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Abstract: New-generation technologies on vehicles provide many advantages in terms of cost, time,
and the environment in the transportation, logistics, freight, and delivery service sectors. This study
aimed to measure the effect of using e-scooter vehicles in mail delivery on the energy cost and
delivery time in Turkey. Considering the number of test drives in e-scooter applications of potential
regions, the amount of energy consumption and driving time data were used. The number of test
drives for each e-scooter was assumed as a package or postal delivery amount. The methodology
of this study consisted of measuring the effect of input parameters on output variables using the
linear response optimization regression method and minimizing the amount of energy consumed
and delivery time. The nine input variables and two output variables based on the test drive were
analyzed in this study. The distance to the delivery address, region where the delivery address was
located, and temperature were found to be statistically significant predictors of the amount of energy
required for delivery. The statistical significance levels of time zone, distance, temperature, rainfall,
and region factors were calculated as 0.053, 0.001, 0.0033, 0.044, and 0.042, respectively. Driver age,
data time zone, distance, wind speed, and delivery region factors affected the time required for
delivery with an e-scooter. The statistical significance levels of these factors were calculated as 0.02,
0.001, 0.001, 0.043, and 0.001, respectively. Additionally, N (p; 0.042), NE (p; 0.030), and W (p; 0.057)
wind directions directly influenced the delivery time. SE (p; 0.017) was the only wind direction that
statistically significantly affected energy consumption. The objective functions were estimated by
calculating the optimum values of the input parameters for the minimum energy consumption and
delivery time. The optimum values of both input and output variables were calculated based on
the desirability values of the optimization models, which were in the optimum solution set. The
average data of the optimum values of the objective functions were computed as 2.83 for the number
of tests and TRY 0.021 (per 0.098 km) for the energy cost required for delivery. The necessity of using
e-scooters, which are more environmentally friendly, economical, and time-saving than traditional
delivery vehicles, in postal delivery service is among the prominent suggestions of this study.

Keywords: linear regression; response optimization; postal service; e-scooter; energy cost; delivery
time

1. Introduction

The growth of the urban population and the increase in e-commerce activities affect the
complexity of package or mail delivery processes [1]. Factors such as complex construction,
population density in cosmopolitan cities [2], rapid communication, and technological
developments keep the package or mail delivery service sector alive [3]. The postal delivery
industry is developing to provide customers with a faster and higher quality service.
The postal delivery industry must overcome many obstacles to respond instantly to its
customers [4]. These obstacles include many parameters such as energy, cost, environmental
factors, and complex delivery networks [5].

Today, the postal transportation sector has two significant problems: energy [6] and
time [2,7]. The energy costs needed during the delivery period of the vehicles used in
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the postal delivery sector are increasing daily [8]. Most traditional delivery vehicles are
powered with gasoline (diesel or oil) [9]. The traditional vehicle fleets of the postal delivery
sector consist of vehicles that consume gasoline or diesel, such as minivans, buses, trucks,
pickup trucks, combi vans, motorcycles, and automobiles. This sector is turning to different
delivery vehicles to overcome energy costs. The number and types of vehicles that use
electricity to meet energy needs are increasing daily. The postal delivery sector also wants
to benefit from these means of transportation that provide positive advantages [10]. For this
reason, it will not be surprising for customers that electric vehicles, which reduce energy
costs, are preferred for mail delivery.

Following the emergence of shared e-scooters among the opportunities offered by the
new generation of technology and micro-mobility vehicles, participation in their use is
increasing. These vehicles, primarily preferred for daily and short-distance travel, have
started to be used for different purposes over time. E-scooter vehicles, among the micro-
mobility vehicles for daily travel, are heavily preferred in different parts of the world.
A study reported that approximately 2.5 billion trips were made in 2018 with e-scooter
vehicles for travel in New York City, USA [11]. As a similar finding, another study examined
more than 425,000 trips in Indianapolis City, USA, emphasizing the increasing demand for
e-scooter vehicles [12]. Dias et al. claimed that more than 400,000 drivers in Spain make
more than 1.5 million trips in a year with shared e-scooter vehicles across the country [13].
In the same study, the researchers found that more than 1.8 million trips are made in a year
in Lisbon, Portugal, where drivers prefer e-scooter vehicles for daily travel [13]. Although
the use of shared e-scooters also significantly impacts the e-scooter industry, it has been
mentioned that there are 85,000 shared e-scooters in more than 100 cities in the USA [14].
Another study contributed to keeping the e-scooter industry alive by emphasizing that
shared e-scooter vehicles will operate in approximately 60 cities in Germany until 2021 [15].

Other reasons why drivers prefer e-scooter vehicles are related to driver behaviors
and are due to reasons such as difficulty in accessing other vehicles and parking prob-
lems. One study reviewed 417 articles and investigated the psychosocial characteristics
of e-scooter drivers, focusing on behavioral and risk-related aspects [16]. Another study
emphasized that the usage rate increased with e-scooter corrals by sharing e-scooter usage
and driver perceptions [17]. Another reason why e-scooter vehicles are preferred is that
the vast majority of drivers think that these vehicles are economical and environmentally
friendly [18]. Considering all these factors, the use of e-scooters is increasing exponentially
in different parts of the world. As a result, it is not surprising that the use of shared and
rentable e-scooter vehicles among micro-mobility vehicles, especially for daily trips, is
widespread worldwide. Still, these vehicles significantly contribute to their users in terms
of time, energy, and cost.

Many studies that revealed the difference between traditional and electric vehicles in
terms of energy costs have been discussed. A significant portion of the costs (insurance,
maintenance, personnel, etc.) incurred during postal or package delivery is due to energy
costs. Trucks and derivative vehicles used in the package or mail industry account for
23% of the energy used for transportation [19,20]. A study predicted that the preferred
micro-mobility vehicles for transport can reduce energy consumption by 1% at the national
level and 2.6% at the city-center level, and that with the widespread use of micro-mobility
there will be significant decreases in the amount of energy required for transportation [21].
With the use of e-scooter vehicles in transportation or logistics, approximately 65% of
the operating costs are calculated as energy costs [22]. The cost of the amount of energy
required for these vehicles also varies depending on the type and size of the material used
for the battery, and approximately 15% can be saved. In one study, Nocerino et al. reported
that in trials with electric micro-mobility vehicles, they achieved energy savings of between
EUR 0.036 and EUR 0.194 per km. These savings were calculated as the maximum daily
energy cost of EUR 11 for each e-vehicle [23]. Many studies have emphasized in detail
that with the widespread use of micro-mobility vehicles in transportation or logistics (for
specific package sizes and weights), significant savings in energy costs are achieved. This
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study emphasized that using packages with a particular weight and height to deliver to
customers with e-scooter vehicles provides substantial energy cost savings for the Turkish
postal service unit.

In addition to the positive contribution of electric vehicle use to the energy cost, electric
energy-powered delivery vehicles also provide positive impacts on environmental parame-
ters. A study revealed that electric tricycles are a more viable alternative from economic,
ecological, and social aspects [1]. One study suggested that traditional delivery vehicles
used for mail or package delivery have too much impact on CO2 emissions. Some studies
shared some statistical results that road transport increases CO2 emissions [24]. Trucks and
derivative vehicles used in the package or mail transport system are responsible for 24% of
greenhouse gas emissions [19,20]. As the size of the vehicles used for transportation and
the distance of the delivery area increases, the environmental impacts of those vehicles
become increasingly negative. A study has shown that air transport is approximately
four times more carbon-intensive than truck transport and approximately ten times more
carbon-intensive than rail transport [25]. Preferring vehicles such as electrically powered
e-scooters for package or mail delivery has positive environmental impacts. One study
emphasized that using an e-scooter vehicle throughout its operating life cycle decreased
emissions to 57 g CO2 eq./km [26]. Another study noted that e-scooters used in transporta-
tion (excluding the logistics sector) minimized CO2 emissions, energy costs, traffic volume,
and congestion [27].

Especially in cosmopolitan cities, with the proliferation of complex settlements and the
complexity of road routes, negative results occur in the delivery times of mail or packages
with traditional vehicles [28]. Traditional logistics vehicles used for mail or package delivery
cause 8–10% of congestion in urban traffic flow [29]. However, the preference for micro-
mobility cars in the transportation and logistics sector reduces the utilization rate of road
capacities by 30% [30]. A study has emphasized that the time required for a postal or
package delivery is shorter in vehicles powered by electrical energy in micro-mobility
vehicles than in traditional vehicles [23]. Micro-mobility vehicles, such as e-scooters, are not
seriously affected by factors such as morning and evening traffic jams, weather conditions,
and road working conditions in postal or package delivery time zones, unlike traditional
delivery vehicles [31]. Lia et al. compared the capacity with the driver’s weight (kg),
traffic speed (km/h), amount of emissions, range of usage (km), and transportation costs
for cargo bikes (170–210, 20, zero, 50–70, and low, respectively), e-cargo bikes (1710–200,
20, low, 50–70, and high, respectively), e-scooters (180–250, 25, low, 50–120, and average,
respectively), and vans (710–1490, 8–15, high, not applicable, and very high, respectively),
which are all vehicles used in the transportation and logistics sectors [31].

Researchers have presented different methods to measure the impact of e-scooter
vehicles on cost, energy, and the environment. Hosseinzadeh et al. used a spatial analysis
approach to measure the impact of demographics, density, diversity, design, urbanism
scores, public transport distance, and transportation-related factors on e-scooter trips [32].
Another study proposed a proper and effective procedure for designing a reluctance
machine using a multi-objective optimization technique by working on the battery specifi-
cations of e-scooter vehicles [33]. Another study investigated the factors affecting charging
station locations using a new Pythagorean fuzzy multi-criteria decision-making method-
ology for e-scooter location selection [34]. Ciociola et al. created a simulation approach
that used open-access data to develop a demand model that supports and generalizes
e-scooter vehicles in a center [35]. Another article described an optimization model that
will minimize the cost of owning an electric micro-mobility by working on using electric
micro-mobility vehicles in transportation and working on energy-generating batteries [36].
Most studies on e-scooter vehicles have used statistical methods to analyze environmental
factors. Hollingsworth et al. used statistical methods to measure the effects of environmen-
tal loads associated with charging e-scooters on material and production loads of e-scooters
and transporting scooters to overnight charging stations [37]. Another study analyzed
e-scooter riding in Austin and Minneapolis using GIS (geographic information system)
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hotspot spatial analysis and negative binomial regression models to analyze environmental
factors [38]. This study used a linear response optimization regression model to measure
the effect of nine independent variables on energy costs and delivery times of e-scooter
vehicles used for mail and package delivery. The statistical analyses were made, and
the magnitude of the effect of the input variables on the output variables and the results
(positive or negative) were analyzed in this study.

The novelty of this research emphasizes the necessity of using electric micro-mobility
vehicles with the possibilities offered by the new generation technology, unlike the tra-
ditional delivery vehicles used in the postal service sector. One of the essential features
that distinguish this study from other studies is that this study used a statistical optimiza-
tion model developed in terms of cost, time, and environmental factors, suggesting that
e-scooter vehicles, which are generally preferred for travel, should be used for mail or
package delivery. Another feature is that a wide range of data belonging to more than
one region were selected to verify the validity of the optimum and statistical values. In
addition, this study has revealed a useful model by emphasizing that micro-mobility tools,
such as e-scooters, should be used for different purposes.

This study consists of five main parts. In the literature review the cost, energy, and
environmental effects of traditional delivery vehicles used for mail or package delivery and
electric vehicles, such as e-scooters, are discussed. The rest of the paper is structured as fol-
lows. Detailed information about the method developed for the recognition and processing
of actual data used in this study is given in the second section. The numerical results of
the study are discussed in the third section. The effects of the numerical results obtained
with the developed method are mentioned in the study’s Discussion. The technique used
in this study to contribute to other studies, the results, and comments are discussed in the
last part of the study.

2. Materials and Methods

This study focused on the necessity of e-scooter applications by calculating the opti-
mum values of input and output parameters using data from 6213 e-scooter drivers (the
original data) [39]. The methodology of the study adopted a linear response regression
optimization method to measure the effects of the input parameters on the output variables
and to obtain the optimum values of the variables.

2.1. Data Compilation

The actual data from e-scooter trial applications conducted by the Turkish Postal
Service in 12 different cities of Turkey were used in this study. Among the pilot cities
chosen for e-scooter vehicles for mail or package delivery, Istanbul was represented as
two regions: the Anatolian and European sides. The total population of these cities
is approximately 37.6 million. The people of these regions constitute 44.48% of the total
population of Turkey in general. In some districts of Istanbul, mail and package delivery are
carried out with e-scooter vehicles by the PTT (Turkish Post Office), the official organization
of Turkey [39]. The driving tests were carried out with e-scooter vehicles for more than
20 months to spread this application to different regions in Turkey. E-scooter vehicles,
when used as electrically powered delivery vehicles, were planned so that their mail or
package weight could not exceed approximately 2 kg. The input and output parameters,
including the driver, environment, weather, energy, and time information of 6213 e-scooter
test drives, were considered. Many criteria, such as the purpose of use, user age, travel
route, used region, daily usage time, travel party size, and tour mode restriction, which
are important for e-scooter vehicles, have been researched subjects [21]. Before statistical
analysis and optimization calculation, data processing, cleaning, and missing and outlier
data were removed from the primary data set, and 1558 raw data were processed. A
total of nine independent and two dependent variables were considered in this study.
Detailed information, including a flowchart of the methodology and the input and output
parameters, of the study is given in Figure 1.
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Figure 1. The flowchart of the methodology.

Descriptive statistics including the sample size, mean, standard deviation, minimum
value, maximum value, kurtosis, and skewness of the input and output variables are
provided in Table 1. Detailed descriptive statistics based on the wind direction as a
categorical variable and correlations of objective variables and input parameters are shared
in Appendix A.

Table 1. The values of descriptive statistics of independent and dependent variables without region
and wind speed direction factors.

Variable Units N Mean SE Mean StDev Min Max Skewness Kurtosis

Year Time 1578 2021.7 0.0131 0.522 2020.0 2022.0 −1.30 0.70
Age Time 1578 28.898 0.289 11.461 18.000 56.000 1.24 0.15
Distance Meter (m) 1578 1.9704 0.0399 1.5850 0.0980 9.8825 1.68 3.50
Temperature Celsius (◦C) 1578 18.752 0.182 7.226 −0.750 36.500 −0.47 −0.81
Humidity Percentage (%) 1578 66.718 0.314 12.468 23.500 99.000 −0.42 0.26
Rainfall Millimeters (mm) 1578 4.331 0.174 6.904 0.100 56.800 3.22 13.51
Wind Speed Meters per second (m/s) 1578 1.5814 0.0195 0.7753 0.5000 7.0000 2.30 8.68
Test Number 1578 1.8878 0.0282 1.1186 1.0000 7.0000 1.30 1.35
Energy Cost Turkish Currency (TRY) 1578 0.10803 0.0218 0.8665 0.0382 0.53613 1.65 3.31
Delivery Time Minute (min) 1578 10.134 0.181 7.172 1.000 49.760 1.64 3.42

Abbreviation: N, the total count of the sample set; SE, standard error; StDev, standard deviation; Min, the
minimum value; Max, the maximum value.

2.2. Linear Regression for Multiple Input and Response Variables

In simple linear regression statistical analysis, a linear equation is formed that provides
an estimation of data according to the independent variable and the dependent variable
by measuring the effect of the independent variable on the dependent variable. Generally,
a regression equation with one dependent and independent variable is formulated as
follows [40]:

yi = β0 + β1xi + εi (1)

where yi represents the dependent variable, and only one regressor variable is denoted
as xi. The regressor variable’s coefficient and the regression equation’s constant value are
symbolized as β1 and β0. The error (or deviation) of the actual and predicted values of the
dependent variable is represented by εi. However, in this study, since there was more than
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one regressor variable and dependent variable, the regression equation of the generalized
regression model was formed as follows:

L =
n

∑
i=1
∈2

i =
n

∑
i=1

(yi − β0 −
k

∑
j=1

β jxij)

2

(2)

where the sum of the squares of the deviations of the observation data set from the real
regression line is represented by L. Minimizing the L function according to the values of
the constants as β0, β1, . . . , βk is necessary. In that case,

∂L
∂β0

∣∣∣∣
β0, β1, ..., βk

= −2
n

∑
i=1

(yi − β̂0 −
k

∑
j=1

β̂ jxij) = 0 (3)

and
∂L
∂β j

∣∣∣∣∣
β0, β1, ..., βk

= −2
n

∑
i=1

(yi − β̂0 −
k

∑
j=1

β̂ jxij) = 0, j = 1, 2, . . . , k (4)

The normalization of the least-squares equation and the regression equation with
multiple independent variables were formed as follows:

β̂0

n

∑
i=1

xik + β̂1

n

∑
i=1

xikxi1 + β̂2

n

∑
i=2

xikxi2 + . . . + β̂k

n

∑
i=1

xik
2 =

n

∑
i=1

xikyi (5)

For an unknown regression coefficient, p = k + 1 equations must be created [41]. This
study discusses three different regression equations covering the number of tests, energy
cost, and test time objectives required for a test with an e-scooter tool (which should be
considered as the number of mail or package deliveries).

2.3. Desirability Functions

The desirability value is used to verify the validity of the optimum results of linear
and nonlinear regression models. Optimum values of optimization models are obtained
by obtaining individual or composite values for desirability data for a single or more than
one dependent variable (objective functions). This evaluates how well the responses of the
combinations of independent variables meet the defined objectives. Desirability data has
a range of zero to one. It is generally accepted that optimum values are obtained when
the degree of desirability approaches one, which is the ideal value. Desirability values (di)
were computed according to the following formulation [42,43]:

If the aim is to maximize the independent variable, di(yi(x)) is constructed by the
following equation:

di(yi(x)) =


0(

yi(x)−li
ui−li

)r1

1

if yi(x) < lI
if li ≤ yi(x) ≤ ui
if yi(x) ≥ ui

(6)

If the aim is to minimize the independent variable, di(yi(x)) is constructed by the
following equation:

di(yi(x)) =


1(

ui−yi(x)
ui−li

)r2

0

if yi(x) < li
if li ≤ yi(x) ≤ ui

if yi(x) ≥ ui

(7)



Energies 2023, 16, 1291 7 of 25

If the objective function is computed for a target value, di(yi(x)) is constructed by the
following equation:

di(yi(x)) =



0(
yi(x)−li

ui−li

)r1(
ui−yi(x)

ui−li

)r2

if yi(x) < li
−

if li ≤ yi(x) ≤ Ti
if yi(x) = Ti

−
if Ti ≤ yi(x) ≤ ui

if yi(x) ≥ ui

(8)

where li and li are the upper and lower limit values of the desired objective function
equation, respectively. The parameters r1 and r1 express the importance of the objective
function equations being close to the desired data [44]. Individual or composite desirability
is calculated using a desirability function or utility transfer function to approximate the
objectives of the responses. A weight value is preferred to determine how much emphasis
should be placed on the dependent variable or objective function to reach its target value.
The composite desirability data are calculated using the weighted geometric mean of
individual desires for the dependent variables [45]. The degree of desirability of the
optimization models containing different objectives of the independent variables and the
variation of their r1 and r2 values are shown in Figure 2. An increase in r1 and r2 values
causes the desirability degrees to be shallow unless they approach the target of the objective
function [46].
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Figure 2. Graphical representation of desirability functions for different optimization targets of
independent response variables: (a) maximization of response variables, (b) minimization of response
variables, (c) target values of the response variables.

Optimal settings for the independent variables were determined by maximizing the
degree of compound desirability. Optimization models have been developed considering
the limits of input variables for the plot regions where the e-scooter application is planned
with linear response regression models. The mathematical equations of multi-objective
optimization models are discussed later in this section.

2.4. Optimization Models

Generally, optimization models are defined as the expression of real-life problems in
a mathematical form. There is at least one decision variable in each optimization model.
These decision variables are expressed with the term xij. The objective function equation
of a mathematical optimization model given the decision variable as xij is formed as
follows [47]:

objectivez f =
n

∑
i=1

m

∑
j=1

ti
(
xij
)

(9)
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where ti denotes the coefficient of the decision variables with {i = 1, 2, . . . , n} [48]. If
the term f is a cost, it tries to minimize the objective function; otherwise, if the term f
is a revenue, it tries to maximize the objective function. Each optimization model has a
boundary of decision variables [49]. These restrictions are defined as constraints in any
optimization model. In a mathematical model, constraint equations are usually created as
follows [50]:

n

∑
i=1

m

∑
j=1

ki
(
xij
)
≥
=
≤

pm, m = {1, 2, . . . , M} (10)

where ki indicates the coefficient of the input variables (or decision variables) in the con-
straint’s equations. The pm values that form the boundaries of the constraint equations are
also expressed on the right-hand side. If there is no interaction between the decision vari-
ables in optimization models, and if the decision variable types (integer, rational number,
binary) cannot be expressed, the equations of these models generally behave linearly. The
mathematical form of the general linear optimization model is created as follows [44]:

objectivez f =
n
∑

i=1

m
∑

j=1
ti
(
xij
)

n
∑

i=1

m
∑

j=1
ki
(
xij
)
≥
=
≤

pm, m = {1, 2, . . . , M}

No restriction of xij variables

(11)

Since some decision variables in this study were integers, the mathematical models
created in this study were required to behave like mixed integer optimization models. The
hybrid (mixed) integer optimization model was built as follows [51]:

objectiveZ f = xtQx + qtx
s.t.

Ax = v ( linear constraints)
l ≤ x ≤ u (bound constraints)

xtQix + qi
tx ≤ bI (quadratic constraints)

Some (or all) of x values must be an integer

(12)

The optimization models also represent an example of a TSP (traveling salesman
problem) mathematical model, since the main parameter of the decision variables in the
optimization models of this study was the distributors. Solving TPSs in many regions
may require a lot of time to obtain the solution while using branch and bound methods
so that the optimal results of the decision variables are integers. Sometimes, the optimal
solution may not be obtained. For this reason, for a TSP mathematical model to quickly
find a solution the answer is not optimal, or heuristics that lead to the best solution are
applied. A heuristic TSP mathematical model occurs as follows [52]:

objectivez f =
n
∑

i=1

m
∑

j=1
ti
(
xij
)

i=n
∑

i=1
xij = 1, for j = {1, 2, . . . , n}

i=n
∑

j=1
xij = 1, for j = {1, 2, . . . , n}

ui − uj + nxij ≤ n− 1
f or i 6= j; i = 2, 3, . . . , n; j = 2, 3, . . . , n

All xij = 0 or
xij = 1; or xij binary f or all i and j

All uj ≥ 0

(13)
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where uij is used to sort the order in which nodes appear in drivers’ travel tours [53]. The
decision variable xij in the above mathematical model must comply with the following
criteria:

xij = {1, the driver visits f rom the delivery destination i to destination j; 0, otherwise}. (14)

The objective function of the mathematical model of the present research comprised
the equation obtained from the linear response regression statistical model. Independent
variables were defined as decision variables affecting the objective functions. The TSP and
mixed integer optimization model were as follows [43]:

maximize
n
∑

i=1
xikyi

s.t.
l ≤ xik (lower bound constraints)
xik ≤ u (upper bound constraints)

di(yi(x)) ≤ 1.00 (degree of desirability constraint)
Di(yi(x)) ≥ 0.00(degree of desirability constraint)

0 ≤ xik, and an integer for items delivery for all i and j

(15)

where xik represents the type of input variables and includes the values of the input or
independent variables. These mathematical models are also referred to as multi-objective
optimization models using the same independent variables of three different objective
functions and the same limit values of these variables. This study’s mathematical and
statistical analysis was performed with the statistical program Minitab version 19.

3. Results

In this study, the response regression optimization technique was used to obtain
numerical results of the statistical and optimization models of dependent and independent
variables. Numeric results of dependent variables and mathematical models are discussed
in the subsections of this section.

3.1. Energy Cost

Currently, many types of vehicles are used for post or mail delivery. Authorized
institutions generally assign these vehicle types’ physical and technological characteristics
according to the package type distributed or city planning. However, the most significant
expense of traditional delivery vehicles used in mail or package delivery is determined as
energy consumption. This study considered the energy costs of e-scooter vehicles that use
electrical energy, unlike traditional delivery vehicles. Postal service organizations for mail
or package delivery with a particular physical feature prefer e-scooter delivery vehicles.
E-scooter delivery vehicles, which carry out their operations using electrical energy, operate
at three times less cost than traditional vehicles [39]. However, some factors, such as wind
speed and temperature, were not considered in the energy consumption costs for other
vehicles. In this study, the energy consumption costs of e-scooter vehicles were calculated
by increasing the number of factors included. Table 2 shows the statistical results of the
independent factors that affect the energy costs of e-scooter vehicles used for package or
mail delivery.

From the independent variables, the distance of the delivery address, regions where the
delivery addresses were located, and wind direction were directly influential on the energy
consumption of e-scooter vehicles. Statistically significant variables included degrees
of time zone, distance, temperature, rainfall, and region factors were calculated with p-
values of 0.053, 0.001, 0.0033, 0.044, and 0.042, respectively. Parameters such as driver
age, humidity, and wind direction indirectly affected energy consumption by taking into
account 10% margins of error. A standardized effect graph of the parameters that directly
or indirectly affected energy consumption is shown in Figure 3.
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Table 2. Statistical values of the effects of independent variables on energy cost.

Term Coef. SE Coef. t-Value p-Value VIF

Constant −0.770000 1.28 −0.60 0.050
Year 0.000385 0.000632 0.61 0.053 1.59
Age −0.000015 0.000027 −0.54 0.087 1.41
Distance 0.054207 0.000174 310.86 0.001 1.11
Temperature 0.000068 0.000047 1.46 0.044 1.67
Humidity 0.000022 0.000027 0.82 0.111 1.62
Rainfall 0.000038 0.000040 0.95 0.042 1.09
Wind Speed 0.000121 0.000415 0.29 0.071 1.51

Region
Antalya −0.01260 0.00248 −5.08 0.000 1.57
Bursa −0.00711 0.00245 −2.90 0.004 1.68
İstanbul Anadolu −0.01233 0.00175 −7.03 0.000 5.61
İstanbul Avrupa −0.01296 0.00174 −7.45 0.000 9.65
İzmir −0.01398 0.00273 −5.12 0.000 1.43
Kayseri −0.01345 0.00273 −4.92 0.000 1.56
Kocaeli −0.01380 0.00215 −6.42 0.000 1.99
Konya −0.01363 0.00195 −6.99 0.000 2.77
Sakarya −0.01406 0.00193 −7.29 0.000 2.73
Samsun −0.01386 0.00159 −8.72 0.000 6.14
Trabzon −0.01547 0.00206 −7.51 0.000 1.97
Uşak −0.01384 0.00202 −6.86 0.000 2.62

Wdirect
N −0.00087 0.00145 −0.60 0.550 1.61
NE −0.00100 0.00103 −0.96 0.335 3.05
NW −0.00017 0.00102 −0.17 0.865 3.03
S 0.00101 0.00134 0.75 0.453 2.11
SE −0.00253 0.00140 −1.80 0.017 1.69
SW −0.00049 0.00138 −0.36 0.721 1.66
W −0.00059 0.00122 −0.48 0.632 1.94

Abbreviation: Coef., coefficient; SE Coeff., standard error coefficient; t-value and p-value, a measure of the power
of influence in the data; VIF, variance inflation factor; Wdirect: wind direction; N, north; NE, northeast; NW,
northwest; S, south; SE, southeast; SW, southwest; W, west.
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A Pareto chart (standardized effect) was preferred to determine the magnitude and
importance of the impact of independent variables. Bars crossing the baseline (baseline
value calculated as 2 for this study) in this graph were considered statistically significant.
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Bars representing factors C (distance), H (region), and D (temperature) in this study crossed
the reference line at 2.0. These factors were statistically significant at the p < 0.05 level in
the current model and had an effect on the dependent variable. The effect of variable C
(distance), one of the independent variables that had an indirect or direct impact on the
energy cost, appeared to be very large compared to the other factors.

3.2. Test Time for Delivery of Packages or Mail

The time factor, another independent variable in the data set of this study, was taken
into account and measured in minutes. The term time is expressed as the completion time
of the delivery process of a package or post item made by an e-scooter under different
values of different factors. In this study, the effects of eight other independent variables
on the delivery time of the preferred e-scooter vehicle for mail or package delivery are
explained in Table 3.

Table 3. Statistical values of the effects of independent variables on test time.

Term Coef. SE Coef. T-Value p-Value VIF

Constant 1850.0 320 5.77 0.000
Year −0.913 0.158 −5.77 0.001 1.59
Age −0.02061 0.00679 −3.03 0.002 1.41
Distance 4.1951 0.0437 96.07 0.001 1.11
Temperature −0.0038 0.0117 −0.33 0.744 1.67
Humidity −0.00884 0.00669 −1.32 0.186 1.62
Rainfall 0.01167 0.00992 1.18 0.240 1.09
Wind Speed −0.210 0.104 −2.02 0.043 1.51

Region
Antalya −1.039 0.621 −1.67 0.095 1.57
Bursa 0.903 0.613 1.47 0.141 1.68
İstanbul Anadolu −0.848 0.439 −1.93 0.054 5.61
İstanbul Avrupa −0.393 0.436 −0.90 0.367 9.65
İzmir −0.140 0.684 −0.20 0.838 1.43
Kayseri 0.333 0.684 0.49 0.627 1.56
Kocaeli −0.436 0.538 −0.81 0.418 1.99
Konya −0.207 0.489 −0.42 0.672 2.77
Sakarya −0.778 0.483 −1.61 0.107 2.73
Samsun −0.793 0.398 −1.99 0.047 6.14
Trabzon 3.320 0.516 6.44 0.000 1.97
Uşak 2.993 0.505 5.92 0.000 2.62

Wdirect
N 0.737 0.363 2.03 0.042 1.61
NE 0.562 0.259 2.17 0.030 3.05
NW 0.441 0.256 1.72 0.085 3.03
S 0.349 0.336 1.04 0.300 2.11
SE −0.009 0.351 −0.03 0.979 1.69
SW 0.442 0.345 1.28 0.200 1.66
W 0.541 0.306 1.77 0.057 1.94

Abbreviation: Coef., coefficient; SE Coeff., standard error coefficient; t-value and p-value, a measure of the power
of influence in the data; VIF, Variance inflation factor; Wdirect: wind direction; N, north; NE, northeast; NW,
northwest; S, south; SE, southeast; SW, southwest; W, west.

Five of the nine independent factors directly influenced the delivery time of e-scooter
vehicles. Statistical impact power values of driver age, distance, time of datasets, wind
speed, and test regions were calculated with p-values of 0.02, 0.001, 0.001, 0.043, and
0.001, respectively. The wind direction factor was partially but strongly influential on
delivery time, while the N (p; 0.042), NE (p; 0.030), and W (p; 0.057) wind directions directly
influenced the delivery time, but the other direction types indirectly affected the delivery
time. The standardized effect graph on the time parameter required for deliveries with
the e-scooter vehicle of the independent variables is shown in Figure 4. A standardized
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effect graph (Pareto graph), expressing the absolute values of the effects of the independent
variables, determines which independent variables have the most significant and potent
effects. However, the direction of the impact of the independent variables on the dependent
variable, and whether it increases or decreases the value of the independent variable, was
not determined. For this reason, coefficient data were examined to examine the magnitude
and direction of the effects of independent variables.
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Based on the standardized effect graph, factors A (year), B (age), C (distance), H
(region), and G (wind speed) affected the delivery time. The cross-reference line was calcu-
lated as 2.0 for this dependent variable. The year (Coeff.; −0.913), age (Coeff; −0.02061),
temperature (Coeff.;−0.0038), wind speed (Coeff.;−0.210), and humidity (Coeff.;−0.00884)
parameters had the opposite effect on the dependent variable among these factors. Other
factors had a directly proportional impact on the dependent variable. For example, it was
observed that the delivery time increased as the driver’s age increased and the delivery
time decreased as the wind speed increased.

3.3. Optimization Outputs Based on the Desirability Value

The objective functions of the optimization models of this study were determined as
the energy cost and delivery time required for delivery with e-scooter vehicles. However,
the test times that limited these two parameters were made with the e-scooter tool and
are expressed as distributed packages or mail. Since the test drives did not include any
packages or mail, the number of test drives was handled indirectly, not directly, as it only
affected the other two parameters. For this reason, while the direction of cost and time
parameters was the minimum in mathematical modeling, the number of test drives was
considered the maximum. The value ranges and settings in the mathematical modeling of
objective functions are shown in Table 4.

Table 4. The settings and value ranges of objective functions.

Response Goal Lower Target Upper Weight Importance

Test Maximum 1 7.00000 1 1
Time Minimum 1.00000 49.7600 1 1

Energy Cost Minimum 0.00382 0.05361 1 1
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Using the same independent variables of three different objective functions and the
same limit values of these variables, the optimum values of these mathematical models
were measured using their degree of desirability. While the direction of two of the three
objectives was the minimum, one was the maximum; it was, therefore, difficult to obtain
optimum results with the same limit values of the same independent variables. This
was because the linear objective function and constraint equations acted as a nonlinear
optimization model for three different purposes. The single optimum values of decision
variables of the optimization models (multiple response prediction) that carried out all
three objectives are shared in Table 5.

Table 5. The optimum values of decision variables.

Variable Setting

Temp 36.5
Age 56

Region Trabzon
Year 2022

Distance 0.098
Wind Speed 7

The optimum values of three different objective functions that used the same inde-
pendent or decision variables are given in Table 6. The optimum values in the feasible
solution set were obtained as the number of tests (3.703~4), the delivery time of products
was 3.747 min, and the energy cost required for a product was TRY 0.0197.

Table 6. The optimum values of objective functions.

Response Fit SE Fit 95% CI 95% PI

Test 3.703~4 0.183 (3.344, 4.063) (1.582, 5.825)
Time 3.747 0.650 (2.473, 5.021) (−1.520, 9.014)
Energy Cost 0.197 0.00146 (0.0246, 0.0819) (−0.1526, 0.2591)

Abbreviations: Fit, optimal solution; SE Fit, standard error of fit values; CI: confidence interval; PI, prediction
interval.

SE Fit, CI, and PI values were also calculated to verify the validity of the optimum
results of the objective functions. SE Fit values for the trial ride number, time, and energy
cost parameters were calculated as 0.183, 0.650, and 0.00146, respectively. The CI values
of these three objectives were analyzed as 3.344–4.063, 2.473–5.021, 0.0246, and 0.0819,
respectively. PI data were expressed as a feasible solution set containing the optimum
values of the dependent variables. In other words, the optimum values of the independent
variables could take any value in the PI set. Generally, the data range of the PI solution set
was larger than the CI data range. The reason for this was that if an optimization model
contains more than one objective function, it is inevitable that the data ranges of the PI
solution set will expand.

The validity of the optimum results obtained using the same independent variables
of all three objectives was measured using the degree of desirability and the PI and CI
intervals. This performance value varied between 0 and 1, with the best results of the
mathematical modeling obtained in terms of the direction of the objective functions as the
degree of desirability approaches 1. The optimum values of the 50 best results according to
the desirability degrees of the mathematical models developed in this study are explained
in Table A3 in Appendix A.

The averages of the optimum values of the objective functions were calculated as 2.83
(rounded to 3) for the number of tests, 2.87 (number of tests must be an integer; rounded the
test number to 3) for the delivery time, and 0.0208 for the energy cost required for delivery.
The energy cost of a distance of approximately 100 m (or per minute) was calculated
as approximately TRY 0.021. In another study, the total cost required for delivering a
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package or a mail was expressed as TRY 0.51 without specifying the distance rate [39]. The
approximate charging fee for one trip was USD 2.5, provided an e-scooter was rented for
five trips without limiting any other working distance and time in a study [54]. In another
study, electric micro-mobility vehicles used only for staff travel costed approximately USD
0.39 per minute, including energy, maintenance, and operating processes [55]. The power
consumed, tariff rate, and service charges were calculated by the e-scooter supplier as a
total of INR 13 (approximately USD 0.16) [56]. In another study, the researchers emphasized
that the energy cost per km in test drives with e-bikes varies was between 0.036 and EUR
0.194 [23]. The optimum energy cost of Turkish postal service unit e-scooter vehicles for
parcel or mail delivery was approximately TRY 10.08 for a distance of 48 km with 8 h of
work per day. For the first 50 feasible results, only the Konya, Kayseri, Uşak, Trabzon,
and Kocaeli regions with 12 different cities were included. These regions are essential
in representing other regions in the geography of Turkey, as the cities are located in five
of Turkey’s seven central regions (inner Anatolia, eastern Anatolia). As a result of the
optimum results of the independent variables, the city where the desirability level was
maximum was Trabzon.

4. Discussion

E-scooter test drives were carried out in different regions to popularize the use of
e-scooters in the post or mail delivery sector by the Turkish postal service unit. In this
study, time and energy costs, two of the most important factors taken into account in the
mail or package delivery sector, were calculated using data from these test drives. The
data for these two factors were obtained by considering the trial driving numbers to gain
statistical significance and the independent variables. The effects of both the number of
trial runs and the energy and time parameters according to the desirability degrees of the
optimization models of the optimum results obtained are shown in Figure 5.

Considering the effects of independent variables, the best performance values of the
optimum results obtained according to the desirability levels of the optimization models
stood out in six different provinces. The data from the cities with optimum values are shown
in Figure 6 (the graphic design of this map was retrieved from https://www.mapchart.net
(accessed on 19 December 2022) [57]). According to the degree of desirability, the best
results were obtained in the city of Trabzon, with a value of 0.71. The city of Trabzon
is located in the northeast of Turkey. The most important feature of this region is that
roads and settlements have more obstacles than other cities (for the areas considered in
this study). Nine different drivers in this city made a total of 265 attempts. A driver made
13 trials with the e-scooter vehicle in one day at most out of 60 test runs on different days.

The desirability degrees of the Adana, Kayseri, Kocaeli, Konya, and Uşak regions,
among the other provinces with high desirability degrees, were calculated as 0.613, 0.647,
0.603, 0.614, and 0.618, respectively. The minimum energy cost required for package
delivery in these provinces was TRY 0.0123, which belonged to the Izmir region. Other
parameters were calculated as the distance traveled by e-scooter vehicles in the areas where
the optimum values were obtained. While the minimum value of the delivery time of the
e-scooter vehicle used for delivering a package or mail belonged to the Kocaeli region, the
delivery time taken to cover 0.098 m was calculated as 0.63 min. One study emphasized
that e-scooter vehicles used for transportation can cover 0.77 miles in 7.55 min. This study
revealed that it would take 5.97 min to cover 1 km with an e-scooter [58]. The city of Konya
is located in the central region of Turkey. Unlike Trabzon, the layout and roads are more
regular and have fewer slopes, unlike the city of Trabzon.

Counterplots of decision (independent) variables are shown in Figure 7, together
with the statistical analyses performed to measure the effect of independent variables
(without interactions of factors) on dependent variables. These plots dealt with the impact
of independent variables on energy and time parameters. Counterplots showing the effects
of independent factors on the degree of desirability resulting from interactions with each
other are shared in Appendix A.

https://www.mapchart.net
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The age factor, expressed as the independent demographic variable of e-scooter drivers,
directly affected the degree of desirability. According to the counterplot, it can be observed
that there was an increase in the degree of desirability with the rise of age above a certain
level. This proportionality was not observed between the temperature factor and the degree
of desirability. There was a discrete distribution in the results obtained in the interaction
between temperature and desirability. There was a nonlinear relationship between wind
speed and desirability degrees. While the continuous increase in wind speed increased the
desirability levels to a certain level, an excessive increase in wind speed caused a decrease
in the desirability level. The fluctuations between such results have a significant effect
on obtaining optimum results. The situation created by the impact of wind speed on the
degree of desirability was also observed in the distance factor.

5. Conclusions

Many factors, such as the spread of e-commerce, formation of complex logistics
networks, space of complex constructions, and changes in the physical structure of roads,
directly or indirectly affect mail or package delivery services. The postal service has
to implement changes in its internal dynamics to find ways to eliminate the effects of



Energies 2023, 16, 1291 17 of 25

such factors. Today, in postal or package delivery services, most products are delivered
to customers using traditional vehicles such as trucks, vans, pickups, motorcycles, etc.
Postal delivery companies tend to reduce their vehicle sizes and turn to micro-mobility
vehicles that are faster and more cost-effective to overcome the abovementioned problems,
especially over short distances and in dense urban centers.

There are two crucial problems postal delivery companies face in delivering the prod-
ucts to the customer: the energy cost and delivery time. Delivery companies aim to shorten
the delivery time and save energy costs with vehicles that require small batteries, such as
e-scooters and e-bikes, which are micro-mobility vehicles. In addition, environmental sen-
sitivity analyses of traditional vehicles used for package or mail delivery show a negative
trend compared to micro-mobility delivery vehicles. In the analysis of some studies, micro-
mobility vehicles, which provide many benefits in terms of the environment, economy, and
energy use, also contribute to reducing traffic density. Daily traffic congestion in residential
areas significantly increases the fuel consumption and carbon emissions of distribution
vehicles and causes delays in the delivery of products to customers [59].

This study analyzed the cost, energy use, and environmental contributions of e-scooter
vehicles for postal or package delivery by the PTT, an official institution of Turkey. In
this study, nine independent factors were examined, and the effects of these factors on
e-scooter vehicle use, package or mail delivery time, and energy cost were examined. To
popularize the use of e-scooters, in this study, a response optimization regression method
was developed using data from test drives in 12 cities. This study concluded using a
statistical analysis that driver age (p; 0.002), time zone (p; 0.001), distance (p; 0.001), wind
speed (p; 0.043), and delivery region (p; 0.001) had a direct effect on delivery time, while
time zone (p;0.053), distance (p; 0.001), area (or region) (p; 0.001), temperature (p; 0.0033),
and rainfall (p;0.044) factors had a direct effect on the energy cost.

Based on the statistical analysis results of the study, the factors of year, age, distance,
region, and wind speed directly affected the delivery time. Considering the cross-reference
line of 2.0 for the delivery time, which was defined as the dependent variable, year (Coeff;
−0.913), age (Coeff; −0.02061), temperature (Coeff; −0.0038), wind speed (Coeff; −0.210)
and humidity (Coeff; −0.00884) parameters had a negative effect on the dependent variable.
It was determined that the delivery time increased as the driver’s age increased and the
delivery time decreased as the wind speed increased, with a directly proportional effect
of other factors on the dependent variable. The other dependent variable, the energy
cost, was positively affected by the year, distance, temperature, humidity, precipitation,
and wind speed. The cross-reference line for this dependent variable was considered
as 2.0. The parameters of year (Coeff; 0.000385), distance (Kats; 0.054207), temperature
(Coeff; 0.000068), humidity (Coeff; 0.000022), precipitation (Coeff; 0.000038), and wind
speed (Coeff; 0.000121) positively affected the dependent variable. Only the age (Coeff;
−0.000015) and region (Coeff; −0.013091) parameters had a negative impact on the energy
cost required for delivery.

By calculating the optimum data for the dependent and independent variables, the
effects of the interactions of the variables on the energy cost and delivery time could be
discussed. The optimal results were tested using desirability degrees to verify the validity of
the optimum results of the mathematical models. The data concerning the optimum values
of the objective functions in the mathematical models were calculated as 2.83 (rounded
up to 3) for the number of tests, 2.87 for the delivery time, and 0.0208 for the energy cost
required. The optimum energy cost for a distance of approximately 100 m (or per minute)
was calculated as approximately TRY 0.021.

This study had some limitations and prerequisites. Although the data on the batteries
of the e-scooter vehicles were not taken into account, batteries were full during the test
drives. The charging time of the batteries was not taken into account in the trial runs.
Another limit was the slope information of the roads used by e-scooter vehicles for testing
in the regions considered in the study. The effects of these data on driving times and
energy consumption could not be measured. The third limitation was that data on physical
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structures, such as the weight and height of e-scooter drivers, were not used in this research.
A final limitation of this study was the absence of legal regulations regarding e-scooter
transportation. For this reason, the safety of e-scooter drivers was not discussed in this
study. There is a need for studies that argue that this problem is essential for drivers using
electric vehicles, such as e-scooters, for negative situations that they may encounter during
travel [60].

As a result, in terms of the environment, economy, and energy consumption, using
micro-mobility vehicles, such as e-scooters, provides significant advantages in the package
and postal transportation sector in densely populated areas. This study concluded that
micro-mobility vehicles would contribute in many areas due to test applications in 12 cities
in terms of both delivery time and energy cost of the e-scooter vehicle in mail or package
transportation.
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Appendix A

The correlation values of the dependent and independent variables in the preference
of using e-scooter vehicles in the mail or package delivery are given in Table A1. The
correlation values between the variables were analyzed by evaluating the correlation values
in three different categories. If the correlation value between variables was between 0.1 and
0.3 it was considered a weak correlation; between 0.3 and 0.5 was a moderate correlation,
and between 0.5–0.9 was a strong correlation [61].

Table A1. The values of correlations based on the pairwise Pearson correlation test.

Sample 1 Sample 2 Sample Size Correlation 95% CI for ρ p-Value Status

Age Year 1578 0.70 (0.021, 0.119) 0.005 Strong
Distance Year 1578 0.38 (−0.012, 0.087) 0.136 Moderate
Temperature Year 1578 0.27 (0.229, 0.321) 0.000 Weak
Humidity Year 1578 −0.17 (−0.225, −0.129) 0.000 Weak
Rainfall Year 1578 −0.27 (−0.077, 0.022) 0.276 Weak
WindSpeed Year 1578 −0.14 (−0.153, −0.055) 0.000 Weak
Test Year 1578 0.19 (−0.030, 0.068) 0.449 Weak
EnergyCost Year 1578 0.42 (−0.007, 0.091) 0.095 Moderate
DeliveryTime Year 1578 −0.20 (−0.052, 0.047) 0.925 Weak
Distance Age 1578 0.11 (0.061, 0.158) 0.000 Weak
Temperature Age 1578 0.15 (0.106, 0.202) 0.000 Weak
Humidity Age 1578 0.30 (−0.019, 0.080) 0.228 Moderate
Rainfall Age 1578 0.23 (−0.027, 0.072) 0.369 Weak
WindSpeed Age 1578 0.32 (−0.017, 0.082) 0.198 Moderate
Test Age 1578 0.16 (−0.033, 0.066) 0.520 Weak
EnergyCost Age 1578 0.11 (0.061, 0.159) 0.000 Weak
DeliveryTime Age 1578 0.55 (0.006, 0.104) 0.028 Moderate
Temperature Distance 1578 0.16 (0.120, 0.216) 0.000 Weak
Humidity Distance 1578 −0.64 (−0.113, −0.014) 0.012 Strong
Rainfall Distance 1578 −0.22 (−0.072, 0.027) 0.376 Weak
WindSpeed Distance 1578 −0.49 (−0.098, 0.000) 0.052 Moderate
Test Distance 1578 0.22 (−0.027, 0.071) 0.378 Weak
EnergyCost Distance 1578 0.99 (0.991, 0.993) 0.000 Strong
DeliveryTime Distance 1578 0.92 (0.912, 0.928) 0.000 Strong
Humidity Temperature 1578 −0.27 (−0.264, −0.170) 0.000 Weak
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Table A1. Cont.

Sample 1 Sample 2 Sample Size Correlation 95% CI for ρ p-Value Status

Rainfall Temperature 1578 0.27 (−0.022, 0.076) 0.280 Weak
WindSpeed Temperature 1578 0.19 (−0.030, 0.069) 0.441 Weak
Test Temperature 1578 0.59 (0.110, 0.207) 0.000 Moderate
EnergyCost Temperature 1578 0.77 (0.129, 0.225) 0.000 Strong
DeliveryTime Temperature 1578 0.57 (0.109, 0.205) 0.000 Moderate
Rainfall Humidity 1578 0.81 (0.031, 0.129) 0.001 Strong
WindSpeed Humidity 1578 0.52 (0.002, 0.101) 0.040 Moderate
Test Humidity 1578 0.07 (−0.042, 0.056) 0.783 Weak
EnergyCost Humidity 1578 −0.61 (−0.110, −0.012) 0.015 Strong
DeliveryTime Humidity 1578 −0.98 (−0.146, −0.049) 0.000 Strong
WindSpeed Rainfall 1578 −0.51 (−0.100, −0.001) 0.044 Moderate
Test Rainfall 1578 −0.20 (−0.069, 0.029) 0.425 Weak
EnergyCost Rainfall 1578 −0.13 (−0.063, 0.036) 0.593 Weak
DeliveryTime Rainfall 1578 −0.19 (−0.068, 0.030) 0.451 Weak
Test Wind Speed 1578 0.76 (0.027, 0.125) 0.002 Strong
EnergyCost Wind Speed 1578 −0.49 (−0.098, 0.000) 0.052 Moderate
DeliveryTime Wind Speed 1578 −0.25 (−0.075, 0.024) 0.314 Weak
EnergyCost Test 1578 0.28 (−0.021, 0.077) 0.262 Weak
DeliveryTime Test 1578 0.66 (0.017, 0.115) 0.008 Strong
DeliveryTime EnergyCost 1578 0.91 (0.909, 0.925) 0.000 Strong

Abbreviation: CI, confidence interval; ρ, correlation coefficient.

Descriptive statistical data of the influential factors in terms of time and energy costs
of e-scooter vehicles in the mail or package delivery were analyzed. The sample size,
mean, standard error, standard deviation, minimum value, maximum value, kurtosis, and
skewness of other variables were calculated according to the wind direction parameters,
which were categorical variables from the independent factors. The region factor was
not included in the descriptive statistical analysis among the independent variables. The
independent variable data according to the wind direction are shared in Table A2.

Table A2. The descriptive statistics based on the wind direction variable as a categorical input factor.

Variable Wdirect TCS Mean SE Mean StDev Min Max Skewness Kurtosis

Year E 144 2021 0.044 0.522 2020 2022 −1.060 0.020
(Test time) N 88 2021 0.056 0.529 2020 2022 −1.610 1.740

NE 422 2021 0.026 0.535 2020 2022 −1.610 1.670
NW 430 2021 0.024 0.488 2020 2022 −1.000 −0.420
S 139 2021 0.044 0.519 2020 2022 −1.160 0.280
SE 99 2021 0.063 0.623 2020 2022 −1.240 0.460
SW 101 2021 0.046 0.467 2020 2022 −1.360 0.620
W 155 2021 0.044 0.543 2020 2022 −1.220 0.510

Age of E 144 29.583 0.962 11.548 18.000 56.000 1.150 −0.080
Drivers N 88 30.580 1.460 13.710 19.000 56.000 1.060 −0.600

NE 422 30.611 0.612 12.580 18.000 56.000 0.880 −0.740
NW 430 28.160 0.510 10.582 18.000 56.000 1.490 1.020
S 139 27.281 0.889 10.481 18.000 56.000 1.250 0.030
SE 99 28.040 1.080 10.790 18.000 56.000 1.300 0.480
SW 101 28.450 1.150 11.560 18.000 56.000 1.440 0.660
W 155 26.981 0.775 9.644 18.000 56.000 1.810 2.340

Distance E 144 2.321 0.150 1.797 0.181 9.682 1.490 2.460
(km) N 88 1.866 0.173 1.618 0.182 9.492 1.910 5.230

NE 422 1.979 0.080 1.648 0.098 9.392 1.630 3.140
NW 430 1.873 0.067 1.384 0.136 8.827 1.530 3.290
S 139 1.836 0.129 1.526 0.181 7.960 1.830 3.730
SE 99 1.688 0.136 1.358 0.190 8.171 2.450 7.840
SW 101 2.234 0.190 1.905 0.208 8.703 1.610 2.280
W 155 2.079 0.130 1.613 0.130 9.883 1.490 3.280
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Table A2. Cont.

Variable Wdirect TCS Mean SE Mean StDev Min Max Skewness Kurtosis

Temperature E 144 18.623 0.494 5.931 5.500 30.100 −0.430 −0.330
(Average) N 88 18.261 0.774 7.263 −0.750 28.750 −0.610 −0.420

NE 422 20.203 0.305 6.270 1.600 36.500 −0.670 −0.270
NW 430 17.642 0.361 7.490 1.500 34.000 −0.410 −0.960
S 139 20.434 0.743 8.763 2.100 32.000 −0.540 −1.200
SE 99 18.236 0.695 6.916 0.300 29.950 −0.190 −0.840
SW 101 17.502 0.771 7.744 5.200 30.100 −0.330 −1.190
W 155 17.917 0.604 7.519 3.700 27.600 −0.270 −1.370

Humidity E 144 66.890 1.060 12.710 23.500 90.700 −0.990 1.730
N 88 70.390 1.200 11.280 45.300 94.200 −0.130 −0.250
NE 422 68.267 0.599 12.299 28.600 99.000 −0.470 0.480
NW 430 64.568 0.628 13.023 27.800 96.700 −0.190 0.120
S 139 69.281 0.951 11.214 32.400 92.500 −0.670 0.350
SE 99 68.400 1.080 10.760 35.200 92.200 −0.410 0.400
SW 101 67.050 1.150 11.600 31.900 88.800 −0.730 0.770
W 155 62.630 1.010 12.590 31.300 87.300 0.020 −0.620

Rainfall E 144 4.374 0.617 7.399 0.100 33.800 2.670 6.980
N 88 4.897 0.807 7.571 0.100 30.300 2.390 5.200
NE 422 3.391 0.282 5.801 0.100 40.200 3.200 11.620
NW 430 3.003 0.203 4.214 0.100 42.800 3.630 22.810
S 139 6.405 0.860 10.143 0.100 56.800 3.240 12.440
SE 99 5.565 0.855 8.506 0.100 53.900 2.730 10.430
SW 101 6.121 0.896 9.003 0.100 34.200 1.970 3.270
W 155 6.395 0.589 7.336 0.100 33.200 2.280 5.780

Wind Speed E 144 1.523 0.044 0.523 0.700 3.300 0.650 0.660
(Average) N 88 1.498 0.065 0.609 0.800 4.300 2.250 7.540

NE 422 1.666 0.037 0.758 0.500 6.100 2.310 8.860
NW 430 1.571 0.044 0.908 0.600 7.000 2.150 6.410
S 139 1.780 0.072 0.843 0.600 6.200 1.490 4.580
SE 99 1.528 0.081 0.806 0.800 6.500 3.530 17.210
SW 101 1.415 0.047 0.471 0.700 3.300 0.870 1.590
W 155 1.444 0.059 0.729 0.700 5.700 3.010 14.020

Test E 144 1.875 0.085 1.023 1.000 5.000 1.010 0.200
Drive N 88 1.841 0.111 1.038 1.000 5.000 1.080 0.240

NE 422 1.912 0.054 1.100 1.000 5.000 1.140 0.560
NW 430 1.830 0.052 1.078 1.000 5.000 1.230 0.710
S 139 2.281 0.131 1.547 1.000 7.000 1.280 1.140
SE 99 1.909 0.113 1.126 1.000 5.000 1.010 −0.090
SW 101 1.634 0.094 0.946 1.000 5.000 1.520 1.660
W 155 1.819 0.079 0.977 1.000 5.000 1.130 0.850

Energy E 144 0.127 0.008 0.098 0.010 0.525 1.450 2.290
Cost N 88 0.102 0.009 0.088 0.010 0.515 1.920 5.290

NE 422 0.108 0.004 0.089 0.005 0.510 1.610 3.100
NW 430 0.103 0.004 0.075 0.007 0.479 1.500 3.150
S 139 0.105 0.008 0.089 0.004 0.432 1.620 2.490
SE 99 0.091 0.007 0.073 0.010 0.430 2.400 7.410
SW 101 0.122 0.010 0.105 0.011 0.472 1.620 2.280
W 155 0.113 0.007 0.087 0.007 0.536 1.480 3.260

Time E 144 11.281 0.674 8.085 1.000 47.000 1.630 3.190
(min) N 88 9.622 0.754 7.073 2.000 46.270 2.300 8.030

NE 422 10.021 0.356 7.317 1.000 43.000 1.500 2.550
NW 430 9.853 0.312 6.461 1.000 41.200 1.460 2.920
S 139 10.098 0.539 6.358 2.000 36.610 1.660 3.580
SE 99 8.406 0.628 6.253 1.000 38.810 2.540 8.910
SW 101 11.040 0.851 8.554 1.000 37.000 1.360 1.210
W 155 10.990 0.631 7.853 1.000 49.760 1.630 3.700

Abbreviations: TCS, total count of the sample set; SE, standard error; Std, standard deviation; Min, minimum
value; Max, maximum value; Wdirect, wind direction; N, north; NE, northeast; NW, northwest; S, south; SE,
southeast; SW, southwest; W, west; min, minute.

The optimum values of the objective function and decision variables in the mathemati-
cal models developed in this study are explained in Table A3 and were calculated using the
best 50 results according to the desirability levels of the optimization model.
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Table A3. The optimum values of objective functions and decision variables based on the desirability
values.

Fit Temp Age Region Year Distance Wind Speed Test Time Energy Cost Desirability

1 36.50 56.00 Trabzon 2022 0.098 7.000 3.703 3.747 0.0197 0.751
2 36.50 56.00 Trabzon 2022 0.098 7.000 3.703 3.747 0.0197 0.751
3 36.50 56.00 Trabzon 2022 0.098 7.000 3.703 3.747 0.0197 0.751
4 36.50 56.00 Trabzon 2022 0.098 7.000 3.703 3.748 0.0197 0.751
5 36.50 56.00 Trabzon 2022 0.098 7.000 3.703 3.749 0.0197 0.751
6 36.50 56.00 Trabzon 2022 0.098 7.000 3.703 3.749 0.0197 0.751
7 36.50 56.00 Trabzon 2022 0.098 1.013 3.703 5.027 0.0197 0.744
8 36.50 56.00 Trabzon 2022 0.098 0.507 3.703 5.135 0.0197 0.744
9 36.50 24.69 Trabzon 2022 0.098 7.000 3.637 4.364 0.0194 0.742
10 36.50 24.69 Trabzon 2022 0.098 7.000 3.637 4.364 0.0194 0.742
11 36.50 24.69 Trabzon 2022 0.098 7.000 3.637 4.365 0.0194 0.742
12 36.50 24.70 Trabzon 2022 0.098 7.000 3.637 4.366 0.0194 0.742
13 36.50 18.13 Trabzon 2022 0.098 7.000 3.623 4.494 0.0193 0.740
14 36.50 18.00 Trabzon 2022 0.098 7.000 3.622 4.496 0.0193 0.740
15 36.50 18.13 Trabzon 2022 0.098 1.012 3.623 5.775 0.0193 0.733
16 36.50 18.00 Trabzon 2022 0.098 0.507 3.622 5.883 0.0193 0.732
17 36.50 56.00 Kayseri 2022 0.098 7.000 2.631 0.994 0.0140 0.647
18 36.50 56.00 Kayseri 2022 0.099 7.000 2.631 1.000 0.0142 0.647
19 36.50 56.00 Kayseri 2022 0.098 7.000 2.631 1.011 0.0140 0.647
20 36.50 56.00 Kayseri 2022 0.098 1.012 2.631 2.275 0.0140 0.641
21 36.50 56.00 Kayseri 2022 0.098 0.507 2.631 2.382 0.0140 0.641
22 36.50 18.20 Kayseri 2022 0.098 7.000 2.551 1.741 0.0136 0.633
23 36.50 18.00 Kayseri 2022 0.098 7.000 2.550 1.743 0.0136 0.633
24 36.50 18.20 Kayseri 2022 0.098 1.013 2.551 3.019 0.0136 0.627
25 36.50 18.00 Kayseri 2022 0.098 0.507 2.550 3.131 0.0136 0.627
26 36.50 56.00 Uşak 2022 0.098 7.000 2.504 3.618 0.0133 0.618
27 36.50 56.00 Uşak 2022 0.098 7.000 2.504 3.620 0.0133 0.618
28 36.50 56.00 Adana 2022 0.098 7.000 2.424 0.828 0.0495 0.613
29 36.50 56.00 Uşak 2022 0.098 1.013 2.504 4.898 0.0133 0.613
30 36.50 56.00 Adana 2021 0.098 7.000 2.424 1.011 0.0495 0.613
31 36.50 56.00 Uşak 2022 0.098 0.507 2.504 5.006 0.0133 0.612
32 36.50 56.00 Adana 2022 0.098 3.382 2.424 1.205 0.0495 0.612
33 36.50 56.00 Adana 2022 0.098 3.366 2.424 1.205 0.0495 0.612
34 20.66 56.00 Kayseri 2022 0.098 6.875 2.355 1.021 0.0125 0.608
35 36.50 18.21 Uşak 2022 0.098 7.000 2.423 4.364 0.0129 0.604
36 36.50 18.00 Uşak 2022 0.098 7.000 2.423 4.367 0.0129 0.604
37 36.50 56.00 Kocaeli 2022 0.098 7.000 2.323 0.630 0.0124 0.603
38 36.50 56.00 Kocaeli 2021 0.098 7.000 2.323 1.011 0.0124 0.603
39 36.50 56.00 Kocaeli 2022 0.098 1.012 2.323 1.344 0.0124 0.602
40 36.50 56.00 Kocaeli 2022 0.098 0.506 2.323 1.450 0.0124 0.602
41 36.50 56.00 Konya 2022 0.098 7.000 2.309 0.614 0.0123 0.601
42 36.50 56.00 Konya 2021 0.098 7.000 2.309 1.011 0.0123 0.601
43 36.50 20.79 Adana 2022 0.098 6.759 2.349 1.174 0.0479 0.601
44 36.50 20.79 Adana 2022 0.098 6.760 2.349 1.174 0.0479 0.601
45 36.50 18.23 Adana 2022 0.098 7.000 2.344 1.173 0.0478 0.600
46 36.50 18.00 Adana 2022 0.098 7.000 2.343 1.177 0.0478 0.600
47 36.50 56.00 Konya 2022 0.098 1.012 2.309 1.694 0.0123 0.599
48 36.50 18.20 Uşak 2022 0.098 1.012 2.423 5.644 0.0129 0.598
49 36.50 56.00 Konya 2022 0.098 0.507 2.309 1.801 0.0123 0.598
50 36.50 18.00 Uşak 2022 0.098 0.507 2.423 5.755 0.0129 0.598

The interactions of the distance, age, temperature, and wind speed factors that do not
have categorical data from the independent variables according to the desirability degree
of mathematical modeling are discussed in the counterplot images in Figure A1. It was
concluded that as the colors became darker in counterplot shapes, the degree of desirability
increased, and the independent variables reached optimum values.
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Figure A1. The effects of independent factors (interactions of factors) on the degree of desirability: 

(a) windspeed–distance, (b) age–temperature (c), distance–temperature, (d) windspeed–tempera-

ture, (e) age–distance, (f) age–windspeed. 
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