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Abstract: This paper aims to study the workflow of the detection centre of stealthy attacks on indus-
trial installations that generate an increase in energy consumption. Such long-lasting, undetected
attacks on industrial facilities make production more expensive and less competitive or damage the
installation in the long term. We present the concept of the remote detection system of cyberattacks
directed at maliciously changing the controlled variable in an industrial process air conditioning
system. The monitored signals are gathered at the PLC-controlled installation and sent to the remote
detection system, where the discrepancies of signals are analysed based on the Control Performance
Assessment indices. The results of performed tests prove the legitimacy of the adopted approach.

Keywords: cyberattack; control variable; feedback system; cyberattack detection; process air condi-
tioning station

1. Introduction

On 23 December 2015, the power grid of Ukraine was hacked, resulting in power
outages for roughly 230,000 consumers in Ukraine for 1–6 h. Around 0.015% of the daily
electricity consumption in Ukraine was not supplied (up to 73 MWh of electricity) [1].
The attack was distributed in an email via an infected Word document or PowerPoint
attachment. Then the BlackEnergy 3 malware remotely compromised the information
systems of three energy distribution companies in Ukraine and temporarily disrupted
consumer electricity supply [2].

TXOne Networks, the OT zero trust and Industrial IoT (I-IoT) security company has
published a 2021 cybersecurity report [3] which focuses on the vulnerabilities that can
affect Industrial Control Systems (ICS). According to the report, the number of advisories
dramatically increased in 2021, when there were 389 advisories published, compared
with 249 a year earlier. The growing number of cyberattacks aiming at disrupting critical
infrastructure (CI) clearly shows that hackers seek new attack vectors for their potentially
dangerous activities.

The CI is the set of systems and related objects consisting of buildings, devices, in-
stallations, and services essential to the security of the state and its citizens that ensure
the efficient functioning of public administration, institutions, and entrepreneurs [4]. CI
consists of the following systems: (a) supply of energy and fuels, (b) communications,
(c) ICT (Information and Communication Technologies) networks, (d) financial, (e) food
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supply, (e) water supply, (f) health protection, (g) transport, (h) rescue, (i) public adminis-
tration, (j) production, and (k) storage, warehousing and usage of chemical and radioactive
substances, including pipelines of hazardous substances. CI plays a key role in the state’s
functioning and in citizens’ lives. Because of events caused by forces of nature or human
activities, CI may be destroyed or damaged and its operation may be disrupted, which
may endanger the life and property of citizens. Such events negatively affect the economic
development of the country. Therefore, protecting CI is the priority of every state. The
primary objectives of CI tasks include safeguarding against threats and minimizing disrup-
tions and damage, facilitating swift remediation, and minimizing economic and societal
impacts. The protection of CI consists of all activities aimed at ensuring the functionality,
continuity of operations and integrity of CI to prevent threats, risks or vulnerabilities, limit
and neutralize their effects, and restore this infrastructure quickly in the event of failures,
attacks and other events interfering with its proper functioning. In many states, cooperation
with private enterprises is important because, in many cases, a substantial part of the CI of
key importance for state security is privately owned.

In modern industrial companies, there exist overlapping technologies, i.e., Informa-
tion Technologies (IT) regarding information, its flow, and administration, and Operat-
ing Technologies (OT) regarding the operation of physical processes and the machines
(e.g., controllers, actuators, sensors) used to implement them. Such synergy is called IT/OT
convergence and the two-way flow of information between these technologies brings the
production process closer to the business world. For example, a visible trend has been
observed in the monitoring and control of industrial plants based on the Industrial Internet
of Things (I-IoT) devices and Computing Cloud (e.g., Control as a Service—CaaS) [5].
Despite significant improvements in cost, flexibility, and maintenance, it also introduces
new problems that need to be addressed on the OT level, such as cybersecurity. Conven-
tional ICSs are traditionally equipped with signal-induced fault detectors searching for
anomalies in control and sensor signals concerning the behaviour of the ICS. They consist
of estimating the state of the system and comparing the estimated states with the states
measured by the sensors (i.e., residuals). Many works exist on defining faulty states based
on the computed residuals (e.g., Chi-Square or CUSUM).

Until recently, the issues of detecting anomalies were carried out independently as
Intrusion Detection Systems (IDS) in case of cyberattacks (security) or Advanced Diagnostic
Systems (ADS) in case of technical faults (safety). However, cyberattacks in the ICS can
currently be seen as an anomaly generator [6]. Considering the industrial process specificity,
process model, and controller performance, the ADS should be equipped with the methods
to detect and distinguish cyberattacks and process faults in OT infrastructure, thus working
in parallel and exchanging information with IDS [7].

The three main cyberattack types on ICS can be distinguished:

• Integrity attacks that aim to degrade the control performance of the ICS (e.g., False
Data Injection Attacks (FDIA), Man-In-The-Middle (MITM) attacks).

• Availability attacks that aim to disrupt the operations of some control equipment
(e.g., DoS attacks),

• Confidentiality attacks that aim to collect information from the ICS (e.g., eavesdrop-
ping attacks).

Such attacks can be stealthy attacks (covert attacks) that generate anomalies while
keeping fault detectors below their detection threshold and damaging or intruding into the
system in the long term (e.g., Stuxnet), or non-stealthy attacks that are often quick-in-time
attacks with huge impact.

Covert attacks involve access to sensor measurements, system controllers, and suf-
ficient knowledge of system operations [8–11]. Some attacks aim at understanding the
control architecture (e.g., control law implemented in controllers, the response of supervi-
sions, fault detection threshold) or knowing the field equipment (e.g., sensors, actuators) to
launch further integrity or availability attacks [12].
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There are three main areas of possible cyberattacks on the ICS with a set of attack
vectors each [13,14]:

• Cyberattacks on software, e.g., Buffer Overflow, SQL injection, Cross-Site Script-
ing (XSS).

• Cyberattacks on hardware, i.e., accessing the physical location of the ICS in an unau-
thorised way to damage and modify the operational procedure of the system, e.g.,
make changes on certain threshold values.

• Cyberattacks on communication, i.e., exploiting the communication channel and
protocol vulnerabilities, exploiting unnecessary ports and services.

In small and medium enterprises, SCADA (Supervisory Control And Data Acquisi-
tion) systems are vital to the ICS. The common practices of the SCADA system designers
and operators with low-security levels cause them to be extremely vulnerable to various
OT cyberattacks [15,16]. The broadly discussed and analysed virus Stuxnet is a typical
example of a long-term covert attack damaging the system. It was revealed after it had
caused over 1000 failures of the uranium enrichment centrifuges [17]. Another example is
Triton malware targeting the SCADA/ICS system of the Saudi Arabian petrol company
Petro Rabigh which went unnoticed for three years before being detected [18,19]. Covert
cyberattacks present a significant challenge in terms of detection. Two commonly em-
ployed methods for detecting such attacks include analysing sensor measurements for
deviations from expected correlations [11] and examining system dynamics for deviations
from expected behaviour due to an attacker’s imperfect knowledge of the system that can
be detected by monitoring the residuals [20–22]. Recent studies show the significant role of
artificial intelligence and machine learning methods in cyberattack detection in industrial
installations. In such approaches, anomaly detection using deep learning models is used to
identify and detect attacks on SCADA systems by learning the characteristics of malicious
activity and differentiating them from normal features. The advantages of such systems
over other methods indicated in the literature are minimal feature engineering or assump-
tions about the data distribution. A deep learning system for Automated Guided Vehicles
(AGV) based on the Internet of Things (IoT) has been proposed in [23] and evaluated for
its ability to identify and simulate the normal state of the AGV while detecting network
instability caused by cyberattacks. In [24], a long short-term memory (LSTM)-based intru-
sion detection system (IDS) has been implemented and evaluated to detect cyber-physical
attacks on a water treatment testbed. The research presented in [25] describes the method
based on 1D convolutional neural networks and autoencoders with Primary Component
Analysis (PCA) to improve cyberattack detection rates in industrial installations. In [26],
the authors propose a stacked deep learning method to detect malicious attacks in SCADA
systems and provide a comprehensive evaluation on several industrial benchmark datasets.
Several software and hardware solutions have been proposed and implemented in the
industry to increase the resiliency of the SCADA system to cyberattacks. One of them is
zero-trust network architecture [27] with software-based approaches, such as the Elliptic
Curve Digital Signature Algorithm (ECDSA) [28]. Hardware-based solutions have also
been proposed, including using a Trusted Platform Module (TPM) to create a trusted chain
for IoT devices and enhance the security of SCADA and automation systems [29,30].

In this paper, we propose to use the Control Performance Assessment (CPA), used
to measure the quality of a control system, for cyberattack detection [31,32]. The CPA is
based on the study of the chosen indexes [33] calculated for the signals gathered from
the plant devices. Such indexes can be grouped into the following classes: (a) Step Re-
sponse Indexes, (b) Data-Based Integral Measures, (c) Statistical Measures, (d) Model-Based
Measures, (e) Frequency-Based Measures. The assessment requires methodologies and
indexes (Key Performance Indicators) that enable measuring the system’s quality and
undertaking necessary improvement steps. CPA methods also allow benchmarking of
different systems to prioritise maintenance actions. Furthermore, some of the measures
may show a reason for the inappropriate operation, which is useful in detecting the deteri-
oration of the system work. In this article, we discuss the use of data-based CPA statistical
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measures, allowing the detection of possible anomalies in the system, and searching for the
deterioration and possible statistically important changes within measured signals. The
proposed method for detecting stealthy attacks was evaluated using a simulated attack on
a controlled variable (CV) in the air conditioning system. The process model and detection
system were implemented on two industrial workstations and PLCs connected remotely
with secure tunnelling communication. The proposed method was tested under various
operational scenarios.

2. Motivation

In [34], the authors presented an experimental evaluation of sensor attacks and defence
mechanisms in feedback systems. Such attacks assume that the attacker can stealthily
manipulate sensor readings in the control system, thus making the control system oblivious
to the fact that the desired set points of process variables are not achieved. On the one
hand, this will immediately affect the product quality, resulting in high costs of wasted raw
materials and energy. In some cases, quality control in the plant should be able to detect the
problem with deteriorating quality relatively quickly, and a proper investigation should
lead to uncovering the stealthy sensor reading problem.

In this article, we evaluate the problem of stealthy manipulation of a selected control
variable, especially in a feedback system requiring two independent control variables
having opposite effects on the process variable. For example, when temperature control
requires heating and cooling, the attacker may try to change the operating regime of the
cooling process, thus forcing the heating part of the system to increase energy usage to
compensate for the temperature drop caused by the attack-related cooling. In such a case,
the feedback control system will correctly maintain the controlled temperature according
to the desired setpoint, thus preventing product quality deterioration. This will obviously
prevent costs associated with raw materials wasting but will increase the cost of consumed
energy and will only be possible to detect using continuous or periodical inspection of the
control system.

The authors conducted a quality audit of the operation of the control systems at the
real plant where the installation similar to that described above is located. The audit
showed the behaviour of the system described in the article. The situation was not the
result of a cyberattack, but an improperly designed control system. Operation of the system
in such a state generated significant losses for the plant. These losses went unnoticed for
months of operation of the system. This inspired us to describe a possible scenario in which
such a situation would be caused by deliberate action.

Therefore, in this paper, we demonstrate a cyberattack directed at maliciously manipu-
lating a controlled variable (CV) in a feedback system and propose methods to detect such
attacks. The process under consideration requires both cooling and heating to keep the de-
sired temperature of the processed air. It is assumed that the heater’s energy consumption
(for example, the electric current) is monitored. It is very often fulfilled in practice, e.g., for
diagnostics purposes. However, because the cooler in the system is assumed to operate
independently and, in many cases, requires energy consumption for the preparation of the
cooling agent in advance, a straightforward identification of concurrent cooler and heater
operation is not sufficient for detecting malicious manipulation of the cooler.

3. Models and Methods
3.1. Feedback System under Attack

The feedback system under consideration is an air conditioning unit, in which fresh
air of inlet temperature Tin = 20 ◦C passes through both a cooling heat exchanger (HEx-C)
and a heating heat exchanger (HEx-H) (Figure 1). Such approaches are used, for example,
in air conditioning systems for paint shops. A process variable (PV) in this feedback system
is the measured temperature Tout of the conditioned air (TT—temperature transducer).
A split range control algorithm (TC) uses two different control variables: a cooling unit
controlled by the cooling control variable (CCV) when PV exceeds the set point (SP), or the
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heating unit controlled by the heating control variable (HCV) when SP exceeds PV. The
heating unit is supplied with hot water at 90 ◦C, the temperature is controlled by changing
its flow of 0–20 L/min, and heating power consumption is measured (A). The cooling unit
is supplied by a glycol at 1◦C and temperature is controlled by manipulating its flow of
0–20 L/min. It is assumed that the feedback system is properly tuned and inadvertent fast
switching between the cooler and the heater is avoided.
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The assumed mode of cyberattack is through the cooling unit. If the attacker gets
access to the internal data processing of the cooling system, the CCV value can be read and
changed by the attacker to a new cooling control variable (CCVa). Moreover, it is assumed
that our control system cannot monitor the inner variables of the cooling unit and the
malicious manipulation of the cooling unit will not be directly detected. This assumption
seems justified since many cooling units are sold as single and closed systems, with only a
limited number of process variables exposed to the plantwide control system. Therefore,
the attacker can force the cooling unit to operate and decrease the air temperature, even if
cooling is not required. The feedback control system will react accordingly by increasing
the power consumed by the heating unit, and the temperature of the conditioned air
will be maintained. However, the operating costs of the air conditioning unit will be
significantly increased. Because the inner parameters of the cooling unit are not monitored,
such a situation may last for prolonged periods. The heating unit’s power consumption is
measured using electric current measurement. For instance, thyristor power controllers
often enable easy reading of output power.

Therefore, the following assumptions are made in the presented demonstration of
cyberattack detection. The measured variables are the temperature of the fresh air Tin,
the temperature of the processed air Tout with its set point SP, and power consumption
based on the electrical current measurement A. The unknown or unmeasurable parameters
are the power consumption of the cooling unit and the cooling control variable CCVa,
manipulated by cyberattack. Additionally, it is impossible to prevent the cooler from
working simultaneously as the heating unit and vice versa since the closed cooling unit
needs to prepare ice water in advance.

In this article, we assume only a limited scope of cyberattack. First, it is assumed that
the setpoint temperature SP is greater or equal to Tout. Hence, only the heater unit is being
used by the split range controller. Secondly, it is assumed that the attacker maliciously
manipulates the cooling controlled variable by increasing it and cooling the fresh air, thus
forcing the controller to increase power consumption.
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3.2. Proposed Attack Detection Approach

In our research, we use the standard control performance assessment method based on
the Minimum-Variance (MV) benchmark to reveal the possible cyber threats. The proposed
MV benchmark (as a reference performance bound) can be estimated from data monitored
online (e.g., process value, control value). The only assumption is that the system delay
estimate is known.

In CPA, the reference best feedback control used to benchmark is the Minimum-
Variance Control (MVC, i.e., optimal H2 control) [35]. MVC produces the smallest possible
closed-loop output variance and it is worse for any other linear controllers. The MVC-based
assessment compares the actual system-output variance σ2

y to the output variance σ2
MV as

obtained using an MVC applied to an estimated time-series model from measured output
data. The so-called Harris index (HI) is defined as [36].

ηMV =
σ2

MV
σ2

y
(1)

The Harris index is calculated from the measured data and is given in the interval,
where a value close to 1 indicates the best possible control concerning the theoretically
achieved output variance, while 0 means the worst performance, including unstable control.
The Harris index is typically calculated for the process value; however, it can be used as
the measure to assess any signal variance and in our case, can be adapted to the course of
the control signal, allowing for the detection of potential anomalies (changes in variance)
caused, among others, by cyberattacks. There are two advantages to using ηMV over σ2

y : (a)
it is independent of the underlying disturbances, and (b) ηMV is bounded between 0 and 1;
thus we can set the threshold value that will indicate the deterioration of the signal, which
can be due to the possible cyberattack.

We calculate the Harris index as follows [37].

η̂MV =
(n − b − m + 1)σ̂2

MV

ũT ũ + u2
(2)

where n is the sample length, b is the estimated delay, m is a model rank.
The estimate of the residual mean square error is given by

σ̂2
MV =

(ũ − X̃α̂)
T(

ũ − X̃α̂
)

(n − b − 2m + 1)
(3)

To calculate the estimate ˆσ2
MV, we solve the set of linear equations(

X̃TX̃
)

α̂ = X̃T ũ (4)

where

ũ =


ũn

ũn−1
...

ũb+m

, X̃ =


ũn−b ũn−b−1 . . . ũn−b−m+1

ũn−b−1 ũn−b−2 . . . ũn−b−m
...

...
...

...
ũm ũm−1 . . . ũ1

, α =


α1
α2
...

αm

 (5)

and
ũn = un − u (6)

is the corrected deviation of the control value un from its mean value u.
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3.3. System Architecture

In Figure 2, the experimental set-up used in the research is presented. The proposed
architecture generally assumes that identifying cyberattacks is outsourced and performed
by a remotely connected data centre, as outsourcing practice is becoming common nowa-
days. The presented cyberattack detection methods could also be realised using locally
implemented systems, for example, edge computing [38]. Such an approach, however,
needs more scalability and closer integration of the attack detection system with the hard-
ware infrastructure of the control system. Therefore, it was decided to prepare a distributed
system which fulfils the industrial requirements, considering the security of the data.
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Figure 2. Distributed laboratory setup based on outsourcing idea.

The system consists of a plant site and a cyberattack detection centre. The two parts
communicate using a secure, tunnelled connection based on the Mikrotik hAP ac2 device.
Physically, the plant site was located at the Silesian University of Technology in Gliwice,
Poland, and the cyberattack detection centre was at the Warsaw University of Technology
in Warsaw, Poland.

The plant site consists of a PC workstation on which the air conditioning system
(Figure 1) is simulated. The simulation is implemented in the Siemens Simit Simulation
Platform (Figure 3), which is commonly used in industrial practice for the virtual com-
missioning of control systems [39,40]. This module simulates a ProfiNet process interface
based on industrial Ethernet and connects the control system and process simulation. The
industrial control system was implemented using Siemens Simatic S7-1516-3 PN/DP PLC.
This PLC implements the control algorithm and provides the capability of using the MQTT
protocol, which enables safe communication with the distant cyberattack detection centre.
MQTT was chosen as it provides security and ease of implementation. In other applications,
OPC UA may also be considered as it provides similar functionality.
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The distant cyberattack detection centre is based on a set of applications, including a
data acquisition module that retrieves all necessary data from the plant side PLC using the
MQTT protocol. Eclipse Mosquitto is used as the MQTT broker and mediates communica-
tion by both clients. From the client’s point of view, communication is done only with the
broker and direct communication between clients is not possible. This principle facilitates
the scalability of the MQTT network and enables easy expansion of the data set exchanged
between clients. Additionally, all data is encrypted using TLS and user authentication
based on login, and a password is provided. Data acquisition and storage are implemented
in Python, acts as a MQTT client and uses the paho.mqtt.python library. Data is stored
using csv files that are, in turn, imported into MATLAB for cyberattack detection analysis.

4. Experimental Results

The proposed cyberattack detection method has been verified for periodic signals
maliciously added to the control variable of the cooling unit. Two different attacks were
analysed: a triangular and a sinusoidal signal (Figures 4 and 5) added to the cooling control
signal. The amplitude and frequency of the attack signals have been chosen so that the
influence of the attack signal on process temperature is well within the noise range of the
signal and is not clearly visible, but to maximise the consumed energy by both cooling
and heating units. Therefore, although process operators pay close attention to process
variables (temperature in this case), such an attack would not have been easily detected.
Potentially, this attack may be seen by observing the control signal of the heating unit;
therefore, the Harris index is computed, which detects changes in the analysed signal
variance. The Harris index was calculated for N = 1000 samples of the measured heating
control signal, for a model of rank m = 30 and for a time delay tau = 1 sample with a moving
window of n = 200 samples. This initial set of parameters was suggested to detect significant
variations in control signal variance by comparing the calculated Harris index with variance
calculated directly from the control signal (initial values were chosen based on [32]).
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Figure 6 presents results for a triangle attack signal added as the CCVa signal, particu-
larly the effect on the measured heating unit current HU [%]. Figure 7 presents results of
adding a sinusoidal attack signal as the CCVa signal. As can be seen, HU [%] is a good basis
for detecting the attack. Since the variance of the HU signal increases, the Harris index
decreases and can be thresholded to generate the attack detection signal. The threshold was
selected as 0.2 based on historical data in this case. A slight delay in the detection signal
concerning the actual attack is visible.

Energies 2022, 15, x FOR PEER REVIEW 10 of 17 
 

 

 

 
Figure 6. Effect of the triangular attack signal on process control. 

0 2000 4000 6000 8000 10,000
Measured sample

24.8

25

25.2

T ou
t, o C

0 10 20 30 40 50 60 70 80 90 100 110
Analyzed sample

0

0.5

1

M
V

0 2000 4000 6000 8000 10,000
Measured sample

15

20

25

H
U

 c
ur

re
nt

m
ea

su
re

m
en

t, 
%

0 10 20 30 40 50 60 70 80 90 100 110
Analyzed sample

0

0.5

1

A
tta

ck
 d

et
ec

tio
n

Attack
Detection

Figure 6. Effect of the triangular attack signal on process control.



Energies 2023, 16, 1290 10 of 15

Energies 2022, 15, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 7. Effect of the sinusoidal attack signal on process control. 

Results presented in Figures 6 and 7 have been generated assuming that no natural 
disturbances caused by the process itself are present (for example, varying demand for 
processed air) or from varying parameters of fresh air from the outside (for example, var-
ying temperature and/or humidity). Figure 8 presents a natural disturbance added into 
the process, representing changes in air demand for the air conditioning system. Figures 
9 and 10 present results for an additional sinusoidal process disturbance having a lower 
frequency concerning the attack signal itself.  

 

0 2000 4000 6000 8000 10,000
Measured sample

24.8

25

25.2
T ou

t, o C

0 20 40 60 80 100
Analyzed sample

0

0.5

1

M
V

0 2000 4000 6000 8000 10,000
Measured sample

15

20

25

H
U

 c
ur

re
nt

m
ea

su
re

m
en

t, 
%

0 20 40 60 80 100
Analyzed sample

0

0.5

1

A
tta

ck
 d

et
ec

tio
n

Attack
Detection

Figure 7. Effect of the sinusoidal attack signal on process control.

The efficiency of the presented approach was verified for triangular and sinusoidal
attack signals with decreased amplitudes, thus with reduced impact of the cyberattack on
cooling unit. A “less effective”, from the attacker’s perspective, cyberattack results in a
decreased variation of the analysed control signal and increased calculated values of the
Harris index, which sometimes have not exceeded the pre-set threshold. However, if the
impact of a cyberattack on the variance of the control signal is insignificant, then the extra
energy consumption caused by a cyberattack is negligible.

Results presented in Figures 6 and 7 have been generated assuming that no natural
disturbances caused by the process itself are present (for example, varying demand for
processed air) or from varying parameters of fresh air from the outside (for example,
varying temperature and/or humidity). Figure 8 presents a natural disturbance added into
the process, representing changes in air demand for the air conditioning system. Figures 9
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and 10 present results for an additional sinusoidal process disturbance having a lower
frequency concerning the attack signal itself.
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In this case, the variance of the HU signal is considerably larger, even when no attack
is currently active, leading to increased changes in the Harris index. Based on historical
data, a different threshold value has been selected as 0.1 and the attack is assumed active if
the Harris index is lower than 0.1.

The ability to differentiate between cyber-faults and process faults is a crucial issue
that warrants further examination. The CPA method presented in this article can be
compared with a methodology and example described in [6], where cyberattack detection
was conducted utilizing algorithms designed to detect and isolate process faults based
on the analysis of residuals (Fault Isolation System—FIS). In instances of cyberattacks,
the identification of diagnostic signal patterns for individual scenarios can prove to be
a challenging task. Therefore, various extensions have been proposed to address this:
multiple symptom assessment, symptom onset timing, and symptom sequence [6]. In such
cases, the main advantage of the CPA method is its simplicity, as it requires signal analysis
only without prior identification of the cause–effect relationships, complicated modelling,
and residual analysis, as in the case of FIS extensions.
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5. Conclusions

The method of stealthy attack detection on the industrial installation based on the
data-driven statistical control performance measure (Harris index) was presented. As an
example, we used the simulation of the air conditioning installation where the problem
of stealthy manipulation of a selected control variable was evaluated, especially in a
feedback system requiring two independent control variables having opposite effects on
the process variable. The proposed monitoring and cyberattack detection system has been
implemented on the two industrial-type workstations and PLC controllers (one for the
process workstation and the second for the anomaly detection centre), connected remotely
using secure tunnelling communication.

Precise detection of a cyberattack requires additional analysis of the situation, for
example, by observation of network traffic [41]. There are a several ways to distinguish
between process faults and cyberattacks in industrial installations:

• Monitoring for unusual patterns or anomalies in system behaviour: Process faults
will often manifest as abnormal behaviour or unexpected output from the system,
whereas cyberattacks may involve unusual network traffic, system resource usage, or
other anomalies.

• Looking for signs of tampering or unauthorized access: Process faults typically do
not result from intentional tampering, whereas cyberattacks may involve unauthorized
access to the system or manipulation of its controls.

• Reviewing system logs and event histories: These can provide important clues about
the root cause of an issue, such as when it occurred, what triggered it, and what actions
were taken in response.

• Robust security measures implementation: Ensuring that the industrial installation
has robust security measures, e.g., firewalls, intrusion detection and prevention sys-
tems, and secure authentication and access controls, can help to prevent or mitigate
the effects of cyberattacks.

• Expert consultations: If one is unsure whether an issue results from a process fault or
a cyberattack, it may be helpful to consult with experts in the field who can guide and
assist in identifying and addressing the issue.

Regarding the Harris index as a potential measure for cyberattack detection, it should
be emphasised that it requires proper tuning of the parameters, i.e., sample length, esti-
mated delay, and model rank. Moreover, further experimental research should be per-
formed to choose the detector thresholds for different types of attacks. The presented
results suggest that the Harris index may potentially be used to detect periodic attack
signals being added into one of the control variables. In reality, process operators rarely
regularly focus on the control signal; therefore, such a tool would support the operator and
technology crews in detecting process cyberattacks. Control signal variance may change
due to other reasons, for example, because of control units wearing out. The increased
variance, however, unequivocally points to the problem with the control performance.

The proposed solution can be easily generalised for different signals gathered from
the plant and can be used in other industrial domains. However, it is important to carefully
evaluate the performance of the proposed anomaly detection method to determine its
suitability for a particular application. The threshold value and the range of noise values
in the system significantly impact the effectiveness of the diagnostic system. A highly
sensitive system can quickly detect an attack but may also be prone to false positives due
to larger signal values. False positives can be a concern in any anomaly detection system,
and it is important to consider the potential sources of variability in the system and how
they might affect the performance of the method. This should involve collecting data from
the system under various operating conditions to evaluate the method’s performance for
different scenarios. It may also be necessary to fine-tune the method’s parameters (e.g.,
the threshold for detecting an anomaly) to achieve the desired level of performance. The
optimisation of the diagnostic block is a topic worthy of further consideration.
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