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Abstract: This study investigates the effects of crude oil and natural gas future returns on energy
stock portfolios. We consider returns of portfolios of energy companies approximated by energy
ETFs and returns of Brent crude oil and natural gas contracts listed on the US market from January
2015 to September 2022. To study the relationship between Brent crude oil, natural gas, and ETFs,
we apply Granger causality in mean and variance, Dynamic Conditional Correlation and the tail
dependence-focused copula approach. The research hypothesis regarding the dependence between
energy ETFs and the underlying energy risk factors—crude oil and natural gas, and therefore, the
existence of hedging or diversification opportunities, was verified. Our empirical findings indicate
that crude oil has a medium effect on energy ETFs, and for natural gas it is even lower in the analyzed
period, so hedging opportunities are weak, but opportunities for diversification arise.

Keywords: energy sector; energy ETFs; granger causality; copula; tail dependence; GARCH; DCC

1. Introduction

The energy sector is strategic for every country, and it determines the development of
every economy. As the global economy grows, energy production needs to be increased.
Conventional sources such as coal, crude oil, and natural gas are expected to decline long
term, and renewable sources are bound to increase.

Apart from its importance, the energy sector is not homogeneous. It consists of
companies that use, process, or produce energy from nonrenewable or renewable sources.
Natural resources such as crude oil and natural gas are fundamental macro variables for
economic development (see the paper by Jones and Kaul [1]). Fluctuation of petroleum
and natural gas prices affects the performance of the economy. An increase in crude oil
and natural gas prices causes a temporary decrease in total production as investors defer
economic activity due to the increase in prices. Additionally, these prices go up, they can
push the prices of other commodities, goods, and services, which in turn causes inflation [2].

Recently, la Torre-Torres et al. [3] found that natural gas and crude oil have become
popular choices among energy futures contracts, used to hedge commodity price risk. Simi-
lar trends are noticeable when such contracts are considered for investment and speculative
purposes. This is due to their close links with economic activity and overall prices, as well
as being an effective source of portfolio diversification. Therefore, crude oil and natural gas
are considered diversifiers and hedging assets during calm economic periods, as well as
safe assets during economic recessions and periods of high political uncertainty.

The relationship between stocks and crude oil is volatile, with the correlation between
the returns of stocks and crude oil swinging between positive and negative values. There
are periods when the prices of stocks and crude oil change in the same direction, sometimes
in opposite directions. On average, however, this correlation is positive [4]. This means that
the possibility of hedging portfolios of energy and non-energy stocks with crude oil and
natural gas is also fluctuating. Thus, clarifying the relationship between energy portfolios
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(Exchange-Traded Funds, ETFs) and crude oil and gas prices can help investors make
efficient investment decisions and construct hedging strategies.

The oil market analysis shows that supply and demand shocks occurred in the years
2014–2016. The 2014 supply shock was related to the increase in oil supply by OPEC
countries following the intensification of oil production in the US. From 2014 and 2016,
respectively, oil prices decreased by 70% in 18 months. Low oil prices drag the prices
of other energy commodities down, mainly coal but natural gas also. The 2008 demand
shock, on the other hand, was caused by the global crisis and reduced the oil demand. Both
shocks had far-reaching, but not identical, consequences for oil prices. The same is true
about the COVID-19 pandemic. Oil prices on the world markets are not only affected by
the discussions by OPEC, the US, and Russia about the supply reduction (Saudi Arabia
drastically reduced its prices), but also by the consequences of a worldwide pandemic.
Low oil prices also affected other energy commodities, but the price decrease was not
as big in the case of natural gas. In the years 2018–2019, the highest oil price increases
were caused by the political situation in the Middle East. The US ripped up the nuclear
agreement with Iran, reinstating sanctions related to the oil trade. Another important factor
was the deepening crisis in Venezuela. In early 2017, OPEC agreed to stop oil production,
as did Nigeria and Libya. In effect, the price of oil began to rise. In the case of the supply
shock in 2022, the increases in oil prices were caused by the political situation related to
the Ukrainian war—the restrictions imposed on Russia and actions aimed at limiting the
increase in energy prices, including natural gas. Moreover, the US tightened monetary
policy and the US dollar became very strong, increasing the cost of purchasing oil. Another
factor affecting oil prices is the perspective of a global economic slowdown. Finally, one
should also note the decision of the OPEC countries regarding limiting oil production.
All these factors, combined with low inventory levels and continued demand for energy
commodities, indicate that oil and gas prices will rise again.

Therefore, in the study, we focus our attention on the following main periods of shocks
(see Figure 1):

• Demand shocks: 2014–2016, 2020 (marked by the grey-shaded area);
• Supply shocks: 2018–2019, 2022 (market by the blue-shaded area).

During the periods of shocks in the oil market, oil and gas prices behaved similarly,
except for the 2018–2019 shock.

Extreme events, e.g., the COVID-19 pandemic and the Russia–Ukraine conflict, influ-
ence the prices of crude oil and gas, and energy companies. In these periods, intensification
of dependence is observed in the energy sector, therefore, it is challenging to look for
benefits from hedging or portfolio diversification opportunities.

Analyzing the relationship between Brent crude oil, natural gas, and ETF returns
(Figure A1) points to the possibility of using crude oil or natural gas as diversifiers of
the energy portfolio. Based on this preliminary conclusion, the paper investigates the
transmission of oil price changes and natural gas changes to energy portfolio returns. We
examine the following research hypothesis: there is a dependence between energy ETFs
and the underlying energy risk factors—Brent crude oil and natural gas; therefore, hedging
or diversification opportunities exist.

To the best of our knowledge, this study is the first in the literature to gauge the rela-
tionship between Brent crude oil and natural gas price changes and energy portfolio returns
using a large sample of 18 ETFs tracking energy companies (for approximately 9 years), finally
clustered into 10 groups. Moreover, the study addresses the time-varying nature of the causal
links between crude oil price shocks and ETF returns, as well as natural gas and ETF returns.
Finally, it is a comprehensive insight into the energy market relationships and an assessment
of hedging and diversification opportunities for energy portfolios, as in addition to causality
analysis, we also apply DCC and copula-based approaches.

The organization of this paper is as follows. The next subsection reviews the literature.
Section 2 describes the data, their characteristics and the methodology used in the study.
The results of the empirical investigations are presented in Section 3. The next section
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explains the significance of results, while the last section concludes and discusses future
research opportunities.
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Figure 1. Prices of oil and gas.

Literature Review

Since the groundbreaking study of Jones and Kaul [1] found that stock market returns
respond negatively to changes in crude oil prices, many researchers have investigated the
relationship between crude oil price shocks and the overall stock market. Most studies
indicate a negative relationship between crude oil prices and stock returns, e.g., [5–9],
however, some studies show that this relationship is positive, e.g., [10,11]. Nevertheless,
other studies find that the crude oil price does not affect stock prices, e.g., [12–14] or that
these effects are ambiguous, e.g., [15].

Many different methods were applied to the analysis of the dependence between crude
oil and stock: Vector Error Correction Model, e.g., [5,15–17], ARDL Models, e.g., [18–21],
Dynamic Conditional Correlation, e.g., [22–24], Granger causality analysis, e.g., [1,12,25–28],
quantile regression, e.g., [29–31] and copula approach, e.g., [11,13,32,33]. These mentioned
methods focus on the time domain aspect of the data.

Less research has focused on the impact of crude oil and natural gas prices on energy
companies, e.g., [17,34], and in general, there is less research on natural gas [34] than on
crude oil.

Ozdurak and Ulusoy [35] investigate the impact of energy-related ETFs on crude oil
prices. They focus on price discovery of crude oil prices by applying causality tests. ETFs
used in the study replicate commodity indices. Tang and Xu [36] examine nine leveraged
ETFs related to crude oil—five are based on portfolios of oil stocks, and the other four use
commodity futures to track the price of crude oil itself. The authors find that stock-based
ETFs are much more correlated with the stock market than with crude oil prices, whereas
the reverse is true of crude oil ETFs. Naeem et al. [37] explore the average and extreme
dependence between ETFs (energy and commodity) and WTI crude oil prices by using
EGARCH-copula models. The authors use static and time-varying copulas. Their results
show strong positive correlations of energy and commodity ETFs with oil prices and that
time-varying copulas outperform static copulas.

This study focuses on the energy sector on the stock exchange and the relationships
between Brent crude oil, natural gas prices and energy portfolios. We use energy ETFs as
proxies for energy stock portfolios. Energy ETFs selected for this study track energy indices
consisted mostly of companies in the energy sector (92–100%). For natural resources, we
use Brent crude oil and natural gas futures’ prices listed on the US market from January
2015 to September 2022.

Exchange-traded funds have existed on the US market since 1993 and in Europe since
1999. They track an index and are an alternative to an index mutual fund for risk-averse
investors. Since they can be bought or sold at any time of the day, ETFs have and advantage
over open-ended mutual funds. A classical index is a non-investment asset, and an ETF
is. ETFs are characterized by high liquidity and allow investors to gain quick exposure to
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the underlying index. Perhaps for this reason, ETFs became a crucial tool for information
dispersion. ETFs that track crude oil and gas or energy-related companies enable investors
to invest or hedge in the energy sector and provide diversified portfolio strategies. Thus,
ETF-hedging demand in the energy sector has been increasing due to the high volatility of
energy prices [35].

Based on the literature review, to provide a more comprehensive and precise analysis
of the overall dependence between energy portfolios and crude oil and gas, we decide to
employ three methods: Granger causality (in mean and variance), Dynamic Conditional
Correlation, and copulas with tail dependence. All of them focus on time domain aspects
of data and, in that sense, are consistent. In this strand of literature, our study contributes
by quantifying the time-varying causal relationship, copula, and DCC between Brent crude
oil, natural gas, and energy ETFs, which is not considered in the existing literature related
to the energy market. To the best of our knowledge, this is the first paper to apply the
rolling Hong test to explore these relationships.

Many studies investigate the interdependencies of oil prices and stocks or stock indices,
but there is a lack of such research for the energy sector on stock exchanges. Although the
dependencies between the returns of companies in the energy sector, as well as the impact
of such factors as crude oil and gas on them, are expected to be strong, the direction of
this relationship seems unclear. Finally, we consider using energy ETFs to approximate
a portfolio consisting of energy companies and futures on Brent crude oil and futures on
natural gas to investigate the strength and direction of dependence, also in the tails of
the distribution.

2. Data and Methods
2.1. Data

The data encompass daily closing prices of all energy ETFs listed on the US market
between 1 September 2014 and 31 September 2022 and of Brent crude oil futures and natural
gas futures prices. Table A1 shows the name of each ETF, its ticker, net assets value, energy
sector weight, fund family, and the underlying index. The data source is Yahoo Finance
(accessed on 1 October 2022) (https://www.yahoo.com).

Initially, we analyzed the composition (based on the top ten holdings) of energy ETFs
and their prices and returns individually, but as we observed some similarities between
them, we decided to use clusters. In clustering the ETFs, we used two approaches: analysis
of the ETFs’ holdings and the ETFs’ time series statistical parameters (mean, standard
deviation, kurtosis, skewness, and correlation with Brent crude oil and natural gas). Finally,
we created ten clusters, which were a compromise between ETFs’ holdings and time
series characteristics. The clustering result obtained using Ward’s method is shown in
Figure A2. The composition of the individual clusters is shown in Table A2, with most
clusters being single-component. In the case of multi-component clusters, their rate of
return was calculated as the rate of return for an equally weighted portfolio.

Prices of clusters of ETF, Brent crude oil, and natural gas over the analyzed period
are presented in Figures 1 and A3 display different behavior. According to the unit root
tests—the Augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and the Kwiatkowski,
Phillips, Schmidt, and Shin (KPSS) tests (not reported here)—these prices are not stationary.
Therefore, we analyze logarithmic percentage returns (see Figure A4).

Descriptive statistics for the rates of return and selected tests are presented in Table A3.
The results show that the daily averages of all return series are negative, except for natural
gas which has a positive average over the sample period. Brent crude oil has the lowest
mean of daily returns over the period. In addition, the daily movements in natural gas
prices exhibit the highest volatility. The volatility of crude oil is high but comparable with
a few ETFs. The Jarque–Bera normality test rejects the normality of all the return series. In
line with the literature-based expectations regarding the characteristics of stock returns,
all ETFs, natural gas, and crude oil are leptokurtic and exhibit strong negative skewness
(except for natural gas, whose skewness is positive). The Ljung–Box Q statistics show

https://www.yahoo.com
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that the return and squared return series mostly do not exhibit serial correlations, and the
returns are uncorrelated across time. Only in the case of natural gas was autocorrelation
detected. Engle test results confirm the existence of the ARCH effect in all series. We employ
unit root tests, namely, Dickey–Fuller (ADF), and the Kwiatkowski, Phillips, Schmidt, and
Shin (KPSS), and find that all series are stationary, I(0).

An advantage of this study is the choice of data set—18 energy ETFs were taken for
analysis, clustered according to their similarity into ten clusters. Most of the papers are based
on several stock indices or leading companies, e.g., [1,8,11,12,15,17,18,20,21,23–25,28,31–33,38].

2.2. Methodology

We chose a threefold approach to capture different aspects of dependencies at the
time domain. First, we analyze the causal relationships in static and dynamic versions.
The rolling causality test proposed by Lu et al. [39] has the following advantages over
conventional causality methods: it reflects the dynamics of causal links, permitting the
identification of the specific time periods during which significant Granger causality exists
between time series; allows testing for causality in mean and variance from a dynamic
perspective; makes it possible to detect unidirectional and bidirectional causality; allows to
capture, e.g., asymmetry, fat tails, volatility clustering in financial time series, whose no
consideration may lead to misleading results on Granger causality [38].

Next, we use correlations and their potential dynamics within conditional correlation
models. According to Engle [40], the Dynamic Conditional Correlations GARCH model
provides a very good approximation of a variety of time-varying correlation processes.

The third method applied in the study are copulas, used to estimate the tail dependence
between assets. Modeling dependence using copulas is flexible in describing asymmetric
dependence arising from the joint behavior of assets separated from their marginal behavior.
Extreme events, fat tails of the distribution and bivariate asymptotic dependence are
important aspects of risk hedging and diversification.

Based on the properties of the studied time series, we apply the following models from
the ARMA-GARCH family: GARCH, EGARCH, IGARCH, GJR-GARCH, APGARCH, and
AVGARCH. We use different distributions of the residuals, such as normal distribution, the
Student’s t distribution, Generalized Error Distribution (GED), and their skewed versions.
We selected the GARCH model employing the Akaike (AIC) and Bayesian (BIC) information
criteria. Table A5 presents only the estimation results for the best-fitted models according
to these criteria, including the minimum criteria values.

To capture the time dependence in rates of return, the univariate dynamics are de-
scribed by ARMA(p,q) model in the following form [41,42]:

rt = φ1rt−1 + . . . + φprt−p + εt − θ1εt−1 + . . . + θqεt−q, (1)

where εt ∼ i.i.d.(0, ht), rt = 100 ln Pt
Pt−1

, Pt—a closing price at time t, ht—the conditional
variance modeled as a GARCH family process.

The autoregressive conditional heteroskedasticity (ARCH) models were introduced by
Engle [43] and their generalization, the GARCH models by Bollerslev [44]. Let the model
be a standard GARCH(q,p) model [44] of a form:

ht = ω +
q

∑
i=1

αiε
2
t−i +

p

∑
i=1

βiht−i. (2)

where ω—an intercept, ε2
t−i—the residuals from the ARMA model.

When the conditional variance estimated by the GARCH(p, q) from Equation (2)
process shows strong persistence, ∑

q
i=1 αi + ∑

p
i=1 βi ≈ 1, an integrated GARCH (IGARCH)

model is recommended. In the IGARCH model, the second moment does not exist, but the
process shows a short memory.
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The most important limitation of the GARCH model is that it cannot capture asym-
metric performance well. Later, to improve this problem, EGARCH, GJR-GARCH, and
APGARCH were proposed. The best-fitting models in our research are:

• The Exponential GARCH (EGARCH) model [45]:

ln ht = ω +
q

∑
i=1

(αizt−i + γi(|zt−i| − E|zt−i|)) +
p

∑
i=1

βi ln ht−i (3)

where the coefficient αi captures the sign effect and γi the size effect. E|zt−i| is the
expected value of the absolute standardized innovation zt;

• The Absolute Value GARCH (AVGARCH) model of Taylor and Schwert [46,47]:

√
ht = ω +

q

∑
i=1

αi
√

ht−i(|zt−i − η2i| − η1i(zt−i − η2i)) +
p

∑
i=1

βi
√

ht−i (4)

where η1i and η2i are rotations and shift parameters, respectively.

Models are estimated using the Quasi Maximum Likelihood method (QML).

2.2.1. Causality Relationship

Granger first introduced the concept of causality in 1969 . Since then, many differ-
ent methods for testing causality in Granger’s sense have emerged. In practice, vector
autoregressive models (VAR) are most commonly used to study causality in the mean.

Let us consider two stationary time series: {Yi,t}, i = 1, 2. It is additionally assumed
that It = {Y1,t−j; j ≥ 0}, Jt = {Y1,t−j, Y2,t−j; j ≥ 0} which are sets of time series information.
Then, Y2,t is the Granger cause of Y1,t in mean with respect to It−1 [48]:

E{Y1,t|It−1} 6= E{Y1,t+1|Jt−1}. (5)

Whereas, Y2,t is the Granger cause of Y1,t in variance if [49]:

E
{(

Y1,t − µ0
1,t

)2
∣∣∣∣It−1

}
6= E

{(
Y1,t − µ0

1,t

)2
∣∣∣∣Jt−1

}
(6)

where µ0
1,t ≡ E(Y1,t|It−1) is the conditional mean of Y1,t.

Hong [50] proposed test statistics, which include Cheung and Ng test [49] and the
Granger-type test [51] as special cases. He proposed one-sided asymptotically normal tests
based on the cross-correlation function (CCF) of standardized residuals. Let us assume:

yi,t = E(Yi,t|Ii,t−1) + εi,t = E(Yi,t|Ii,t−1) +
√

hi,t ui,t, i = 1, 2 (7)

and rj is the cross-correlation of standardized residuals (ui,t, i = 1, 2) with lag j (j = 0,±1,
±2, . . . ,±(T − 1); T—size of sample).

Then, Hong’s test statistics are as follows:

• Unidirectional Granger causality (Y2,t → Y1,t):

H1(T, M) =

T ·
T−1
∑

j=1
·k2
(

j
M

)
· r2

j − C1T(k)√
2D1T(k)

(8)

• Bidirectional Granger causality (Y2,t ⇔ Y1,t):

H2(T, M) =

T ·
T−2
∑

j=2−T
·k2
(

j
M

)
· r2

j − C2T(k)√
2D2T(k)

(9)
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where k(x) is a weighting function and M is a positive integer. CiT(k) and DiT(k) are approxi-
mately the mean and variance of the generalized version of Cheung and Ng statistic [50]. Both
H1(T, M) and H2(T, M) statistics have an asymptotic standard normal distribution N(0, 1).
As it is a one-sided test, the upper-tailed critical values should be used [50].

As dynamic relationships between variables can change over time, a time-varying
Granger-causality test is also used in the empirical literature. For this purpose, Lu et al. [39]
propose a simple and intuitive approach of estimating Hong tests in rolling subsamples.

Let S denote the size of a subsample (S < T) and {ui,t, t = 1, · · · T}, i = 1, 2 are the
standardized residuals of the stationary time series {Yi,t} i = 1, 2. Then, Hong’s rolling test
statistics are as follows [39]:

• Unidirectional Granger causality (Y2,t → Y1,t):

H1,t(S, M) =

S ·
S−1
∑

j=1
·k2
(

j
M

)
· r2

12,t(j, S)− C1S(k)√
2D1S(k)

(10)

• Bidirectional Granger causality (Y2,t ⇔ Y1,t):

H2,t(S, M) =

S ·
S−2
∑

j=2−S
·k2
(

j
M

)
· r2

12,t(j, S)− C2S(k)√
2D2S(k)

(11)

• Instantaneous rolling Hong test for short (Y2,t ⇒ Y1,t):

H3,t(S, M) =

S ·
S−2
∑

j=0
·k2
(

j+1
M

)
· r2

12,t(j, S)− C1S(k)√
2D1S(k)

(12)

where r12,t(j, S) is j-th lag of the cross-correlation coefficient between u1,t and u2,t in the
subsample [t− S + 1, t], k(x) is a weighting function, M is a positive integer and:

C1S(k) =
S−1

∑
j=1

(
1− j

S

)
· k2
(

j
M

)
, D1S(k) =

S−1

∑
j=1

(
1− j

S

)
·
(

1− j + 1
S

)
· k4
(

j
M

)

C2S(k) =
S−1

∑
j=1

(
1− |j|

S

)
· k2
(

j
M

)
, D2S(k) =

S−1

∑
j=1

(
1− |j|

S

)
·
(

1− |j|+ 1
S

)
· k4
(

j
M

)

For all tests, if S→ ∞⇒ Hi,t(S, M)→ N(0, 1) i = 1, 2, 3.
In rolling Hong tests, an appropriate rolling sample size S is crucial. If S is too small,

the test will not yield valid results; if S is too large, there will be a long delay in detecting
changes in Granger causality [39]. Lu et al. [39] determine a subsample size such that both
the probability of making a Type I and Type II error are the same at 5%. The sample size
we applied for the rolling Hong tests is of about 100.

The test procedure for the time-varying Hong test is similar to the static Hong test and
it can be summarized as follows:

1. Select the best-fit ARMA-GARCH model from the ARMA-GARCH class;
2. Choose a rolling sample size S and compute the sample cross-correlations (r12,t(j, S))

of standardized residuals for each subsample;
3. Choose an integer, M, and spectral window k(x);
4. Compute the test statistics of Hong’s rolling tests.

This procedure leads to a total number of T − S test statistics. If the test statistics at
time t are bigger than the critical value at a given significance level; there is significant
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Granger causality at time t. We assumed a 5% significant level in this study, meaning the
critical value equals 1.645.

Since the lagged dynamic correlations in financial markets usually tend to be zero
for large lags, the Bartlett kernel is most commonly used in empirical studies [25,38,39,52].
M is a lag truncation value that induces a zero contribution for cross-correlations with
a lag j > M. In other words, only cross-correlations up to lag M contribute to causality
evaluation. For this reason, we decided to use the Bartlett kernel and set M = 5 for the
rolling Hong test.

2.2.2. Dynamic Conditional Correlation

The dynamic conditional correlation model DCC-GARCH [40] is defined by the fol-
lowing equations:

rt =µt + εt, µt = E(rt|Ωt−1), εt =
√

Htzt

Ht =DtRtDt

Rt =Q∗−1/2
t QtQ∗−1/2

t

Qt =(1− α− β)Q + α(εt−iε
′
t−i) + βQt−j

(13)

where:

Dt—a diagonal matrix of time-varying standard deviations from univariate GARCH
models;
zt—a vector of the standardized residuals εt;
Rt—a time-varying conditional correlation matrix of the zt;
Q–an unconditional correlation matrix of the zt;
Q∗t —a diagonal matrix composed of the square roots of the diagonal elements of Qt.

The model is estimated in two stages using the Quasi Maximum Likelihood (QML). In
the first stage, we estimate the univariate GARCH models for each asset series [40,53,54].
In the second stage, we use the residuals estimated during the first stage, transformed by
their standard deviation to estimate the parameters of the dynamic correlation.

We apply the multivariate Student’s t distribution as the null hypothesis of a multi-
variate normal distribution is rejected. The estimated DCC-GARCH models satisfy the
constraints imposed on conditional variance and conditional correlation for pairs of returns.

2.2.3. Copulas

The asymptotic dependence of random variables in tails solely depends on the cop-
ula [55]. This approach allows investigating the dependence in variance and in tails, which
provides absolute control of the marginal latent trait distributions and accommodates
several dependence structures. Such an approach would be impossible using standard
dependence measures. The concept of the copula was first introduced by Sklar [56]. Sklar’s
theorem provides the theoretical background for copulas. Following the theorem, there
exists a copula C such that:

∀x1∈X1 and x2∈X2 F(x1, x2) = C(F1(x1), F2(x2)) (14)

where F is two-dimensional joint distribution with the marginal distributions F1, F2 of
random variables (X1, X2).

If F1, F2 are continuous, the copula C is unique:

C(u1, u2) = F(F−1
1 (u1), F−1

2 (u2)) (15)

where (u1, u2) ∈ [0, 1], F−1
i (u) = inf{x; Fi(x) ≥ u} for i = 1, 2.

The proof is provided by, e.g., Nelsen [57].
Many families of parametric copulas (e.g., Gaussian, Archimedean) can be used to

capture different dependence structures. This paper uses the following copulas: Gaussian,
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Student’s t, Frank, and Joe–Frank. The Gaussian, Frank, and Joe–Frank copulas are tail-
symmetric and do not capture tail dependence. Student’s t copula has a symmetric tail
dependence in both the lower and upper tails.

For two dimensions, the following copulas are defined as [55,58]:

1. Gaussian/Normal (N) copula:

CN(u1, u2) = N
(

Φ−1(u1), Φ−1(u2)
)

(16)

where N is the normal joint distribution and Φ−1 is the quantile of the univariate
normal distribution;

2. Student’s t/t (t) copula:

CSt(u1, u2; ν, ρ) = tν,ρ

(
t−1
ν (u1), t−1

ν (u2)
)

(17)

where ρ ∈ [−1, 1], tν,ρ is the joint Student’s t distribution and t−1
ν is the univariate

Student’s t distribution with ν ≥ 2 degrees of freedom;
3. Frank copula:

CFr(u1, u2; θ) = −1
θ

ln
(
(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

)
(18)

where θ 6= 0;
4. Joe–Frank (BB8) copula:

CBB8(u1, u2; θ, δ) =
1
δ

1−
[

1− (1− (1− δu1)
θ)(1− (1− δu2)

θ)

1− (1− δ)θ

] 1
θ

 (19)

where θ ≥ 1, 0 < δ ≤ 1.

Survival copula is the copula of (1− u1) and (1− u2) instead of u1 and u2, respectively.
It couples the joint survival function to its univariate margins as a copula connects the joint
distribution function to its margins [57]. Our focus is on extreme downside market risk, so
we have examined the lower tail dependence in detail.

The tail dependence coefficients [55] are:

• Lower tail dependence coefficient:

λL = lim
u→0+

P(X2 ≤ F−1
2 (u)|X1 ≤ F−1

1 (u)) = lim
u→0+

C(u, u)
u

(20)

• Upper tail dependence:

λU = lim
u→1−

P(X2 > F−1
2 (u)|X1 > F−1

1 (u)) = lim
u→1−

1− 2u + C(u, u)
1− u

(21)

in case the limit exists, λL, λU ∈ [0, 1] and (λL 6= 0∨ λU 6= 0), dependence is present.
Instead of Pearson’s correlation coefficient in the copula theory, we use Kendall’s τ

coefficient [55,57]. In this paper, we use functions from the VineCopula library in R [59].
We use the Maximum Likelihood Estimation (MLE) method to fit the copulas from

the catalog of the pair-copula family (39 copulas considered). Then, to select the best-fitted
copula, we apply the AIC. To measure the discrepancy between the hypothesized and the
empirical model, we use the Goodness-of-Fit (GoF) statistics based on Kendall’s process
proposed by Wang and Wells [60]. We also employ the parametric bootstrap described by
Genest for the computation of p-values.
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3. Results

In order to conduct the dependency analysis, the time series must be covariance
stationary, so unit root tests of the returns are necessary. Table A4 shows the results of these
tests. All returns are integrated of order 0, which means that they are stationary. Then, the
best-fitting ARMA-GARCH model is selected.

Among GARCH family models, for most ETF returns, the EGARCH model with
Student’s t innovation distribution fits best. For one ETF and Brent crude oil, the AVGARCH
model with Student’s t and skewed Student’s t innovation distributions are selected,
respectively. One ETF cluster is modeled using ARMA-AVGARCH with skewed Student’s t
innovation distribution. For natural gas, the IGARCH model with Student’s t innovation
distribution is used. All choices are made using the BIC criterion (see Table A5).

3.1. Causality Relationship

Volatility can be transmitted between Brent crude oil prices and stock returns even
when the returns of the two markets are uncorrelated or do not exhibit causality in the
mean. Causality in variance has become more important because of the increasing market
integration due to economic and financial globalization and technological innovations in
financial markets [38].

The essence of causality testing is to know the direction of the interrelationships
between assets and the time required to react to anticipate changes. We apply Granger-
causality tests (both: static and dynamic) in mean and variance to detect the Granger-
causal relationships between crude oil, natural gas, and energy ETFs. Since we assume
that crude oil and natural gas are the sources of increase or decrease of profitability of
energy companies, the analysis is focused on one direction of the relationship (from crude
oil/natural gas to energy ETFs). The relationship between selected 10 clusters of ETF and
crude oil and 10 clusters of ETF and natural gas creates 20 pairs for analysis. For causality
evaluation, we set the lag truncation value as M = 3, M = 5, and M = 10 for static tests,
and M = 5 for the rolling Hong tests (for both: in-mean and in-variance tests).

Granger-causality in-mean tests (Table 1) indicate a causal link from Brent crude oil to
all analyzed ETFs’ clusters (for all lags).

Table 1. Hong test (causality-in-mean).

M = 3 M = 5 M = 10

Null Hypothesis Statistic p-Value Statistic p-Value Statistic p-Value

BRENT 9 FCG 11.703 0.000 10.327 0.000 8.101 0.000
FCG 9 BRENT 2.643 0.004 2.220 0.013 1.500 0.067
BRENT 9 PXE 7.954 0.000 7.427 0.000 5.99 0.000
PXE 9 BRENT 1.588 0.056 1.641 0.05 1.356 0.088
BRENT 9 PXI 10.614 0.000 9.598 0.000 7.777 0.000
PXI 9 BRENT 2.383 0.009 2.215 0.013 1.612 0.054

BRENT 9 Group IV 10.856 0.000 9.731 0.000 7.697 0.000
Group IV 9 BRENT 1.852 0.032 1.708 0.044 1.357 0.087

BRENT 9 IXC 8.609 0.000 7.608 0.000 5.759 0.000
IXC 9 BRENT 0.425 0.335 0.078 0.469 −0.436 0.668

BRENT 9 Group VI 10.127 0.000 8.985 0.000 6.935 0.000
Group VI 9 BRENT −0.146 0.558 −0.283 0.611 −0.482 0.685

BRENT 9 XOP 9.285 0.000 8.216 0.000 6.492 0.000
XOP 9 BRENT 2.518 0.006 2.096 0.018 1.515 0.065

BRENT 9 Group VIII 9.612 0.000 8.460 0.000 6.823 0.000
Group VIII 9 BRENT 0.051 0.480 0.092 0.463 −0.125 0.550

BRENT 9 PSCE 11.323 0.000 10.044 0.000 7.958 0.000
PSCE 9 BRENT 1.246 0.106 1.125 0.130 1.031 0.151
BRENT 9 PXJ 8.987 0.000 7.766 0.000 6.232 0.000
PXJ 9 BRENT −0.143 0.557 −0.232 0.592 −0.438 0.669
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Table 1. Cont.

M = 3 M = 5 M = 10

Null Hypothesis Statistic p-Value Statistic p-Value Statistic p-Value

GAS 9 FCG −0.699 0.758 −0.686 0.754 −0.706 0.760
FCG 9 GAS 1.383 0.083 1.651 0.049 1.862 0.031
GAS 9 PXE −0.602 0.726 −0.533 0.703 −0.500 0.692
PXE 9 GAS 2.406 0.008 2.937 0.002 3.030 0.001
GAS 9 PXI −0.628 0.735 −0.722 0.765 −0.746 0.772
PXI 9 GAS 2.208 0.014 2.493 0.006 2.557 0.005

GAS 9 Group IV −0.778 0.782 −0.895 0.814 −0.950 0.829
Group IV 9 GAS 2.514 0.006 2.573 0.005 2.430 0.008

GAS 9 IXC −0.839 0.799 −0.860 0.805 −0.746 0.772
IXC 9 GAS 4.072 0.000 3.716 0.000 2.927 0.002

GAS 9 Group VI −0.809 0.791 −0.929 0.824 −0.829 0.797
Group VI 9 GAS 3.737 0.000 3.605 0.000 3.091 0.001

GAS 9 XOP −0.825 0.795 −0.755 0.775 −0.656 0.744
XOP 9 GAS 1.879 0.030 2.131 0.017 2.200 0.014

GAS 9 Group VIII −0.763 0.777 −1.005 0.843 −0.767 0.779
Group VIII 9 GAS 3.125 0.001 2.642 0.004 1.901 0.029

GAS 9 PSCE −0.801 0.789 −0.845 0.801 −0.635 0.737
PSCE 9 GAS 2.681 0.004 2.451 0.007 1.959 0.025
GAS 9 PXJ −0.829 0.796 −1.053 0.854 −0.735 0.769
PXJ 9 GAS 2.618 0.004 2.175 0.015 1.566 0.059

Note: A 9 B means: A do not Granger-cause B.

There is no causal link from natural gas to energy ETF’ clusters, but surprisingly, from
energy ETFs to natural gas, it exists in 90% of cases (see Table 1). As these relationships
can change over time, a time-varying Granger-causality test is also applied. The results
of rolling test statistics for a unidirectional link from crude oil and natural gas to ETFs
are shown in Figure 2, and for the instantaneous link—in Figure 3. The unidirectional
Brent→ ETF reveals that there are four main (for most ETFs, looking individually at each
ETF, there are more) statistically significant causality episodes from crude oil to ETF. The
first episode was in 2016, and the second was in 2020 (both were demand shocks) when
crude oil prices decreased. The next episode occurred in 2021 before a supply shock, when
crude oil prices increased, and the last in 2022—after a supply shock. The unidirectional
Gas → ETF exhibits seven short-lived statistically significant causality episodes from
natural gas to ETFs. Looking individually at each ETF, there are even more. The first
episode was in 2016 after a demand shock, when natural gas prices decreased. The second
episode was in 2017, and the next was in 2018 (supply shock), when natural gas prices
increased. The fourth episode was in 2019 after the supply shock, and the next was a
demand shock in 2020, when natural gas prices decreased. The sixth episode was a supply
shock in 2022, when prices of natural gas decreased. The final, seventh episode occurred
afterward, during a fast natural gas price increase.

The instantaneous Granger-cause-in-mean from Brent⇒ ETF experienced an all-time
record. In the case of natural gas, there are many episodes of statistically significant
causality (see Figure 3).

While the Granger-causality-in-mean tests indicate a causal link from Brent crude oil
prices to energy portfolios returns, the Granger-causality-in-variance tests suggest a causal
link from global crude oil market prices to energy portfolios returns in 70% of pairs (for
M = 3). In the case of natural gas, these tests do not detect causality in the variance (see
Table 2).
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Figure 2. Rolling Hong tests between crude oil, natural gas, and ETFs (causality-in-mean). The red
dashed line indicates the critical value of the H1 test at the 5% significance level.

Time-varying Granger-causality tests in variance are presented in Figures 4 and 5.
The unidirectional Brent→ ETF reveals four statistically significant causality in-variance
episodes from crude oil to ETF. Similarly as before, for individual ETFs–there are more.
The first episode was in 2015; the second was in 2017, when crude oil prices increased. The
next episode is observed after shocks in 2019, when crude oil prices decreased, and the
last one in 2022, after a supply shock, when crude oil prices increased. The unidirectional
Gas⇒ ETF exhibits three main statistically significant causality in-variance episodes from
gas to ETF (more for individual ETF). The first episode was in 2018, when natural gas prices
increased. The next episode was in 2020 (during a demand shock), and the last was in 2022,
when natural gas prices increased.

The instantaneous Granger-cause in-variance (see Figure 4) from Brent⇒ ETF expe-
rienced an all-time record. The instantaneous Gas⇒ ETF exhibits four main statistically
significant causality in-variance episodes from natural gas to ETF. Again, for individual
ETF there are more. The first episode was in 2018, when natural gas prices increased. The
second episode was a supply shock observed in 2020, when natural gas prices decreased.
The next one was in 2021, and the last was in 2022, when natural gas prices increased.
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Figure 3. Rolling Hong tests between crude oil, natural gas and ETFs (causality-in-mean). Null
hypothesis: BRENT/GAS do not instantaneous Granger-cause . . .. The red dashed line indicates the
critical value of the H3 test at the 5% significance level.
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Figure 4. Rolling Hong tests between crude oil, natural gas and ETFs (causality-in-variance). The red
dashed line indicates the critical value of the H1 test at the 5% significance level.
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Table 2. Hong test (causality-in-variance).

M = 3 M = 5 M = 10

Null Hypothesis Statistic p-Value Statistic p-Value Statistic p-Value

BRENT 9 FCG 0.405 0.343 0.309 0.379 −0.262 0.603
FCG 9 BRENT 0.988 0.161 0.512 0.304 −0.016 0.506
BRENT 9 PXE −0.405 0.657 −0.35 0.637 −0.67 0.749
PXE 9 BRENT −0.419 0.662 −0.713 0.762 −0.976 0.836
BRENT 9 PXI −0.312 0.622 −0.052 0.521 −0.34 0.633
PXI 9 BRENT −0.083 0.533 −0.366 0.643 −0.647 0.741

BRENT 9 Group IV 0.021 0.492 0.011 0.496 −0.496 0.69
Group IV 9 BRENT 1.561 0.059 1.056 0.146 0.265 0.396

BRENT 9 IXC −0.757 0.775 −0.877 0.810 −0.959 0.831
IXC 9 BRENT 0.499 0.309 0.265 0.395 −0.42 0.663

BRENT 9 Group VI −0.347 0.636 −0.298 0.617 −0.623 0.733
Group VI 9 BRENT −0.217 0.586 −0.417 0.662 −0.961 0.832

BRENT 9 XOP −0.252 0.600 −0.441 0.670 −0.926 0.823
XOP 9 BRENT 6.573 0.000 5.437 0.000 3.678 0.000

BRENT 9 Group VIII 1.786 0.037 1.908 0.028 1.249 0.106
Group VIII 9 BRENT 3.327 0.000 2.867 0.002 1.846 0.032

BRENT 9 PSCE 1.951 0.025 2.058 0.020 1.346 0.089
PSCE 9 BRENT 1.110 0.133 0.727 0.234 0.151 0.440
BRENT 9 PXJ 1.783 0.037 2.427 0.008 1.942 0.026
PXJ 9 BRENT 2.359 0.009 2.070 0.019 1.289 0.099
GAS 9 FCG 0.410 0.341 0.181 0.428 −0.186 0.574
FCG 9 GAS −0.217 0.586 −0.524 0.700 −0.782 0.783
GAS 9 PXE 1.001 0.158 0.597 0.275 0.185 0.427
PXE 9 GAS 0.384 0.35 0.027 0.489 −0.287 0.613
GAS 9 PXI 0.591 0.277 0.286 0.388 −0.036 0.514
PXI 9 GAS −0.349 0.636 −0.649 0.742 −0.77 0.779

GAS 9 Group IV 1.099 0.136 0.643 0.26 0.122 0.452
Group IV 9 GAS −0.191 0.576 −0.446 0.672 −0.469 0.681

GAS 9 IXC 0.038 0.485 −0.239 0.595 −0.426 0.665
IXC 9 GAS −0.549 0.708 −0.696 0.757 −0.41 0.659

GAS 9 Group VI 0.034 0.486 −0.189 0.575 −0.277 0.609
Group VI 9 GAS 0.118 0.453 0.108 0.457 0.509 0.305

GAS 9 XOP 2.393 0.008 1.83 0.034 1.029 0.152
XOP 9 GAS −0.623 0.733 −0.891 0.814 −1.207 0.886

GAS 9 Group VIII 1.446 0.074 0.996 0.160 0.421 0.337
Group VIII 9 GAS −0.529 0.702 −0.804 0.789 −0.796 0.787

GAS 9 PSCE 0.788 0.215 0.490 0.312 0.045 0.482
PSCE 9 GAS −0.714 0.763 −0.997 0.841 −1.219 0.889
GAS 9 PXJ 0.428 0.334 0.098 0.461 −0.382 0.649
PXJ 9 GAS −0.425 0.664 −0.705 0.759 −0.578 0.718

Note: A 9 B means: A do not Granger-cause B.

We checked robustness by calculating rolling Hong tests for M = 3 and M = 10.
Figure A5 presents the values of unidirectional causality-in-mean tests, while Figure A6
shows the values of instantaneous causality-in-variance tests. The larger the value of M,
the smaller the statistic. However, the main conclusion persists. The results also confirm it,
for instantaneous causality-in-mean tests and unidirectional causality-in-variance tests not
reported here.
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Figure 5. Rolling Hong tests between crude oil, natural gas and ETFs (causality-in-variance). Null
hypothesis: BRENT/GAS do not instantaneous Granger-cause . . .. The red dashed line indicates the
critical value of the H3 test at the 5% significance level.

3.2. Conditional Correlation

In the first stage, we estimate the univariate GARCH models. The particular specifica-
tions for each series and results of the tests conducted on the residuals in Table A5 in the
Appendix are presented. In the second stage, the multivariate dynamic conditional corre-
lation (DCC) models for pairs of crude oil and energy portfolios are estimated. The DCC
parameters (α, β, and shape), collected in Table A6, for all pairs, sum up to a value close to
1. It indicates that the dynamic conditional correlations follow the mean-reversion process.

We apply the Engle and Sheppard test [53] for dynamic correlation to check whether
the correlation is constant. The results in Table 3 indicate the constant correlation between
natural gas and energy portfolios over the sample period, but the correlation between crude
oil and energy portfolios depends on a particular ETF. For some ETFs, there are cases with
constant correlation, and for others—with a non-constant one.

An illustration for Brent crude oil and ETFs is presented in Figure 6. It seems that
for significantly non-constant correlation cases of supply shocks, the correlation decreases,
and in demand shocks, it increases compared to the rest of the considered period, but this
requires further investigation.
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Table 3. Tests of non-constant correlation.

BRENT− . . . FCG PXE PXI Group IV IXC

Statistic 10.2682 2.7758 2.8651 5.7977 0.8935
p-value 0.0059 0.2496 0.2387 0.0551 0.6397

BRENT− . . . Group VI XOP Group VIII PSCE PXJ

Statistic 1.7085 11.0411 8.3913 10.1948 6.7227
p-value 0.4256 0.0040 0.0151 0.0061 0.0347

GAS− . . . FCG PXE PXI Group IV IXC

Statistic 0.4473 0.7199 0.8427 2.2818 1.0969
p-value 0.7996 0.6977 0.6562 0.3195 0.5779

GAS− . . . Group VI XOP Group VIII PSCE PXJ

Statistic 0.4243 4.3089 1.5102 0.5175 1.8473
p-value 0.8088 0.1160 0.4700 0.7720 0.3971
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Figure 6. Conditional correlations between crude oil and ETFs.

3.3. Copulas

The results of the dependence measures for Brent crude oil returns and energy port-
folios are reported in Table 4 and Figure A7. The association measure, Kendall’s tau, is
statistically significant and positive. Using Akaike and BIC criteria, Student’s t copula was
found to be the best copula. The tail dependencies for this copula are very low, indicating
nearly an independence between crude oil and energy portfolios.

Table 4. Dependence structure for Brent crude oil and single ETFs.

FCG PXE PXI Group IV IXC

Copula t t t t t
τ̂ 0.4319 0.4221 0.4415 0.4431 0.4454

Par 0.6238 0.6153 0.6379 0.6386 0.6387
Par2 11.1100 8.7869 9.3820 9.6548 7.1483

λL = λU 0.1196 0.1585 0.1596 0.1544 0.2163
logLik 500.38 487.97 534.04 534.12 537.80

AIC −996.76 −971.94 −1064.08 −1064.25 −1071.60
BIC −985.53 −960.71 −1052.85 −1053.02 −1060.37

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000

GoF test 0.1307 1.4985 0.3434 1.8183 6.0592
p-value 0.9500 0.4400 0.8150 0.4050 0.0450
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Table 4. Cont.

Group VI XOP Group VIII PSCE PXJ

Copula t t t t t
τ̂ 0.4465 0.4409 0.4206 0.4313 0.4164

par 0.6410 0.6356 0.6132 0.6216 0.6060
par2 8.6154 8.3070 12.7863 9.6744 11.7278

λL = λU 0.1787 0.1827 0.0909 0.1436 0.1012
logLik 538.99 528.98 480.00 496.55 465.88

AIC −1073.98 −1053.96 −956.00 −989.09 −927.76
BIC −1062.75 −1042.74 −944.77 −977.86 −916.53

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000

GoF test 5.8635 1.8464 0.1781 1.4760 0.1682
p-value 0.0600 0.3500 0.9250 0.4800 0.9450

Note: Indep.—testing for independence for pairs of variables (H0: τ = 0); GoF test—H0: the empirical copula is
the true copula.

The results of the dependence measures for natural gas and energy portfolios are
reported in Table 5 and Figure A7. The association measure—Kendall’s tau—is statistically
significant, positive, and very low compared with the association between crude oil and
energy portfolios. Using Akaike and BIC criteria, the Gaussian copula was found to be the
best-fitted one (in 70% of cases). Frank’s and Survival Joe–Frank copulas were also fitted.
The tail dependencies for Gaussian copula, as well as Frank’s and Survival Joe–Frank,
indicate independence between natural gas and energy portfolios.

Table 5. Dependence structure for Gas and single ETFs.

FCG PXE PXI Group IV IXC

Copula Gaussian Gaussian Gaussian Gaussian Frank
τ̂ 0.1537 0.1238 0.1080 0.1168 0.0927

Par 0.2328 0.1887 0.1633 0.1770 0.8435
Beta 0.1496 0.1209 0.1044 0.1133 0.1047
λL 0.0000 0.0000 0.0000 0.0000 0.0000
λU 0.0000 0.0000 0.0000 0.0000 0.0000

logLik 55.820 36.310 27.070 31.890 19.730
AIC −109.640 −70.620 −52.140 −61.780 −37.450
BIC −104.020 −65.010 −46.520 −56.160 −31.840

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000

GoF test 0.1241 0.0456 0.1475 0.0385 0.0553
p-value 0.3200 0.8850 0.3450 0.9400 0.4900

Group VI XOP Group VIII PSCE PXJ

Copula Gaussian Gaussian Survival BB8 Gaussian Survival BB8
τ̂ 0.1016 0.1267 0.0949 0.1048 0.0924

Par 0.1537 0.1934 1.8770 0.1622 1.9108
Par2 0.5789 0.5572
Beta 0.0982 0.1239 0.1061 0.1037 0.1035
λL 0.0000 0.0000 0.0000 0.0000 0.0000
λU 0.0000 0.0000 0.0000 0.0000 0.0000

logLik 23.930 38.150 22.100 26.710 20.910
AIC −45.860 −74.310 −40.200 −51.420 −37.820
BIC −40.250 −68.690 −28.970 −45.800 −26.590

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000

GoF test 0.0677 0.1628 0.0573 0.0790 0.0521
p-value 0.6900 0.2150 0.3750 0.5650 0.3450

Note: Indep.—testing for independence for pairs of variables (H0: τ = 0); GoF test—H0: the empirical copula is
the true copula.
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4. Discussion

In general, the prices of energy, natural gas, and crude oil (in particular) are very volatile.
In crude oil returns analysis, asymmetric GARCH models are often the most accurate. Salisu
and Fasanya [61] investigate asymmetry in crude oil price shocks and volatility (WTI and
Brent). They apply the Exponential GARCH (EGRCH) model and indicate that positive
shocks affect volatility differently than negative shocks [61]. Our results regarding crude oil
are consistent with Salisu and Fasanya [61], Echaust and Just [62], and Naeem et al. [37].

With respect to to natural gas in the study, IGARCH was fitted, but in the literature, different
GARCH-type models were considered (e.g., TGARCH [63], Regime Switching [64]). For crude
oil and natural gas modeling, two-state Markov Regime Switching models, e.g., [64–67] or
stochastic volatility models, e.g., [68] were also applied.

The causal relationship between crude oil and ETFs and natural gas and ETFs was
also investigated in order to obtain a complete insight into the dependence structure, i.e.,
to determine the cause of individual behavior. The presence of significant bidirectional
causal relationships in the mean and variance between crude oil price changes and stock
returns over all time horizons was found by Jammazi et al. It is consistent with the idea
that crude oil and stock markets are tightly integrated and influence each other in the
short, medium, and long term [38]. Similarly, in this paper, unidirectional causality in
mean from crude oil price changes to ETF returns is confirmed, as well as the dynamic
and instantaneous one. In-variance tests suggest a causal link from global crude oil market
prices to energy portfolio returns in 70% of pairs. The case of natural gas is different.
There is no causal in-mean link from natural gas price changes to ETF returns, but the
dynamic tests indicate many short episodes of significant links. The same result refers to
the in-variance test. Both Jammazi et al. [38] and this paper use time-varying causality tests
proposed by Lu et al. [39] that are based on the causality procedures developed by Cheung
and Ng [49], and Hong [50]. These tests are not popular in causality analysis for energy
price changes and stock returns.

The copula approach investigates the dependence structure between crude oil/natural
gas and stock returns. In our study for Brent crude oil and ETFs, the best-fitting cop-
ula is Student’s t. This is in line with the study by Avdulaj and Barunik [69], but in
Aloui et al. [11], the asymmetric Survival Gumbel copula fits best. Best-fitting copulas for
dependence between natural gas and ETFs are Gaussian, Frank, and the survival Joe–Frank
copula. To examine the possible evolution of the dependence over time, the time-varying
copula approach should be used as by Avdulaj and Barunik [69], Aloui et al. [11], and
Naeem et al. [37]. Comparing the same three ETFs as the ones used in our study and WTI
crude oil, Naeem et al. [37] found that time-varying SJC copula is the best-fitted model for
pairs VDE-WTI, XLE-WTI and XOP-WTI. They have also identified normal time-varying
copula for the pairs ICLN-WTI and PBW-WTI.

Our results are consistent with Naeem et al. [37], showing that energy ETFs offered
enough strong, positive correlations with crude oil to be used as a tool for managing crude
oil price risk.

Among the potential reasons for the limited benefits of diversification with commodi-
ties is the fact that the correlation between commodities and conventional assets increases
significantly during unfavorable periods. This phenomenon is known as ’correlation clus-
tering’ and means that correlations are not always negative or close to zero and tend to
increase during periods of poor financial market performance [3]. Our analysis of crude oil
using DCC confirms this fact, e.g., [3,70], but for natural gas, it does not. Our results show
that dependence between crude oil and ETFs changes over time, and the correlation goes
from zero to relatively strong and positive. In contrast, the dependency parameter between
natural gas and ETFs is constant over time and remains close to zero. This is in line with
the results by Delatte and Lopez [70].

Not much research has been focused on the impact of crude oil and natural gas prices
on energy companies, and in general, there is even less research related to natural gas than
crude oil in this area. Thus, this study could be extended in several ways. The time period,
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currency of assets (USD), and exchange for ETFs (NYSE, Nasdaq) limited the set of ETFs
considered in the paper. Other energy type ETFs such as clean energy are excluded from
the study. In further research, the set of ETFs could be extended. Further research could
also be extended by considering fundamentals of oil market, taking into account driving
forces for crude oil and natural gas, e.g., [71–73].

The calculations could be repeated for other energy price series and for other stock
portfolios. The robustness of the causality results could be tested against causal measures other
than those applied here. The dependence structure could be investigated by the time-varying
copula approach. In the paper, any quantile type approach was not considered. Research
could be extended by the use of cross-quantilogram to detect directional predictability from
crude oil/natural gas to energy stock returns (as proposed by Han et al. [74]).

In our study, we focus on measuring dependency, further research could explore
volatility transmission among energy ETFs, crude oil, and natural gas (e.g., network models,
spillover effects, e.g., [33,75–77]) and wavelet methods to quantify the strength of oil–stock
association at different time scales e.g., [38,78,79].

5. Conclusions

This paper contributes to the existing literature focusing on the impact of energy
ETFs on crude oil and natural gas returns. First, we examined the return discovery and
causality relationship between Brent crude oil futures and clusters of ETFs’ returns, natural
gas futures, and clusters of ETFs. Existing studies focused on the relationship between
equity markets and crude oil markets, whist natural gas has been less analyzed. However,
ETFs are now an important source of information dissemination. To our knowledge, we
find the only study of Ozdurak and Ulusoy 2020 [35] used energy ETFs and future prices
investigating described dependence, and we have therefore decided to fill this gap.

We verified the causal relationships between crude oil and energy portfolios using static
and time-varying causality-in-mean and causality-in-variance methods using Hong [50] and
rolling Hong [39] tests, respectively. The results show that if one uses a causality test without
taking the possible time-varying nature of the causal relationships, the causal link in-mean
from crude oil to energy portfolio exists, but there is no link from natural gas to energy
portfolios. Instantaneous causality from crude oil and natural gas to energy portfolios exists.

The unidirectional Brent→ ETF in-mean analysis (both static and dynamic) suggests
that crude oil and ETFs are linked. The evidence regarding the causality in variance demon-
strates the transmission of information between crude oil and ETFs for most pairs (70% in
the case of static test) and many significant link episodes (confirmed by the dynamic test).
In the case of natural gas, static in-mean analysis indicates no links, but dynamic analysis
confirms the existence of significant link episodes. Similarly, for in-variance analysis, the
static approach does not detect any links, but the dynamic one shows significant link
episodes. The main empirical finding is the presence of a significant unidirectional causal
link in mean and variance between crude oil price changes and ETFs, and no causal link in
the case of gas, except for many significant link episodes confirmed by dynamic tests in
mean and variance.

There are cases with constant and non-constant correlations for crude oil and ETFs. It
seems that for significantly non-constant correlation cases in supply shocks, the correlation
decreases, and in the demand shocks, it increases compared to the rest of the period.
However, it requires further investigation. In the case of natural gas, there is a constant
correlation detected.

The characteristics of the time series indicated the need to apply the dependence
analysis copula approach. Among different types of estimated copulas, the Student’s t
copula fits best. The results of dependence measures such as Kendall’s tau and the tail
dependencies are quite small for all the cases (very small for natural gas and energy
portfolios). Moreover, the relationships are symmetric. This implies that crude oil and
energy portfolios will have a similar relationship regardless of the state of the economy. The
tail dependencies are weak for crude oil and zero for natural gas indicating independence
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between natural gas and energy portfolios. It means that for natural gas, diversification
opportunities are greater compared to Brent crude oil.

The research hypothesis regarding a strong dependence between energy ETFs and
the underlying energy risk factors—crude oil and natural gas—was rejected. The hedging
opportunities are weak, but opportunities for diversification arise.

Our study has important implications for various traders, investors, and portfolio
managers who want to reduce portfolio risk through diversification or to hedge against
market risk (i.e., risk of crude oil price and natural gas). A better understanding of
dependency is essential for minimum risk portfolio construction by using diversification
or hedge against market risk using futures on crude oil or natural gas. Additionally,
policymakers should not ignore the dependencies between crude oil and natural gas and
the energy portfolios when trying to avoid the risk of contagion (causing high inflation),
especially during extreme events and crisis periods.

Author Contributions: Conceptualization, K.K. and J.G.; methodology, K.K. and J.G.; software,
J.G.; formal analysis, K.K. and J.G.; investigation, K.K. and J.G.; resources, K.K.; data curation,
J.G.; writing—original draft preparation, K.K. and J.G.; writing—review and editing, K.K. and J.G.;
visualization, K.K. and J.G.; supervision, K.K.; funding acquisition, K.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Wroclaw University of Economics and Business.

Data Availability Statement: This data can be found here: https://www.yahoo.com (accessed on
1 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X
L
E

V
D

E

X
O

P

O
IH

IX
C

IY
E

F
X

N

F
E

N
Y

IE
O

F
C

G

R
Y

E

P
X

E

X
E

S

P
X

I

IE
Z

P
S

C
E

F
IL

L

P
X

J

B
R

E
N

T

G
A

S

XLE

VDE

XOP

OIH

IXC

IYE

FXN

FENY

IEO

FCG

RYE

PXE

XES

PXI

IEZ

PSCE

FILL

PXJ

BRENT

GAS

Figure A1. Pearson correlation for returns of oil, gas, and ETFs.
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Figure A2. ETFs clustered by Ward’s Method with Euclidean distance.
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Table A1. The financial series included in the study.

Name Ticker Fund Family Net
Assets Exchange

Sector
Weight:
Energy

Underlying Index

Energy Select Sector SPDR XLE SPDR State Street
Global Advisors 37.45B NYSE Arca 99.30% Energy Select Sector Index

Vanguard Energy Index Fund VDE Vanguard 9.87B NYSE Arca 99.34% MSCI US Investable Market Energy
25/50 Index

SPDR S&P Oil & Gas
Exploration & Production ETF XOP SPDR State Street

Global Advisors 4.79B NYSE Arca 93.77% S&P Oil & Gas Exploration &
Production Select Industry Index

VanEck Oil Services ETF OIH VanEck 2.32B NYSE Arca 100% MVIS U.S. Listed Oil Services 25
Index

iShares Global Energy ETF IXC BlackRock iShares 2.06B NYSE Arca 98.83% S&P Global Energy Sector Index
iShares U.S. Energy ETF IYE BlackRock iShares 2.15B NYSE Arca 95.23% Dow Jones U.S. Oil & Gas Index
First Trust Energy AlphaDEX
Fund FXN First Trust Portfolios 1.85B NYSE Arca 91.48% StrataQuant Energy Index

Fidelity MSCI Energy Index ETF FENY Fidelity Investments 1.52B NYSE Arca 98.95% MSCI USA IMI Energy Index
iShares U.S. Oil & Gas
Exploration & Production ETF IEO BlackRock iShares 1B NYSE Arca 99.67% Dow Jones U.S. Select Oil Exploration

& Production Index
First Trust Natural Gas ETF FCG First Trust Portfolios 954.44M NYSE Arca 99.97% n/a
Invesco S&P 500 Equal Weight
Energy ETF RYE Invesco 521.45M NYSE Arca 100.20% n/a

Invesco Dynamic Energy
Exploration & Production ETF PXE Invesco 288.7M NYSE Arca 97.23% Dynamic Energy Exploration &

Production Intellidex Index
SPDR S&P Oil & Gas Equipment
& Services ETF XES State Street Global

Advisors 258.78M NYSE Arca 99.85% S&P Oil & Gas Equipment & Services
Select Industry Index

Invesco DWA Energy
Momentum ETF PXI Invesco 224.71M NasdaqGM 96.92% Dorsey Wright Energy Technical

Leaders Index
iShares U.S. Oil Equipment &
Services ETF IEZ BlackRock iShares 173.37M NYSE Arca 99.86% Dow Jones U.S. Select Oil Equipment

& Services Index
Invesco S&P SmallCap Energy
ETF PSCE Invesco 138.19M NasdaqGM 93.90% S&P SmallCap 600 Capped Energy

Index
iShares MSCI Global Energy
Producers ETF FILL BlackRock iShares 122.36M NYSE Arca 98.43% MSCI ACWI Select Energy Producers

Investable Market Index
Invesco Dynamic Oil & Gas
Services ETF PXJ Invesco 31.19M NYSE Arca 99.73% Dynamic Oil Services Intellidex Index

Table A2. Clustering result.

Group Ticker/s Group Ticker/s

I FCG VI VDE, FENY, FILL, XLE, IYE
II PXE VII XOP
III PXI VIII XES, OIH, IEZ
IV RYE, FXN, IEO IX PSCE
V IXC X PXJ

Table A3. Descriptive statistics and tests of percentage logarithmic rates of return.

FCG PXE PXI Group IV IXC Group VI

Minimum −33.6164 −27.9513 −29.0242 −30.7730 −21.6313 −22.1158
Maximum 13.6475 14.7172 13.5557 14.3507 15.9704 14.3062

Mean −0.0747 −0.0148 −0.0241 −0.0183 −0.0171 −0.0156
Stdev 2.9084 2.5184 2.5525 2.3780 1.8544 1.9436

Skewness −0.6323 −0.5977 −0.7947 −1.0065 −1.1101 −0.9009
Excess Kurtosis 10.6382 9.5382 10.6095 17.2373 19.1447 14.8816

Ljung–Box (4) 1.5957 2.4836 2.2991 5.2836 8.9754 7.4475
p-value 0.8096 0.6476 0.6809 0.2594 0.0617 0.1140

Jarque–Bera 9722.4945 7828.4038 9749.3500 25,508.0445 31,458.7066 19,032.7349
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Engle (4) 105.9431 147.5928 171.8283 163.6126 360.6518 300.8541
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table A3. Cont.

XOP Group VIII PSCE PXJ BRENT GAS

Minimum −45.9984 −39.5441 −37.3462 −32.2149 −27.9762 −30.0480
Maximum 19.7543 17.0800 17.4539 14.9113 27.4191 38.1727

Mean −0.0449 −0.0881 −0.0861 −0.1000 −0.0065 0.0273
Stdev 2.8947 2.9061 3.0884 2.7172 2.7362 3.5960

Skewness −1.7030 −1.1498 −0.7741 −0.7988 −0.5651 0.2596
Excess Kurtosis 33.4255 19.4285 11.8837 11.6695 17.9490 11.0834

Ljung–Box (4) 6.7834 6.9463 3.5139 3.3076 5.1611 18.3561
p-value 0.1478 0.1388 0.4758 0.5077 0.2712 0.0011

Jarque–Bera 95,593.6397 32,416.3368 12,165.7069 11,751.5640 27,393.8839 10,428.9020
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Engle (4) 119.8285 111.8164 121.4341 101.9038 81.3679 313.7413
p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: Ljung–Box (4)–Ljung–Box test for autocorrelation with lag 4; Jarque–Bera—Jarque–Bera test for normality;
Engle (4)—Lagrange multiplier test for conditional heteroscedasticity of Engle ARCH with lag 4.
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Figure A4. Percentage logarithmic rates of return of oil, gas, and ETFs.

Table A4. Unit root tests.

FCG PXE PXI Group IV IXC Group VI

ADF −11.7649 −11.4260 −11.4273 −11.7107 −12.6745 −12.0137
p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

PP −2100.8851 −2173.6504 −2183.3251 −2210.6017 −2213.7308 −2210.0441
p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

KPSS 0.5210 0.2443 0.1969 0.2035 0.1338 0.1672
p-value 0.0369 0.1000 0.1000 0.1000 0.1000 0.1000

XOP Group VIII PSCE PXJ BRENT GAS

ADF −11.7921 −11.2185 −11.7038 −11.4243 −12.7920 −12.9075
p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100



Energies 2023, 16, 1329 24 of 30

Table A4. Cont.

XOP Group VIII PSCE PXJ BRENT GAS

PP −2221.4386 −2107.4438 −2006.2041 −2084.6839 −2089.4852 −2100.0076
p-value 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100

KPSS 0.2163 0.0968 0.2328 0.1233 0.1908 0.1915
p-value 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Note: ADF—Augmented Dickey–Fuller Test; PP—Phillips–Perron Unit Root Test; KPSS—KPSS Test for Level
Stationarity.
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Figure A5. Rolling Hong tests between crude oil, gas, and ETFs (causality-in-mean) for different
integer M. (a) M = 3. (b) M = 10. (c) M = 3. (d) M = 10.
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Figure A6. Rolling Hong tests between crude oil, gas and ETFs (causality-in-variance) for different
integer M. (a) M = 3. (b) M = 10. (c) M = 3. (d) M = 10.
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Table A5. Family ARMA-GARCH models.

FCG PXE PXI Group IV IXC Group VI

Model EGARCH AVGARCH EGARCH EGARCH ARMA-
AVGARCH EGARCH

Distribution std std std std sstd std

φ1 −1.5181 ***
φ2 −0.9385 ***
φ3 0.0262 ***
θ1 1.5559 ***
θ1 0.9933 ***
ω 0.0120 *** 0.0148 *** 0.0168 *** 0.0134 *** 0.0181 *** 0.0089 ***
α1 −0.0522 *** 0.0644 *** −0.0624 *** −0.0608 *** 0.1019 *** −0.0643 ***
α2 0.1252 ***
β1 0.9925 *** 0.9364 *** 0.9891 *** 0.9899 *** 0.8298 *** 0.9896 ***
γ1 0.1160 *** 0.1299 *** 0.1260 *** 0.1520 ***
η11 0.2417 ** 0.0902 **
η12 0.8769 ***
η21 0.3182 *** 0.6373 ***
η22 −3.7626 ***

skew 0.9127 ***
shape 10.0920 *** 10.1845 *** 8.4252 *** 9.1012 *** 7.5824 *** 8.1011 ***

Akaike 4.6546 4.3695 4.4059 4.1985 3.5553 3.7137
Bayes 4.6685 4.3861 4.4197 4.2123 3.5968 3.7276

Ljung–Box (5) 1.2274 2.3402 0.7829 2.2122 1.2774 3.9553
p-value 0.9422 0.8003 0.9781 0.8191 0.9372 0.5559

Engle (5) 4.4076 1.7093 1.6598 1.7391 1.9160 1.9500
p-value 0.4923 0.8877 0.8939 0.8839 0.8606 0.8560

Persistence 0.9925 0.9940 0.9891 0.9899 0.9878 0.9896

XOP Group VIII PSCE PXJ BRENT GAS

Model EGARCH EGARCH EGARCH EGARCH AVGARCH IGARCH
Distribution std std std std sstd std

ω 0.0180 *** 0.0112 *** 0.0198 *** 0.0183 *** 0.0591 *** 0.1179 ***
α1 −0.0570 *** −0.0401 *** −0.0444 *** −0.0384 *** 0.0941 *** 0.0979 ***
β1 0.9891 *** 1.0000 *** 0.9897 *** 0.9890 *** 0.8944 *** 0.9021 ***
β2 −0.0068 **
γ1 0.1044 *** 0.0933 *** 0.1017 *** 0.1006 ***
η11 0.1919 *
η21 0.3925 ***

skew 0.8984 ***
shape 8.9216 *** 8.7354 *** 10.9217 *** 9.5064 *** 4.5937 *** 6.0488 ***

Akaike 4.6311 4.6589 4.8878 4.6140 4.3623 5.0470
Bayes 4.6449 4.6755 4.9016 4.6278 4.3817 5.0553

Ljung–Box (5) 0.5630 7.6673 2.7205 5.6103 2.2819 7.1479
p-value 0.9896 0.1756 0.7430 0.3460 0.8089 0.2099

Engle (5) 6.2511 8.5751 11.3920 6.7366 5.8861 4.4950
p-value 0.2825 0.1273 0.0441 0.2410 0.3175 0.4806

Persistence 0.9891 0.9932 0.9897 0.9890 0.9754 1.0000

Note: Ljung–Box (5)—Ljung–Box test for autocorrelation with lag 5; Engle (5)—Lagrange multiplier test for
conditiol heteroscedasticity of Engle ARCH with lag 5; Ljung–Box and Engle ARCH tests were calculated for
standardized innovations. The symbols *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively.
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Table A6. DCC estimation results.

BRENT and . . . FCG PXE PXI Group IV IXC

Dcca 0.0133 0.0084 0.0098 0.0140 0.0075
p-value 0.1633 0.2140 0.2326 0.1054 0.2765

Dccb 0.9082 0.9362 0.9685 0.9009 0.9378
p-value 0.0000 0.0000 0.0000 0.0000 0.0000

shape 6.5938 6.3021 6.0799 6.2128 5.4478
p-value 0.0000 0.0000 0.0000 0.0000 0.0000

BRENT and . . . Group VI XOP Group VIII PSCE PXJ

Dcca 0.0112 0.0113 0.0091 0.0040 0.0130
p-value 0.1907 0.1445 0.2608 0.1354 0.1559

Dccb 0.9446 0.9450 0.9033 0.9947 0.8705
p-value 0.0000 0.0000 0.0000 0.0000 0.0000

shape 5.7250 6.1602 6.5566 6.6186 6.6120
p-value 0.0000 0.0000 0.0000 0.0000 0.0000

Note: p-value—the p-value of the Student’s t test (or appropriate test).
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Figure A7. Kendall’s τ and copulas for oil, gas, and ETFs.
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