gas and wind capacities four times 
as large as any other technology cost. The results show that across all time steps, changes 
in other demand growth and non-wind energy technology cost parameters have minimal 
effects on the development of wind and gas generation capacities.  

4. Discussion 
We find that there is a broad array of holistic insights we can draw from this surro-

gate model by clustering or by ranking each correlation, and then comparing these rela-
tionships across years, provinces, or parameters. The results confirm the effectiveness of 
policies such as carbon pricing and wind subsidies and highlight their significance com-
pared to other options. The remainder of the analysis will focus on the most notable find-
ings from national-level results. 

Figure 7. National Gas and Wind Generation Capacity in 2040. Ranked factors affecting Canadian gas
and wind generating capacities in 2040 are presented in bar charts. These are quantitative measures
of the relative impact of system inputs on two key components of the Canadian energy supply
mix, with the parameters listed on the y-axis. These values, which show correlation intensity, are
normalized maximum derivatives of gas and wind capacities with respect to each input on the y-axis.
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the absolute values of maximum derivatives represent the correlation intensity.
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of the relative impact of system inputs on two key components of the Canadian energy supply
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The results reinforce the previously mentioned findings that the most influential
determinants of Canadian electricity system outcomes between now and 2050 are the
carbon tax and the capital cost of wind. The capital cost of wind plays a particularly
significant role, exhibiting a relative impact on the expansion of gas and wind capacities
four times as large as any other technology cost. The results show that across all time steps,
changes in other demand growth and non-wind energy technology cost parameters have
minimal effects on the development of wind and gas generation capacities.

4. Discussion

We find that there is a broad array of holistic insights we can draw from this surrogate
model by clustering or by ranking each correlation, and then comparing these relationships
across years, provinces, or parameters. The results confirm the effectiveness of policies
such as carbon pricing and wind subsidies and highlight their significance compared to
other options. The remainder of the analysis will focus on the most notable findings from
national-level results.

4.1. Demand Growth Effects

The analysis shows that the relationship between electricity demand and emissions
is not consistent across provinces and over time. An increase in demand growth rate will
lead to an increase in carbon emissions in most provinces, in New Brunswick and Nova
Scotia until 2030 and Alberta until 2040. Of particular interest are the highly positive and
positive correlations, respectively, between emissions and gas generation capacity, and
demand growth in many of the provinces with the highest populations (i.e., BC, AB, QB)
and Nova Scotia. This uneven distribution suggests that policies aimed at addressing future
load growth, such as efficiency measures and renewable energy expansion, or increased
stringency of renewable portfolio standards over time, should be tailored to the specific
needs of each province when implemented at the provincial level.

4.2. Capital Cost Effects

The capital cost of non-renewable energy technologies, including nuclear energy,
does not have a significant impact on emissions because carbon pricing is already high
enough that non-renewable sources cannot compete with renewable sources in terms of
cost. However, the capital costs of solar and wind energy have a significant impact on
Canada’s electricity system development and are negatively correlated with emissions and
gas capacity in many provinces. This suggests that policies aimed at reducing the cost of
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renewable energy technologies can effectively reduce reliance on additional gas generation
capacity, particularly in New Brunswick and Nova Scotia. Climate policy that raises the
capital cost of coal and diesel raises wind capacity in some provinces but also increases gas
capacity in other provinces, highlighting the importance of considering localized impacts
when implementing federal-level policies like a coal phase-out.

4.3. System Sensitivity over Time

The sensitivity analysis of COPPER, a model used to simulate the electricity sector
under a net-zero constraint, shows that the system’s outputs become more stable over time
as the grid approaches the net-zero constraint. The greatest variation in emissions and
generation mix is seen in 2030, with the impact of changes in demand growth being the
highest. By 2040, technology capital costs become less of a determinant of emissions and
generation capacities, and the system is less susceptible to diverse outcomes due to changes
in parameters. This finding is in line with prior simulations produced using COPPER,
which show that carbon-intensive generation (coal, diesel) should be phased out in 2030 to
prevent their continued usage into 2050, as their life cycle can be around 20–25 years [8].
This confirms that the most important period for government intervention, decarbonization
policies, and green investment is within the next decade.

5. Conclusions

The COPPER model is able to model high-resolution spatiotemporal constraints and
detailed policy options, but its computational burden limits its use. The ESM developed
in this work addresses this limitation by efficiently exploring the design space for the
electricity sector by characterizing the relationships between policy inputs and system
outcomes over thousands of model runs. The efficient computational techniques explored
in this work have not previously been applied to large-scale ESMs.

The proposed deep NN pipeline outlined in this paper reduced the computational
time and required resources by 5 and 6 orders of magnitude, respectively, by only requiring
a single CPU while maintaining a high degree of overall accuracy (mean test regression
R-squared of 0.93). This addresses the computational limitations of the base COPPER
model. The surrogate model was used to produce over 2000 input-output correlation
plots, so a visualization method utilizing K-means clustering, comparative heat maps, and
ranked bar charts were developed to communicate these insights to diverse stakeholders
in an accessible way. This tool allows for easy determination of holistic insights to guide
policymakers with quantitative metrics for more effective electricity system decarbonization
planning. It has the ability to produce many insights, and in this work, we highlighted
the strongest relationships within the system and determinants of key components of the
electricity supply mix were highlighted.

The rapid evaluation enabled by this low-burden model allowed for the exploration
of new types of research questions and the vast design space for Canada’s electricity
system. This analysis revealed that carbon taxes and the capital cost of wind are the most
impactful parameters for electricity system outcomes, including emissions reductions, in
many provinces. This finding reaffirms and justifies Canada’s commitments to its carbon
pricing plan as the most impactful policy measure facilitating the decarbonization of
Canada’s electricity sector. Additionally, the analysis revealed that reducing the capital cost
of wind is an effective secondary strategy for emissions reduction and research and policy
support in this area should be a priority in the near-term.

Next, the analysis using maximum derivatives found that increasing carbon pricing
and reducing the capital cost of wind are the most effective measures for increasing wind
capacity and decreasing gas capacity across Canada. The implementation of a carbon
tax was found to have up to four times more impact than changes in the cost of wind
technologies and the cost of wind technologies had twice the impact of any other energy
technology cost. These interventions will be substantially more impactful on the resulting
system than policies impacting other technologies or demand growth.
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In addition to the previously mentioned findings, the analysis also identified the
localized effects of changes in the demand growth rate, the relatively small impact of
increasing the capital cost of non-renewable energy sources, and the importance of the
next decade for electricity system development and decarbonization. This highlights the
need to consider regional variations and the importance of taking action in the near term to
effectively decarbonize the country’s electricity sector.

This work is focused on the future of Canada’s electricity system as modelled by
the COPPER ESM to develop a set of insights for policy decisions toward GHG emission
reduction goals. However, the novel surrogate modelling methodology used here is
generalizable. It can be applied to many large-scale ESMs, covering a variety of scopes, to
answer a wide range of research questions regarding design options, optimization, and
measures of robustness, as has been achieved in other fields using surrogate modelling
techniques [9]. Our method was used to develop a set of insights for policy decisions
toward Canada’s GHG emission reduction goals.

Future Work

The findings developed using this ESM surrogate have potential implications that will
be further explored in future research. This includes reversing the normalization process
to explore the relationships in real-world contexts, using the low-burden ESM to find
the optimum input variables for policy planning, conducting a more comprehensive and
standard uncertainty analysis and global sensitivity analysis, and widening the selected
ranges by ±50% to analyze uncertainties related to technology evolution over time. Finally,
future development of large-scale surrogate ESMs could address the limitations identified
in this work, such as using feature scaling to account for magnitude differences in training
data or retraining the model to account for new features being added to COPPER.

Author Contributions: Z.J. contributed to conceptualization, methodology, software, validation,
formal analysis, investigation, writing (original draft preparation), writing (review and editing), and
visualization. M.J. contributed to the conceptualization, writing (original draft preparation), and
writing (review and editing). K.M.Y. contributed to supervision, resources, writing (review and
editing). M.M. contributed to supervision, resources, writing (review and editing), and funding
acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSERC New Frontiers in Research Fund. The grant number
is NFRFE-2018-00338.

Data Availability Statement: Our code for generating data, developing the model, and visualizing the
results is available at https://github.com/ZahraJahangiri/DL_COPPER (accessed on 5 January 2023).

Acknowledgments: The authors would like to thank Compute Canada for providing computational
resources, Mohammad Miri for his help in data generation, and Tim Crownshaw for his review and edits.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Symbol Definition
AB Alberta
BC British Columbia
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QC Quebec
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