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Abstract: Electrical energy conversion and storage in DC systems, with increasing importance
in industry, requires DC–DC power electronic converters with performances adapted to today’s
requirements. In recent years, the applications of DC–DC converters have expanded, including energy
storage management strategies, due to the use of supercapacitors for energy storage instead of—or
together with—rechargeable batteries, in order to improve overall performance. This article presents
a non-isolated, common-ground, bidirectional hybrid switched-capacitor DC–DC converter, which
can be efficiently used for supercapacitor charging/discharging, due to its high voltage conversion
ratio. The hybrid converter was obtained from the conventional bidirectional buck topology, inserting
an “active” switched-capacitor cell. In addition to the high voltage conversion ratio, the switched-
capacitor cell brings another important advantage: decreasing the values of all passive components
without interrupting the input to the output ground path. All of these positive features were revealed
through theoretical analysis and confirmed through digital simulations and experiments, proving that
the hybrid converter performs well in both operating modes, with a smooth transition between them.

Keywords: bidirectional DC–DC converter; energy conversion and storage; high voltage conversion
ratio; high voltage gain; hybrid DC–DC converter; non-isolated DC–DC converter; switched capacitor

1. Introduction

DC–DC converters are of particular interest today, due to the strong development of
several industrial fields, including renewable energies, electric and hybrid vehicles, energy
conversion and storage, and smart grid technologies.

In many cases, in modern DC applications, classical converters (buck, boost, buck–
boost, etc.) do not attain a high performance. Thus, in recent years, considerable research
efforts have been devoted to the development of new DC–DC converter topologies with
performances adapted to today’s requirements.

DC energy conversion and storage applications almost always require bidirectional
operation to ensure the power flow between the various energy storage elements and other
system components. As the importance of the supercapacitor technology is continuously
increasing [1–3] in renewable energy, grid applications, and the powertrain and electrical
engineering domains, the bidirectional DC–DC converters used for supercapacitor charg-
ing/discharging applications have to provide a high voltage conversion ratio. This is
necessary because the supercapacitor voltage must change within wide limits to achieve
good utilization of the stored energy. Therefore, if the ratio between the voltages at the
two ports of the converter is increasing, the efficiency of the DC–DC conversion can drop
considerably, while the volume and component stress increase. To avoid this, high (or
wide) voltage conversion ratio topologies must be used, such as hybrid converters [4–6].
Multilevel [7] or quadratic [8] topologies can also be used in applications that require high
voltage conversion ratios, but in comparison with them, hybrid converters usually have
the advantages of a simpler structure and control. Bidirectional DC–DC converters with

Energies 2023, 16, 1337. https://doi.org/10.3390/en16031337 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16031337
https://doi.org/10.3390/en16031337
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7220-055X
https://orcid.org/0000-0002-9591-4176
https://doi.org/10.3390/en16031337
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16031337?type=check_update&version=2


Energies 2023, 16, 1337 2 of 25

high voltage conversion ratios are used in electrical and hybrid vehicles [9–12], energy
conversion and storage systems [13–16], and microgrids and distributed generation [17,18].

Most of the converters used are non-isolated [19,20], but even though isolated topolo-
gies [20,21] can have some advantages (e.g., simplicity in the case of the bidirectional
flyback converter), they are generally avoided when isolation is not required, due to pos-
sible transformer difficulties at high frequencies. However, novel, isolated, bidirectional
DC–DC converters with good performance and high voltage conversion ratios are still
proposed in the literature. The topology presented in [22] has a lower switching device
count than the double active bridge converter—considered to be the performance and
flexibility standard for a bidirectional isolated DC–DC converter—albeit higher than that
of a non-isolated bidirectional converter.

Soft switching techniques could be used to reduce switching losses and improve effi-
ciency for a bidirectional, isolated DC–DC converter [23] that was intended only for battery
power storage—not for supercapacitors. A symmetrical resonant circuit was employed to
achieve zero voltage or current switching. Loss reduction was obtained by introducing
additional components and by using a variable frequency control method, which is harder
to implement than a simple, constant-frequency, PWM control signal. To achieve wide
voltage operation, a transformer with a variable turns ratio was needed.

The importance of a hybrid energy storage system for energy storage applications is
recognized in [24], where a dual-input bidirectional DC–DC converter is presented. One
input is connected to a rechargeable battery and the other to a supercapacitor, which is
used to increase the charging/discharging current rates of the system. The bidirectional
converter decouples the battery and supercapacitor power flow controls. It has a simple
structure, with identical legs for the two storage devices. Although it presents a very
interesting research work, it seems that the article does not highlight the main characteristic
of supercapacitor energy storage—that of the variation in the terminal voltage within
wide limits—which could imply the need to choose a different converter topology for the
supercapacitor.

This article is focused on a common-ground bidirectional switched–capacitor DC-DC
converter (BHSC) with a high voltage conversion ratio that can be used in energy conversion
and storage applications. The BHSC converter was compared with other bidirectional
converters with high voltage conversion ratios [5,13,18,25–29], and also with the classical
bidirectional buck–boost converter, which was used as a comparison basis. The results are
presented in Section 4. The topology presented in [5] employed a simple switched-inductor
cell to achieve a high voltage ratio, and it is suitable for supercapacitor energy storage
applications. In [13], three proposed converters were presented—each obtained through
integration of two classical topologies (i.e., boost + SEPIC; boost + Cuk; boost + buck–
boost). Therefore, the high voltage gain characteristic was obtained by a different method
compared with the hybrid converters. A hybrid convertor with a switched-capacitor cell,
but in a different configuration, as presented in [18], was successfully tested for power
flow management in a microgrid laboratory experimental model. The same topology was
evaluated for electric vehicle applications [25]. A high voltage conversion ratio topology
based on a modified version of the SEPIC converter presented in [26] was experimentally
tested in laboratory for fixed voltage ratios, with good results. It is possible to obtain a
high voltage conversion ratio by using split inductors or magnetically coupled inductors
in the dual-half-bridge DC–DC converter [27]. Some converters derived through this
method have the same voltage ratio as the hybrid topologies. Even higher voltage ratios
can be obtained. Another non-isolated topology with a high voltage conversion ratio,
which also has a common ground, is presented in [28]. Based on the traditional two-level
bidirectional DC–DC quasi-Z-source converter, it has component counts close to those
of hybrid converters, and it is suitable for the same applications. A good behavior as
an interface converter between the high-voltage bus and battery/supercapacitor in an
electrical vehicle was shown in [28]. A quadratic converter [29,30] was also taken into
consideration for comparison. In general, the hybrid converters have advantages over
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the quadratic ones where a moderate-to-high voltage conversion ratio is required. The
utilization of the quadratic converters is justified if a very high voltage ratio is needed.
However, they can also be used in other applications, but other topologies—including the
hybrid ones—are generally more suitable, due to their simpler structure or control.

The main contributions of this article are as follows: (i) the first experimental proven
bidirectional operation of the presented, high voltage conversion ratio topology; (ii) the-
oretical analysis of the topology; (iii) stability analysis and digital control design; and
(iv) converter design equations. The main advantages of the presented topology are as
follows: (a) wide voltage operation range; (b) smaller converter volume, due to smaller
passive components (c) a common ground between the two ports, meaning that it can be
employed as a component for multilevel converters or in interleaved configurations; (d) the
electromagnetic interferences are highly reduced in comparison with other high voltage
conversion range converters, due to the common ground; (e) a simple control strategy,
because a single PWM driving signal is used, even though there are five active switches in
the schematic.

2. Hybrid Converter Topology and Theory of Operation
2.1. BHSC Topology

Hybrid converters are obtained from the conventional DC–DC converters by inserting
switched-capacitor or switched-inductor cells in their structure [23]. Compared to the
initial converter, a DC–DC hybrid converter has a higher voltage conversion ratio at the
same duty cycle, being appropriate for applications where conventional DC–DC converters
are operating with degraded performances due to very low or very high duty cycle values.

The step-down switched-capacitor cell described in [31] consists of two capacitors and
three diodes—C1, C2, D1, D2, and D3—connected as shown in Figure 1.
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Figure 1. The unidirectional step-down switched-capacitor cell [31].

A comparative evaluation of unidirectional step-down and hybrid switched-capacitor
step-down DC–DC converters was presented in [32,33], based on comprehensive theoretical
analysis and extensive experimental testing. This article investigates the characteristics, op-
eration, and performance of the bidirectional hybrid switched-capacitor converter (BHSC),
derived from the unidirectional hybrid step-down topology by replacing all diodes with
transistors. Limited preliminary results were presented in [4].

The BHSC, presented in Figure 2, can be seen as a modified bidirectional step-down
(buck) converter, with a bidirectional switched-capacitor cell inserted at the high-voltage
side. Compared with other high voltage conversion ratio converters, such as those de-
scribed in [33,34], the BHSC has a common ground—a direct galvanic connection between
the input and output ports—which is an advantageous feature in many applications. In
terms of the number of components, compared with other topologies [30,35] with the same
conversion ratio, the BHSC has an additional transistor, but it provides the advantage of
smaller passive components, as shown in the following sections.

2.2. BHSC Theory of Operation

The BHSC converter operates as a buck converter if it is supplied at the high-voltage
(VH) side, or as a boost converter the energy is taken from the low-voltage (VL) side. The
switched-capacitor cell is connected through L2 at the converter input if the BHSC operates
as a step-down converter, or at the converter output if it operates as a step-up converter
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(in the other direction). The BHSC’s step-down operating mode is described in this article.
The step-up operating mode is similar—the only difference between the two modes being
the sign of the currents.
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Figure 2. The bidirectional hybrid switched-capacitor (BHSC) converter.

To explain the operation in the step-down operating mode, it is convenient to define
the duty factor D for the steady state in relation to S1 (that is, in the position of the switch
in the conventional buck converter). This also facilitates the comparison with the buck
converter. Therefore, the duty cycle is as follows:

D =
ton,S1

T
= ton · f , (1)

where ton,S1—the time interval when S1 is in conduction—is shortened, for convenience, to
ton.

Even if there are five transistors in the BHSC’s structure, there are only two converter
states in one switching period T, due to the fact that only one driving signal is used, which
is applied directly to S1, S3, and S5 and inverted to S2 and S4. The BHSC’s equivalent
schematics for the two states, defined by the ton and toff time intervals, are shown in
Figures 3 and 4, respectively.
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Figure 3. BHSC equivalent schematic during ton, in step-down operating mode.
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In step-down operating mode, during ton, the switched capacitors C1 and C2 are
connected in parallel through S3 and S5. The current through L1 is positive and equal to
the sum of the L2 current and the total discharging current of the switched-capacitor cell.
During toff, C1 and C2 are connected in series through S4 and are charged with a current
equal to the L2 current. L1 is decoupled from the switched capacitors, its positive current is
decreasing, and a part of its energy is transferred at the low-voltage side.

2.3. Analytical Description

To simplify the analysis, we will consider the following assumptions to be valid:

(a) The converter is operating in steady-state, continuous conduction mode (CCM);
(b) All components are ideal;
(c) The capacitances are large enough to achieve negligible voltage ripple; therefore, the

voltage across each capacitor is considered constant;
(d) The capacitors that form the switched-capacitor cell are considered identical (C1 = C2 = Csw).

In general, the equations for the voltages across the inductors L1 and L2, and for the
currents through the switched capacitors C1 and C2 in the two states, are as follows:

ton :


vL1 = VC1 −VL
vL2 = VH −VC2

iC1 + iC2 = iL2 − iL1

to f f :


vL1 = −VL

vL2 = VH −VC2 −VC1
iC1 = iC2 = iL2

(2)

Taking into consideration that the two switching capacitors are identical, Equations (2)
can be simplified as follows:

ton :


vL1 = VC −VL
vL2 = VH −VC

2 · iCsw = iL2 − iL1

to f f :


vL1 = −VL

vL2 = VH − 2 ·VC
iCsw = iL2

(3)

The voltage-second balance equations for L1 and L2 are{
VL1 = D · (VC −VL) + (1− D) · (−VL) = 0

VL2 = D · (VH −VC) + (1− D) · (VH − 2VC) = 0
(4)

Equation (4) shows that the voltage across a switched capacitor can be written in
two forms: {

VCsw = VH
2−D

VCsw
= VL

D
(5)

The relationship between VH and VL (i.e., the voltage conversion ratio, M), along with
the duty cycle equation—both obtained from Equation (5)—are given as follows:

M =
VL
VH

=
D

2− D
(6)

D =
2 ·VL

VH + VL
= 2 · M

1 + M
(7)

Equation (6) shows that the term (2-D) at the denominator yields up to twofold
reduction in the voltage conversion ratio of the hybrid converter compared with a classical
buck converter that operates at the same duty cycle—an important advantage for the
hybrid topology.

From Equation (5), the following form of the capacitor voltage can be obtained, show-
ing that in steady-state operation it is only dependent on the two input voltages:

VC =
VH + VL

2
(8)
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The key theoretical waveforms of the BHSC for the steady-state, step-down operating
mode are presented in Figure 5. The relationships between the inductor currents iL1 and iL2,
the inductor voltages VL1 and VL2, and the switched capacitor currents in the two switching
states are in evident concordance with the above explanations and equations. The input
and output voltage ripples (∆VCH, ∆VCL) are represented considering ideal capacitors and
constant current at the two ports.
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switching states are in evident concordance with the above explanations and equations. 
The input and output voltage ripples (ΔVCH, ΔVCL) are represented considering ideal ca-
pacitors and constant current at the two ports. 
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Figure 5. Main theoretical waveforms of the BHSC for steady-state, step-down operating mode.

3. Sizing of BHSC Components

An important aspect of any converter design, with impact on the stability, is the sizing
of its components, which is addressed in this section.

3.1. Inductor Sizing

Starting from Equation (3), the inductance value of each inductor can be calculated
using the value of the ton time interval and a chosen value for the inductor current ripple.
Therefore, with the assumption of linear inductor current variation, Equation (3) can be
rewritten as follows:

ton :

 L1 ·
diL1
dt = VCsw −VL ⇔ L1 · ∆iL1

ton
= VCsw −VL

L2 ·
diL2
dt = VH −VCsw ⇔ L2 · ∆iL2

ton
= VH −VCsw

(9)

The inductance values from Equation (9) can be rewritten as follows:L1 =
D·T·(VCsw−VL)

∆iL1

L2 =
D·T·(VH−VCsw )

∆iL2

(10)
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To compare the BHSC topology with other similar converters, the passive components
were calculated allowing for a percentage current ripple (ri [%])—the same for each of the
compared converters. The real values of the inductor current ripples are{

∆iL1 = ri IL1
∆iL2 = ri IL2

(11)

Using Equations (5), (6), (10), and (11), the following equations for the calculation of
inductance values were obtained:L1 = VL ·(VH−VL)

ri · f ·IL1 ·(VH+VL)

L2 = VH ·(VH−VL)
ri · f ·IL2 ·(VH+VL)

(12)

These equations show that the inductance values depend only on the operating point
(through VL, VH, and the average input and output currents IL1 and IL2) and on the chosen
value for ri.

3.2. Capacitor Sizing

Capacitor sizing was performed in a similar way, starting from the equations that
show the dependency between the capacitor currents (expressed using the capacitances
and the voltage derivatives) and the inductor currents.

Csw ·
dvCsw

dt = iL2−iL1
2

CL · dvCL
dt = iL1 − IL1

CH · dvCH
dt = iL2 − IL2

, (13)

Equation (13) can be rewritten as follows:
Csw = −1

2·∆vCsw

∫ ton
0 (iL2 − iL1)dt

CL = 1
∆vCL

∫ ton+to f f /2
ton/2 (iL1 − IL1)dt

CH = 1
∆vCH

∫ ton+to f f /2
ton/2 (iL2 − IL2)dt

(14)

A percentage voltage ripple was allowed for the voltages across the capacitors. The
real values of the capacitor voltage ripples can be calculated using the imposed percentage
voltage ripple (rv[%]): 

∆vC = rvVCsw

∆vCL = rvVCL
∆vCH = rvVCH

(15)

The final form of the capacitance values, given in Equation (16), was obtained taking
into account Equations (14) and (15), along with the waveforms from Figure 5.

Csw = 2·IL ·VL ·(VH−VL)

rv · f ·VH ·(VH+VL)
2

CL = ri ·IL
8·rv · f ·VL

CH = ri ·IL ·VL
8·rv · f ·VH2

(16)

An important aspect related to the capacitance values derived from Equation (16)
is that, under certain conditions, when using capacitors with these values, instabilities
may occur during the operation of the converters. If necessary, adjustments of these
values can be carried out to ensure the system’s stability. However, the values given by
Equation (16) were used for comparison with other topologies, as the adjustments for each
of the compared converters are difficult to take into account.
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4. Comparison with Other Converters

To compare the BHSC with other similar converters, the total energy of the inductors,
the total energy of the capacitors, and the total switch stress were used as metrics. The total
energy of the passive components is roughly proportional to the cost and the volume of a
DC–DC converter. On the other hand, the total switch stress of a converter is related to the
cost of the switches and the switch losses; therefore, it shows the impact of the switches on
the total cost and on the converter’s efficiency.

The energy of each inductor is calculated as shown in Equation (17). The total energy
of the converter inductors is given in Equation (18). WL1 = L1·IL1

2

2 =
IL ·VL ·(

VH
2 −

VL
2 )

ri · f ·(VH+VL)

WL2 = L2·IL2
2

2 = IL ·VL
2·(VH−VL)

2·ri · f ·VH ·(VH+VL)

(17)

WLTot = WL1 + WL2 =
IL ·VL · (VH −VL)

2 · ri · f ·VH
(18)

The energy stored in each capacitor is calculated using Equation (19), with the final
expression as shown in Equation (20). The capacitors connected at the two ports (CH and CL)
have equal stored energy, due to having the same parameter values and sizing equations.

WCsw =
Csw ·VCsw

2

2

WCL = CL ·VL
2

2

WCH = CH ·VH
2

2

(19)

{
WCsw = IL ·VL ·(VH−VL)

4·rv · f ·VH

WCL = WCH = ri ·IL ·VL
16·rv · f

(20)

The total energy of the converter capacitors is given in Equation (21). Using Equation (20),
it can be written as shown in Equation (22).

WCTot = 2 ·WCsw + WCL + WCH (21)

WCTot =
IL ·VL · (VH · (4 + ri)− 4 ·VL)

4 · rv · f ·VH
(22)

The total switch stress of the converter is obtained by summing the products be-
tween the maximum voltage and maximum current of each switching device, as shown in
Equation (23).

STotal =
5

∑
j=1

VSj ISj (23)

The maximum values for the voltage and the current of each switching device are
given in Equation (24).

{
VS1 = VH + VL

VS2 = VS3 = VS4 = VH+VL
2


IS1 = IS2 = IL

IS3 = IS5 = IH−IL
2

IS4 = IH

(24)

Using Equation (24), a simple expression is obtained for the total switch stress of
the converter:

STotal = 2 · IL · (VH + VL) (25)

We used Equations (18), (22), and (25) to compare the BHSC with other topologies. The
voltage conversion ratios are shown in Figure 6. The values of each compared converter
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were divided by the corresponding values of the conventional buck converter, and they are
graphically represented in Figures 7–9.

Table 1. The DC–DC converters used in the comparison.

Converter (x) Voltage Ratio
VL/VH

Inductor Energy
WLTot(x)

Capacitor Energy
WCTot(x

Total Device Stress
S(x)

1. Buck—Boost D IL ·VL ·(VH−VL)
2·ri · f ·VH

IL ·VL ·(8·VH−8·VL+ri ·VH)
16·rv · f ·VH

2 · IL ·VH

2. BHSC D
2−D Conv. (1) IL ·VL ·(4·VH−4·VL+ri ·VH)

8·rv · f ·VH
2 · IL · (VH + VL)

3. [18,25] Conv. (2) Conv. (1) Conv. (2) IL ·(VH+VL)
2

VH

4. [5,13] * Conv. (2) Conv. (1) IL ·VL ·(VH−VL)
2·rv · f ·VH

Conv. (3)

5. [26] Conv. (2) Conv. (1) ILVL(16VH
2−8VHVL+8VL

2+riVH(VL+VH))
16·rv · f ·VH ·(VH+VL)

Conv. (3)

6. [27] Conv. (2) Conv. (1) Conv. (4) 3·IL ·(VH+VL)
2

2·VH

7. [28] Conv. (2) IL ·VL ·(3VH
2−2VH ·VL−VL

2)
4·ri · f ·VH ·(VH+VL)

IL ·VL ·(VH−VL+ri ·(VH+VL)/16)
rv · f ·(VH+VL)

Conv. (3)

8. [29] D2 IL ·VL ·(VH
1/2−VL

1/2)
ri · f ·VH 1/2

IL ·VL ·(VH
1/2−VL

1/2+ri ·VH
1/2/16)

rv · f ·VH 1/2
4 · IL ·VH

1/2 ·VL
1/2

* Topology III.
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Converter 
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Ratio 
VL/VH 

Inductor Energy 
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Capacitor Energy 
WCTot(x 

Total Device Stress  
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1. Buck—
Boost  

( )

2
L L H L

i H

I V V V

r f V

  
  

 (8 8 )

16
L L H L i H

v H

I V V V r V

r f V

      
  

 2 L HI V   

2. BHSC 
2

D

D
 Conv. (1) 

(4 4 )

8
L L H L i H

v H

I V V V r V

r f V

      
  

 2 ( )L H LI V V    

3. [18,25] Conv. (2) Conv. (1) Conv. (2) 
2( )L H L
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I V V

V
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r f V V V

   
    
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
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Figure 9. Total active switch stress, as function of the voltage conversion ratio (Converters 1–8
described in Table 1).

The voltages selected for comparison were VH = 400 V and VL = 20 V . . . 100 V, in
order to achieve a conversion ratio (VL/VH) between 5% and 25%. A common value
for the inductor current ripple percentage was chosen, i.e., ri = 20%, or other optimal
values can be used. Other topologies were selected for comparison, most with the same
voltage conversion ratio together with a quadratic converter; their characteristics are
presented in Table 1. From these results, it can be noticed that the BHSC converter achieves
a conversion ratio between that of the conventional buck–boost converter (1) and the
quadratic converter (8). In order to achieve this conversion ratio, the BHSC requires the
same inductive and capacitive energies as the conventional converter, but lower compared
with other topologies. The cost of achieving a common ground between inputs is seen
in the total stress on the active switches, which is slightly higher compared with the
selected topologies. The main characteristics of the selected converters are also presented
in Figures 10–13 in a more concise representation. The voltage conversion ratio VL/VH is
multiplied with 100 in these figures.
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Figure 10. Radar chart with 5 axes: voltage conversion ratio (@D = 15%); number of components;
total active switch stress; mean inductor energy; mean capacitor energy. (a) Chart of the conventional
buck–boost converter. (b) Chart of the BHSC.
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Figure 11. Radar chart with 5 axes: voltage conversion ratio (@D = 15%); number of components;
total active switch stress; mean inductor energy; mean capacitor energy. (a) Chart of converter 3.
(b) Chart of converter 4.
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Figure 12. Radar chart with 5 axes: voltage conversion ratio (@D = 15%); number of components;
total active switch stress; mean inductor energy; mean capacitor energy. (a) Chart of converter 5.
(b) Chart of converter 6.
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5. Stability Analysis

In this section, the BHSC’s stability is investigated using the state-space averag-
ing (SSA) method, in order to obtain the necessary information for current controller
design, which guarantees the converter’s operation without undamped oscillations or
instability phenomena.

The following hypotheses are considered valid for stability analysis:

(a) The power switching devices S1–S5 are ideal switches in series with parasitic resis-
tances rS1 = . . . = rS5 = rS;

(b) VL and VH have constant values during one switching period T;
(c) L1 and L2 have the parasitic series resistances rL1 and rL2, respectively;
(d) C1 and C2 have equal parasitic series resistances; rC1 = rC2 = rc;
(e) CL and CH have the parasitic series resistances rCL and rCH, respectively.

To assess stability, SSA first assembles a continuous-time averaged model of the
converter, which contains the contributions of all operating states that are contained within
a switching period.

All of the parasitic resistances of the active passive components have to be introduced
in the BHSC schematic, in order to correctly assess the converter and the system stability.
Due to the relatively high number of passive components, the converter could behave
like a high-order system, with possible well-known stability problems for such systems.
However, it has been shown in other articles [36] that under some circumstances the effects
of inductors and capacitors cancel one another out, resulting in lower-order system behavior.
It is the responsibility of the designer to decide on the values of the parasitic components so
as to reduce the order of the equivalent average model of the converter. Figure 14 presents
the converter schematics, prepared for stability analysis, and the equivalent BHSC circuits
for ton and toff are presented in Figures 15 and 16, respectively.
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The input and input vector are defined as follows:

xT =
[
iL1 iL2 vCsw vCL vCH

]
, u =

[
VL
VH

]
. (26)

The state-space representation for ton and the corresponding matrices are given in
Equations (27)–(29).

.
x = A1x + B1u (27)

A1 =



−

 RCsw
2 +RL1+RS1+

RS3
2 +

RCL
·RL

RCL
+RL

L1

 RCsw
2 +

RS3
2

L1

1
L1

RCL
RCL

+RL
−1

L1
0

RCsw
2 +

RS3
2

L2
−

 RCsw
2 +RL2+
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2 +
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·RH
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+RH

L2
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L2

0 −

 RCH
RCH

+RH
−1

L2


− 1

2·Csw

1
2·Csw

0 0 0
RL

CL ·(RCL+RL)
0 0 −

(
1

CL ·(RCL+RL

)
0

0 −
(

RH
CH ·(RCH +RH)

)
0 0 −

(
1

CH ·(RCH +RH)

)


(28)

B1 =



(
RCL

L1·(RCL+RL

)
0

0
RCH

L2·(RCH+RH)

0 0
1

CL ·(RCL+RL)
0

0 1
CH ·(RCH+RH)


(29)

The state-space representation for toff and the corresponding matrices are given in
Equations (30)–(32).

.
x = A2x + B2u (30)
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A2 =



−

 RL1+RS2+
RCL
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(
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)


(31)

B2 =



(
RCL

L1·(RCL+RL

)
0
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(32)

According to SSA method, the state-space representation of the equivalent average
model of the system is given as follows:

.
x = A · x + B · u, (33)

where the matrices A, B, and C are obtained from Ai, Bi, and Ci (i = 1; 2) through a weighted
summation: {

A = A1 · D + A2 · (1− D)
B = B1 · D + B2 · (1− D)

(34)

The average converter model whose state equations are described in Equations (33) and (34)
is also valid if the duty cycle changes slightly around the steady-state value D. In this case,
D is replaced by d = D +in Equation (34). The system in Equation (35), which represents
the converter response at small signal variation, is obtained by linearization around a
steady-state duty cycle D. The equivalent matrixes Ae and Be are expressed in Equation (36).{ .

x̃ = Ae · x̃ + Be · d̃
ỹ = Ce · x̃

(35)

{
Ae = (A1 · D + A2 · (1− D))
Be = [(A1 − A2) · X + (B1 − B2) · u]

(36)

From Equation (35), the equation of the control variable (also a state variable of the
average system) as a function of the small variation of the duty cycle is obtained:

ỹ = Ce · (s · I − Ae)
−1 · Be · d̃ (37)

Due to the bidirectional nature of the converter, any of the two inductor currents—iL1
or iL2—can be used as a control variable. It is useful to investigate both transfer functions
and eventually to choose the most convenient approach for stability. The equivalent
matrices for iL1 or iL2 are as follows:

Ce = [1 0 0 0 0], iL1 (38)

Ce = [0 1 0 0 0], iL2 (39)
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The transfer functions of the inductor currents are as follows:

H1(s) =
ỹ1(s)
d̃(s)

=
ĩL1(s)

d̃(s)
, H2(s) =

ỹ2(s)
d̃(s)

=
ĩL2(s)

d̃(s)
, (40)

which were obtained from Equation (37), taking into account Equations (38) and (39),
respectively.

The block diagram of the control loop is presented in Figure 17. The Bode diagrams
of H1(s) and H2(s) are presented in Figure 18. The transfer functions are discretized with
the ZOH method, and a supplementary time delay is added to account for both PWM and
ADC delay. The discrete transfer functions H1(z) and H2(z) are presented in Figure 19. The
diagrams of the transfer functions obtained through the SSA method are compared with
the diagrams obtained through digital simulations carried out on a BHSC switching model,
including the digital controller (TMS320F28379D) for Figure 18, resulting in unnoticeable
differences between them.
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The component values and the parasitic resistance values used in the calculation of
the two transfer functions are given in Table 2 and they are the data catalogue values of the
real components used for the BHSC prototype presented in the following section. As can
be noted from Figures 18 and 19, the frequency response is characteristic of a first-order
system for both currents, even though the number of passive components is high. The
current through iL1 was chosen as a control variable, as it has larger values than iL2. The
poles and zeros of the two transfer functions are given in Table 3.

Table 2. BHSC stability analysis prototype characteristics.

Specifications
Part Value Unit ESR ESR Value Unit Component

L1 68 × 2 µH RL1 12 × 2 mΩ 2xDEHF-42/0,068/40

L2 470 µH RL2 53 mΩ DEHF-42/0,47/16

Csw 330 × 3 µF RCsw 214.7/3 mΩ ALC80A331CD350

CL 330 × 3 µF RCL 452/3 mΩ SLP331M160A1P3

CH 100 × 3 mF RCH 1.493/3 Ω SLPX101M400A3P3

Table 3. The poles and zeroes of H1(s) and H2(s).

Element Pole and Zero Values

H1(s) Poles −4.509641064e+03, −3.584847675e+03, −5.924218847e+02 +1.802230478e+03i,
−5.924218847e+02 −1.802230478e+03i, −9.720039549e+02

H1(s) Zeros −4647.704034, −3603.028284, −569.9738229 +1825.663084i,
−569.9738229–1825.663084i

H2(s) Poles −4.509641064e+03, −3.584847675e+03, −5.924218847e+02 +1.802230478e+03i,
−5.924218847e+02 −1.802230478e+03i, −9.720039549e+02

H2(s) Zeros −4523.253666, −3932.363350, −670.2071775 + 1708.298882i,
−670.2071775–1708.298882i

A digital current controller was designed for overall system stability (BHSC + con-
troller), based on the H1(z) transfer function. Its transfer function is given as follows:

C(z) =
0.0044281 · (z− 0.9865)

z− 1
(41)

The Bode diagram of the transfer function of the BHSC convertor with the controller
is presented in Figure 20. The frequency response of C(z)·H1(z) shows good stability, due to
the displayed phase margin of 80 degrees at a 1.29 kHz crossover frequency.

Digital simulations were carried out to check the stability of the system under various
conditions. Selected waveforms are presented in Figures 21 and 22. In Figure 21, a step
change in the reference current from +50 A to −50 A was applied to test the behavior of the
system under large step variation. The controlled current has no overshoot, and only low
oscillations are present in the current of the other current. Small oscillations are also present
in the voltages across the switched capacitors. In Figure 22, a step change in the reference
current from +10 A to −10 A was applied, and a similar behavior can be observed. It is
important to note that the transition from one operating mode to the other is very smooth.
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6. Experimental Results

A BHSC prototype, as shown in Figure 23, was built based on the information pre-
sented in the previous sections. The sizing of the converter’s passive components was
performed according to the methodology presented in Section 3. The prototype parameters
are listed in Table 2, Section 5, and Table 4.
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Table 4. BHSC prototype parameters.

Specifications
Element Value Unit Description

P 3.25 kW Nominal converter power

VL 0–80 V Low voltage value

VH 100–325 V High voltage value

IL 33 A Nominal current on the low-voltage input

IH 12 A Nominal current on the high-voltage input

f 80 kHz Switching frequency

The experimental setup used for testing the BHSC prototype is represented in Figure 24,
and a picture of the setup is shown in Figure 25. A constant voltage electronic load was
connected in parallel to the HV source to ensure the bidirectional operation. When the
BHSC enters the step-up mode, the electronic load is automatically activated and takes the
current from the VH port. When the converter is operating in the step-down mode, the
electronic load is kept in standby.
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A series of experimental tests were carried out to investigate the behavior of the
prototype under different operating conditions. During these tests, the high-voltage source
output was adjusted in the range of 100–300 V, and the voltage across the supercapacitors
was between 20 and 80 V. The experimental results are presented in Figures 26–31.
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The first three results show key BHSC waveforms for steady-state operation. In
Figure 26, the voltages across S3, S4, and S5 can be seen, together with the PWM driving
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signal for step-down operation at VH = 300 V and VL = 80 V, for a controlled current
IL1 = 10 A. The interdependence between the PWM driving signal and the voltages on the
three transistors corresponds to the description in Section 2. The voltage across the switched-
capacitor cell, VCsw, is presented in Figure 27 for step-down operation at VH = 125 V and
VL = 40 V, for a controlled current IL1 = 10 A. The two inductor currents are also displayed
in the figure. The VCsw waveform can be compared to the theoretical waveform from
Figure 5, which is similar; moreover, the correlation between iL2 and VCsw can be seen
in both the theoretical and experimental waveforms. Figure 28 presents the currents
through and the voltages across the two inductors for steady-state step-down operation
at VH = 300 V and VL = 80 V, with a controlled current IL1 = 10 A. Some oscillations due
to the PCB parasitic elements can be seen compared with the theoretical waveforms from
Figure 5, which is common in power electronics.
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A transition from steady-state step-up operation at −10 A to steady-state step-down
operation at +10 A is presented in Figure 29, for VH = 100 V and VL = 50 V. Figure 30 shows
an inverse transition. The waveforms are similar to the simulation waveforms presented in
Figure 22. The differences between the simulation and the experimental waveforms arise
from the fact that at zero crossing of the controlled current, the BHSC prototype behaves
slightly differently than its simulation model. There is a small overshoot of the controlled
current and a fast damped oscillation—both completely acceptable—in Figure 29. A larger
oscillation is present in the uncontrolled current (iL2), which can be resolved, if necessary,
by advanced control techniques. For the step-down–step-up transition, the controlled
current presents no overshoot, but a step change in the uncontrolled current can be seen,
which can also be eliminated through advanced control techniques.

Figure 31 presents typical waveforms for supercapacitor charging and discharging, for
VH = 100 V. The low voltage, VL, varies between 30 V and 45 V. This limited voltage range
was chosen to reduce the acquisition time and the acquired data, but it is sufficient to prove
the good operation of the BHSC converter. The IL1 current is controlled in steps from the
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maximum charging to the maximum discharging values. It can be seen that there are no
oscillations at the transition from the step-down operating mode (i.e., charging mode) to
the step-up mode if this transition is performed at low current, even if the current reference
is changed in steps.
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7. Conclusions

This article is focused on a bidirectional hybrid DC–DC converter topology derived
from a bidirectional buck converter by inserting a bidirectional switched-capacitor cell
composed of two capacitors and three active switches in its structure.

The BHSC can achieve a high voltage conversion ratio, which makes it appropriate for
applications characterized by a large variation in the voltage at one input—for example
supercapacitor energy conversion and storage.

In addition to the increased voltage conversion ratio, the advantages of this topol-
ogy include smaller passive components, reduced ripple currents at both the low- and
high-voltage sides, and a common ground between the two ports. All of these positive
features are demonstrated in this article through theoretical analysis, comparisons with
several converters presented in the form of graphs and charts, digital simulations, and
experimental tests.

The BHSC’s stability was analyzed with an emphasis on the constraints on the passive
components, to obtain a stable operation, theoretically proven and validated by digital
simulations, before the actual construction of the converter prototype. The simulation
results confirmed the performance and the stability of the BHSC converter. Extensive
experimental tests were carried out, proving good operation in both directions and a rapid,
smooth transition between them.
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