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Abstract: Energy price fluctuations pose a significant risk and uncertainty to financial investments for
new developments in conventional power and freshwater cogeneration facilities. This study attempts
to address the problem of making robust valuation for low-carbon energy project investments subject
to multi-dimensional price risk, particularly looking at some key research questions: (a) how does
the correlation structure, or independence, between the price risks affect the project value; and
(b) does adding flexibility in investment enhance or worsen the project valuation, given (a). This
study identified three price factors with significant fluctuations that impact conventional power
generation, namely: wholesale electricity spot price, natural gas spot price, and CO2 market price.
The price factors were used to construct a multidimensional risk model and evaluate investment
decisions for cogeneration project expansion in the future based on a low-carbon energy mix. To this
end, five cogeneration configurations using combined-cycle gas turbine (CCGT) integrated with solar
photovoltaics (PV) and carbon capture and storage (CCS) technologies were assessed. A combined
price risk was initially estimated by transforming the given price factors representing maximum
covariance using principal component analysis (PCA). The trend and volatilities in the major principal
component scores (the combined price risk indicator) were modelled using the geometric Brownian
motion stochastic process, whose parameters were determined and then used to perform time-series
simulation and generate multiple realisations of the principal component. A back transformation
was then applied to obtain the simulated values representing future uncertainties in the price factors.
The effect of price risk and uncertainties were subsequently evaluated using a recombining binomial
lattice model for real options analysis (ROA). There were financial gains when PV was mixed with
conventional natural gas-fired technology. Investment in cogeneration configurations with (a) 25%
PV share provided a 53% gain in the extended net present value (e–NPV); and (b) 50% PV share
provided a 124% e–NPV gain when compared to the baseline cogeneration system with no PV shares.
The analyses demonstrate that PV technology is a better hedging option than CCS against future
market uncertainty and price volatility.

Keywords: cogeneration; renewable energy; principal component analysis; real options analysis;
uncertainty

1. Introduction

Following a slight decline in 2020 due to the COVID–19 pandemic, the global electricity
demand increased by 6% in 2021, signalling the recovery of the worldwide economy. The
demand for 2022 remains pessimistic and is expected to grow by only 2.4% due to higher
energy prices spurred by the Ukrainian crisis (IEA, 2022). The recent trends indicate that
the continued growth in demand would be further supported by renewable resource-based
power generation with more than 10% additional capacity (IEA, 2022). The statistics for the
global energy mix for the period between 2010 and 2020 indicate that there is a gradual
decline of fossil fuels’ share by 4% in the electricity mix with a greater rate of penetration
of 6% by low-carbon and renewable power generation, including hydropower, wind,
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photovoltaics, and nuclear energy. By 2030, it is anticipated that low-carbon generation
technologies will supply nearly 40% of the global electricity mix (IEA, 2020a). Thus, the
additional installed capacity using low-carbon technologies is expected to mitigate the
negative environmental impacts caused by global warming.

Most nations have ratified the Paris Agreement with specific targets for greenhouse
gas (GHG) emission reductions. By 2030, the EU plans to curb carbon emissions by at least
55% of the 1990 levels [1]. Consequently, low-carbon pathways were developed to migrate
vital economic sectors from carbon-intensive to low-carbon production/consumption.
In Germany, for example, the roadmap included the migration from coal, natural gas,
and nuclear to renewable energy sources of the electricity production sector. Germany’s
new renewables share in the electricity mix for 2030 is 65%, with a target to achieve 80%
renewables by 2050 [2].

Similar to the rising electricity demand, the global freshwater market is estimated to
increase by 20% to 30% from current levels by 2050 [3]. In addition to population growth,
the main driver for rising water demand is the expanding commercial and industrial
activities, including agriculture. Due to the lack of natural freshwater resources worldwide,
especially in the hot and arid Arabian Gulf region, seawater desalination was necessary to
supply and secure vital freshwater resources. Several desalination technologies for large-
scale applications contribute towards the global share: 31% by multi-stage flash (MSF), 59%
by seawater reverse-osmosis (SWRO), and 10% by multiple-effect distillation (MED) [4].
Meanwhile, it is worth noting that nearly half of the global seawater desalination capacity
is located in the Middle East and North Africa (MENA) regions [5].

The integration of power and desalination for cogeneration is widespread in the
Arabian Gulf. It offers technical advantages and cost-saving opportunities by exploiting the
technological synergies at the systems level. For example, in the case of a combined-cycle
gas turbine (CCGT) power plant integrated with an MSF plant, the waste heat from the
turbine is used to generate steam, which is used as a thermal energy heat source for the MSF
distillation process. In addition, in SWRO, regardless of the power generation technology
used, electricity production is augmented by re-utilising the high-pressure waste brine
stream. Furthermore, the co-location of facilities plays a vital role since seawater, for
example, is used both as a feed stream for the desalination process and a cooling stream for
the power plant [6–8].

The cogeneration systems based on natural gas-fired power generation offer synergistic
design flexibility that fundamentally exploits the opportunity to improve heat energy and
water use efficiencies. These systems simultaneously cater to the demand of both the energy
and water sectors, thus having more significant value in terms of return on investment
(ROI) over the project’s lifetime. However, cogeneration systems pose greater financial risk
considering investments in new developments, particularly in deregulated markets where
the forecasted demand is not always realised, and prices of inputs (e.g., cost of fuel and
operational costs) and commodities become volatile. This has an implication for projects to
have greater exposure to multiple price risk factors, making financial planning tools for
project valuation, such as net present value (NPV) and conditional value-at-risk (CVaR),
insufficient. This is primarily because they do not account for the possible flexibility in
investment timing and possible recourse actions, such as deferring investment, expanding
production capacities, or shutting down uneconomic projects, considering the dynamic
macroeconomic landscape in which they operate.

In this study, the composite price risk related to cogeneration was modelled to conduct
scenario-based valuation and assessment for future investments in infrastructure develop-
ments under market uncertainty. The outcomes of this study can support stakeholders by
enabling them to make robust decisions for hedging against irreversible losses associated
with investments under unfavourable conditions. Section 2 presents the literature review
and research gaps identified in the state-of-the-art model. The development of the proposed
multidimensional risk-based investment valuation methodology using real options analysis
(ROA) approach is presented in Section 3. The methodology was implemented to evaluate
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five scenarios consisting of conventional and renewable technologies that are viable for
the Arabian Gulf region. Sections 4 and 5 present a case study to assess the expansion of
existing cogeneration projects for the state of Qatar.

2. Literature Review

Future uncertainty plays a significant role in defining the critical risk factors for
developing power and freshwater cogeneration systems. Recent studies identified several
essential factors for addressing the uncertainty in the energy markets, especially their
impact on the decision-making process for power infrastructure investments. One of
the critical risk factors that were investigated comprehensively is fossil-fuel market price
fluctuations. Fossil-fuel prices move up and down in response to worldwide market
supply and demand, and experience sudden jumps in reaction to unforeseen global events.
Recently, carbon markets were introduced worldwide, and through legislation, the carbon
market price is becoming a key component when considering future developments in the
sector. The electricity price is the primary source of the cash flow influx to the facility and
is regarded as a significant factor for assessing a project’s feasibility. Spark spread, defined
as the difference between electricity and fuel prices, is also widely used as a substantial
risk factor. Other risk factors include investment and operating costs represented by the
levelised cost of energy (LCOE) and power demand fluctuations. Risk factors can be
political, technological, economic, and legal [9].

Traditional project valuation methods do not include the value of the operational
flexibility of the project [10]. Hence, real options valuation began gaining popularity in the
decision-making process for hybrid technology portfolios that include renewable energy
sources. A binomial lattice model for the real options valuation of four integrated power
and freshwater cogeneration configurations with uncertain electricity market prices was
examined by Al-Obaidli et al. [11]. The option-to-prototype, which is critical for assessing
newly developed technologies, was reviewed by Lai and Locatelli [12]. The value of
flexibility for delaying PV technology deployment until economic conditions become more
favourable was evaluated by Pringles et al. [13]. A real options model for waste-to-energy
implementation in the Philippines was created by Agaton et al. [14]. A decision-making
framework for the real options valuation of long-term electricity market capacity additions
was developed by Rios et al. [15]. The value of flexible operations for a CCGT power plant
in Germany using real options methodology was investigated by Glensk and Madlener [16].
The evaluation of real options under changing market volatility conditions was conducted
by Čulík [17].

Staged development and deployment of unconventional energy technologies (UET)
using the real options approach in comparison to the immediate deployment of existing
renewable energy technologies was evaluated by Siddique and Fleten [18]. The firm
may expand capacity using existing renewable energy technology at a constant operating
cost or UET where operating cost is uncertain. The long-term electricity price and UET
operating cost were modelled using geometric Brownian motion (GBM) and were assumed
uncorrelated. The decision approach for the UET deployment was now or never. Three
cases were developed and evaluated numerically: (1) staged deployment of UET with no
existing renewable technology option, (2) existing renewable technology without switching
option to UET, and (3) existing renewable technology with switching option to UET. The
study found the option to deploy UET brings considerable value. Alternatively, existing
renewable energy technologies increase the firm’s value but delay the potential initiation of
UET options.

The Black–Scholes real options methodology to evaluate natural gas and renewable en-
ergy projects for power and heat production in New York and Texas was employed by Pless
et al. [19]. Four different configurations were identified: business-as-usual (BAU), where
both electric and heat energies are purchased from a local supplier; natural gas—combined
heat and power (CHP)—only; renewable energy PV only, where heat energy and extra
electric energy to meet demand are also purchased, and natural gas and renewable en-
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ergy hybrids. The case study consisted of two business applications: residential and
commercial, and two electricity rates were considered: standard and time-of-use (TOU).
Natural gas price was identified as a risk variable and was modelled using a geometric
Ornstein–Uhlenbeck stochastic process. The study identified, in general, that natural gas
and renewable energy hybrids were more favourable investments than the other non-hybrid
configurations, even without including renewable energy government incentives.

Real options methodology to retrofit CCS technology to existing natural gas-fired
power plants was deployed by Elias et al. [20]. The plants operated in a deregulated electric-
ity market where both natural gas and electricity prices were uncertain. A mean-reverting
geometric Brownian motion (GBM) pricing model was used for the two risk factors since
commodity prices generally follow a mean-reverting process. A two-dimensional binomial
lattice model was used for the real options valuation, and market evolution was assumed
to be 30% volatile. Separate models were used for the carbon and electricity prices, and two
different CCS technologies were modelled and compared: post-combustion and oxyfuel
combustion. It was found that post-combustion CCS retrofitting became feasible only when
carbon prices hit 140 USD/tCO2 and that the oxyfuel combustion CCS variant became
feasible at a carbon price of 185 USD/tCO2.

A model for investment decisions to transition from fossil fuels to renewable energy
was developed by Zhang et al. [21]. The study aimed to identify the optimal transition
investment time from a coal-based power plant into a PV solar farm. Several factors were
considered uncertain and were all modelled as GBM, such as electricity, coal, and CO2
prices, in addition to PV investment unit cost. Real options methodology was used to
identify the optimal investment time under two scenarios with and without a carbon
emissions trading scheme. The results show insignificant changes to the project’s value
and optimal transition time under the two scenarios. However, the difference is visible at
various price and cost volatility levels.

A case study for solar PV energy project valuation with public authority incentives
using real options was conducted by Di Bari [22]. The expanded net present value (ENPV)
for the different regional areas in Italy was evaluated using the binomial lattice model.
Although several uncertain factors such as meteorological, economic, and political were
identified, the methodology lacked concrete modelling steps for these factors, and hence
the valuation results were deterministic. The project feasibility is highly dependent on the
location and its meteorological conditions.

Solar and wind technology penetration into India’s coal-based power generation
base using real options valuation was investigated by Das Gupta [23]. The study aimed
to evaluate the optimal timing of penetration to achieve penetration targets. Only one
uncertain variable was used in this study which was coal price. The outcome of the
study suggests that the overall policy value of meeting environmental targets is driven
largely by promoting incentive policies which help to further reduce the price of wind and
solar energies.

The economic incentive for retrofitting CCS technology on existing coal and natural gas
power plants was analysed by Sowinski [24] using real options approach. Two uncertain
factors were considered in this study: the cost of CO2 emissions and the price of electricity.
Both were modelled as geometric Brownian motion processes. A comparison between
different CO2 removal technologies were investigated on several coal and natural gas power
generation configurations. Specifically, an assessment for a coal-based configuration was
performed under different discount rates and emission allowances. It was suggested that a
greater risk on the market typically forces the investment decisions to become cautious at
higher threshold values of CO2 emission allowances.

Table 1 provides a comparative summary for these studies regarding their objectives,
including the risk factors that generally affect investment decisions for technology selection,
timing and value of the investment, and their contributions and limitations.
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Table 1. Comparative summary of valuation methodologies for the transition towards low-carbon
energy based on the Real Options Framework.

Research/Study Objective Contribution Limitation

Siddiqui and Fleten
(2010) [18]

Evaluation of investment timing
and value of deploying
unconventional energy
technologies (UET) and/or
renewable energy considering
different switching options. The
stochastic variables considered
were UET O and M cost and the
electricity price.

Incorporating an enhancement
step to include unconventional
energy technology that reduces
the operation costs, which are
uncertain.

The operation of renewable
energy and unconventional
energy systems are assumed to
be mutually exclusive, hence
there exists a possible limitation
in terms of potential investment
value from a portfolio of shared
energy systems.

Pless et al. (2016) [19] Quantification of investment
value of hybrid natural gas and
variable renewable energy
systems in contrast to
single-technology options. The
stochastic variable considered
was the natural gas price.

Evaluation of hybrid natural gas
and renewable energy portfolios
for project-level business case
studies with the consideration
of technology performance and
operational risk profiles at
hourly timescales.

The consideration of scaling-up
of valuation method from
residential to commercial
applications.

Elias et al. (2018) [20] Evaluation of investment value
of retrofitting carbon capture
technologies to existing natural
gas-fired power plants, such as
oxyfuel combustion and
post-combustion capture, based
on the ‘clean-spark spread’
approach. The stochastic
variables considered were the
natural gas price and electricity
price.

Comparative evaluation
between retrofitting CCS
technologies with natural gas
plants based on
techno-economic conditions.

The cost assumed for storage
and transportation of captured
CO2 does not consider the
location, e.g., transportation via
pipeline or shipping. The cost
also assumes a constant CO2 tax
as the emission reduction policy.

Zhang et al. (2019) [21] Evaluation of investment timing
and value for the low-carbon
transition of a coal-fired power
plant into PV technology. The
stochastic variables considered
were the coal price, CO2 price,
PV investment cost, and the
electricity price.

Development of a complex
model for investment decisions
at microcosmic scales, i.e., for
enterprise and project levels.

The choice of pre-defined
alternative renewable energy
systems; the study also lacks the
consideration of power
generation efficiency of these
systems.

Di Bari (2020) [22] Valuation of solar energy (PV)
investment considering
uncertainties due to
meteorological/geographical,
economic and political factors.

Valuation based on merging of
the climatic, tax and political
aspects of PV projects.

The consideration of PV panels’
profitability on the basis of
different manufacturing
characteristics, such as
efficiency, material, and value of
money.

Das Gupta (2021) [23] Evaluation of optimal
investment timing and value for
solar and wind penetration into
coal-based energy markets. The
stochastic variable considered
was the coal price.

Finding the value of policies for
capacity additions and research
expenditures for solar and wind
technologies, including the
determination of trigger price
for investment.

The uncertainties in the
contributions of coal, hydro,
and renewables energy (solar
and wind) towards the base and
peak loads; however, the share
of natural gas is assumed to be
constant. Electricity price was
assumed to be deterministic.

Sowinski (2022) [24] emission allowance and the cost
of electricity generation as
uncertain factors2Valuation of
addition of CCS installation to
an existing coal power plants
considering price of CO

Investigation of multiple CO2
removal techniques with coal
and natural has power plant
technologies

The cost for storage,
transportation and utilisation of
captured CO2 are not
considered. The assumption for
the emission trading scheme is
also subject to future changes.
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2.1. Research Gaps

This work differs from earlier studies in the following ways:

• Earlier studies failed to investigate the exposure of low-carbon pathways to the joint
effect of multiple risk factors, such that variables correlated today might become
uncorrelated as markets evolve and some dependencies are subject to change in the
future. This potentially affects low-carbon investments negatively, thus making the
business-as-usual case more attractive.

• Earlier studies did not investigate the “value of flexibility” in cogeneration (power
and water) portfolios, considering both: (a) flexibility of portfolios, including those
configurations representing varying proportions of fossil fuel and renewable options
depending on future demand as the generation project learns over time; (b) flexibility
in their implementation (investment timing), although they may have been looked at
individually in terms of implementation of single low-carbon technology options via
transitioning or switching.

• In terms of localisation, earlier case studies have not focused on the Arabian Gulf
region, where the power generation market is primarily regulated. Should there be
deregulation of the electricity market in the future, it would be essential to evaluate
new cogeneration and multigeneration projects subjected to price risks.

2.2. Research Objectives

This study quantifies the “value of flexibility” through the diversification of both
low-carbon technology portfolios and the timing of their investment, thereby spreading
the joint effects of risks to hedge their impact on the expected long-term project value. The
approach suggested could also help identify and set up robust portfolios to attract public
financing and investors. Given this, the following are the objectives of the study presented
in this paper:

• To model the joint price risks, including natural gas price, CO2 price and electricity
price, to estimate future cash flow uncertainties of the expansion project using the
principal components analysis (PCA) and stochastic time-series simulation approach.

• To set up the real options analysis (ROA) model and evaluate the robustness in the
financial value of the proposed project expansion options from risk exposure, assuming
fixed investment timing for all cases.

• To conduct a case study for expanding existing natural gas-fired cogeneration facilities
in Qatar based on technically viable options using low-carbon technologies, primarily
photovoltaics (PV) and carbon capture and storage (CCS).

3. Methodology
3.1. Available Data and Assumptions

The historical monthly average price data for ten years, starting January 2011 to
December 2020, were obtained from the US Energy Information Agency (EIA) and European
Union Emissions Trading System (EU ETS) for the following:

• the monthly average wholesale electricity market price was calculated using data from
eight US electricity hubs, namely ERCOT North, Indiana Hub, Mid–C, Mass Hub,
NP–15, Palo Verde, PJM West, and SP–15;

• the natural gas prices were obtained from the Henry Hub (HH) spot price database [25];
and

• the EU ETS carbon market price [26] was chosen over other carbon pricing schemes
which are not free-market driven, such as regulatory carbon taxes.

Figure 1 illustrates the plots for the monthly average wholesale electricity, natural gas,
and carbon market prices for ten years. The plots were divided into four equal sub-periods,
SP–1, SP–2, SP–3, and SP–4, spanning two and a half years each, to assess the stationarity
in their statistical properties and distinguish between low and high volatility sub-periods.
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Figure 1. Monthly average wholesale electricity, natural gas, and carbon market prices from January
2011 to December 2020.

The mean values and standard deviations for the price data in each sub-period are
listed in Table 2. This was used to estimate the corresponding confidence intervals and
identify the most representative value for the sample mean across different sub-periods.
Figure 2a illustrates the confidence interval estimations for the price data across the different
sub-periods. It was observed that the estimation for:

• wholesale electricity price is likely to fall in the range between USD 35/MWh and
USD 40/MWh;

• natural gas price is likely to be approximately USD 10/MWh; and
• CO2 price with two mean levels: (a) initial level representing SP–1, SP–2, and SP–3,

having a mean value of USD 8/tCO2; and (b) a jump in the mean price level to USD
28/tCO2, possibly as a result of increased market activity.

Meanwhile, it is imperative to note that the average US electricity mix for the period
under study has been 85% fossil fuel, of which 31% was natural gas and 15% renewable
energy, of which only 1% was solar energy [27]. Hence, the average wholesale electricity
price over this period is correlated to natural gas prices, as noted in Figure 2b. Thus, on
average, an increase in natural gas price would drive growth in the wholesale electricity
price due to the dominance of natural gas share in the electricity mix.

Table 2. Mean values for wholesale electricity, natural gas, and CO2 prices for all the sub-periods.

Sub-Period Wholesale Electricity
Mean Price (USD/MWh)

Natural Gas Mean
Price (USD/MWh)

CO2 Mean Price
(USD/tCO2)

SP–1 38.8 11.7 10.6
SP–2 44.5 12.1 7.7
SP–3 33.1 9.5 8.4
SP–4 39.8 8.6 28.8
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Some assumptions made to aid the development of the methodology include:

• prices from different markets were used based on their availability for the period
under study since these are the most mature energy markets, and the information is
globally representative from an investment decision-making perspective;

• monthly-scale prices were considered for modelling since it sufficiently captures the
volatility factor for investment decisions typically made over larger five-year look-
ahead cycles.

• the average low and high values for wholesale electricity prices were assumed to be
based on LCOE values derived using: (a) natural gas-fired power generation costs;
and (b) 25% to 50% penetration of renewable power generation in the energy mix,
respectively; and

• The most recent timestep (SP4) was selected since it is the most representative of
market conditions with high price volatility, which would further help assess robust
expansion options.

3.2. Multivariate Stochastic Approach for Joint Price Risk Simulation

A stochastic time series-based approach was adopted in this study to develop an
understanding of the dynamic and time-dependent structure of the statistical parameters
derived from the historical price data, namely their trends and volatilities. This provides
an advantage to use the correlations to estimate several equally likely correlated price
evolution pathways, or simulations, assuming the relationships will hold in the future.
This was specifically achieved using the principal component analysis (PCA) technique
to perform correlation modelling, followed by time series modelling for the price risk, as
the underlying stochastic processes, to estimate of the net present value (NPV) probability
distribution. The NPV distribution was subsequently used for the real options analyses
to conduct valuation and comparative assessments between multiple low-carbon energy
portfolios at the plant/project level as future expansion scenarios. On the other hand,
other statistical simulation techniques based on the Monte Carlo approach for scenario
analysis typically make independent and identically distributed (i.i.d.)-based stochastic
process assumption that fail to capture the time-based correlations potentially leading
to the underestimation of the positive or negative impact of the price risk factors on
project valuation.

Initially, the PCA technique was used to jointly model the historical price dataset
during the sub-period SP–4 indicated in Figure 1. PCA uses the covariance matrix es-
timation of the dataset to represent the movement of market prices, which could either
be correlated or weakly correlated, as an indicator for future price evolution. The prices
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were then transformed into a new set of variables called principal component (PC) scores
that capture the essential information of the original dataset, such as (a) price trends and
monthly-scale volatilities (with high PC1 scores); and (b) other features, including price
jumps and noisy characteristics relating to observational errors (with high PC2 and PC3
scores). In this study, only the PC1 scores were considered as they correspond to the highest
eigenvalue, describing a significant part of the total variance in the dataset.

The PC1 scores were modelled using the geometric Brownian motion process, con-
taining both the trend and volatility components, defined by the following stochastic
differential Equation [28]:

dS
S

= µ dt + σ dWt (1)

where µ is the average growth rate, dt is the timestep size, σ is volatility, and dWt is a
simulated Brownian motion variable, following a normal distribution with a mean of
zero and a variance of one. The geometric Brownian motion model generally applies to
stochastic processes that take both positive and negative values, such as the PC scores
described above.

Stochastic simulation was then used to generate 100 realisations (sets) of PC1 scores
based on the joint volatility (σ dWt) of the three price factors. PC1 scores were back-
transformed to obtain stochastic simulations for natural gas, electricity, and CO2 price
paths that were used to subsequently evaluate the net present value (NPV) distribution.
The NPV calculations for natural gas-fired cogeneration configuration assumed in this
study were based on the cash flow simulations that use a wholesale electricity price of USD
40/MWh with low market volatility of 2.5% (the low-price scenario) since these were the
prevailing conditions for the ten years, starting January 2011 to December 2020. On the
other hand, the cash flows for all the expansion configurations assumed were simulated
using a wholesale electricity price of USD 100/MWh with high market volatility of 25%
(the high-price scenario) due to the change in the electricity mix, with greater penetration
of renewables and other market-related factors, as observed in Figure 1. The details of the
configurations are presented in Section 4, which lays the foundation for the case study.

3.3. Real Options Analysis

The recombining binomial lattice model was used to evaluate the possible expansion
routes for a given cogeneration project. The lattice model is a mature technique used
for evaluating investment decisions. It parallels the classical formalisation of sequential
decision-making techniques, such as dynamic programming and the Markov decision
process (MDP) implemented in the more modern reinforcement learning approach [29].
Thus, using the lattice model, it is possible to identify robust investments that influence not
only the immediate value of the projects, but also their future value when the prices are
possibly not very favourable.

In the lattice modelling approach, the total duration is equivalent to the project’s
half-life, which was further assumed to be divided into predefined timesteps. The lattice
model essentially shows the evolution from one timestep to the other using “forward
induction” paths that follow the exponential Brownian motion [30], given by:

u = eσ
√

δt (2)

where u is the upside evolution step in the upward branch of the binomial tree. The
downside evolution step (d) in the downward branch of the binomial tree is given by:

d = e−σ
√

δt (3)

The option value for the upside is determined using the following:

V(x+1),y = u·
(
Vx,y

)
(4)
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where ‘x’ denotes time step and ‘y’ denotes the branch index. Similarly, the option value
for the downside is determined using:

V(x+1),(y+1) = d·
(
Vx,y

)
(5)

The underlying asset’s cash flow volatility (σ) is assumed to be 10%, and the stepping
time (δt) is set to 2 years. The underlying asset value for the expansion trees was determined
using the following equation:

V0,1 = V6,y + VEOx (6)

where VEOx is the mean stochastic NPV for each of the expansion configurations. When
the forward induction reaches the terminal nodes (V6,y) for the seven expansion trees, the
option values for each of the seven nodes were determined using the following equation:

P6,y = Max
[
V6,y −V0,1, 0

]
(7)

Thus, seven option values were used to perform the backward induction calculations
following these equations [30]:

p =
er f (δt) − d

u− d
(8)

where p is the risk-neutral probability of the upside branch in the back-propagation process,
and the risk-free rate (r f ) is set to 6.5%. The risk-neutral probability of the downside
branch in the back-propagation process (q) is given by:

q = 1− p (9)

The discount factor (d f ) for the back-propagation is determined using the following:

d f = e−r f (δt) (10)

The option values (P) calculated in the reverse order for the earlier timesteps are
given by:

P(x−1),y =
(

p·Ex,y + q·Ex,(y+1)

)
·d f (11)

The extended NPV for each scenario was determined as the sum of the scenario option
value and the mean stochastic NPV for both the baseline and expansion configurations [17].

Figure 3 provides a simplified block diagram to illustrate the different steps of the
methodology: (1) historical time-series data for the composite risk feed into the multivariate
statistical analysis; (2) principal components are developed based on multivariate analysis
data; (3) the first principal component scores are modelled as geometric Brownian motion;
(4) stochastic time-series simulation is conducted using the five cogeneration configurations
from the case study; (5) one hundred future cashflow realisations are generated; (6) stochas-
tic NPV distributions for each configuration are generated; (7) real options valuation using
the binomial lattice model is then applied to five different scenarios from the case study;
(8) the extended NPV is finally identified for each of the scenarios from the case study.
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cogeneration system configurations assumed in this study.

4. Qatar Case Study

Integrated power and water desalination facilities for cogeneration are designed to
meet the increasing demand for freshwater and electricity. A fossil fuel-based power
generation block contains several gas turbine units, electric generators, and combined
heat-recovery steam generators (HRSG). The water production block includes several
seawater desalination technologies, such as multi-stage flash (MSF), where heat recovered
from gas turbines evaporates, flashes, and produces distilled water. Seawater reverse
osmosis (SWRO) technology recently started to gain popularity due to the technology’s
high performance and energy efficiency [31].

A conventional system is employed for a local community in Qatar. It comprises
CCGT and MSF technologies with annual electricity and freshwater demand of 3 TWh
and 36.5 Mm3, respectively. The demand is projected to double around the midpoint of
twenty-four years of the facility’s lifetime. Developers and stakeholders use conventional
technology to generate 50% of the total lifetime capacity because this technology is proven,
and the economics are most favourable. Then, for the planned expansion, after twelve
years from operations, other options are considered such that project economics and
feasibility could improve when several market risk factors are uncertain. Due to the proven
record, three leading expansion technologies are considered: CCS, PV, and SWRO. The
specifications for each of the five technologies selected are presented in Table 3.

Table 3. Specifications for selected technologies.

Technology Specifications

CCGT H− class combined− cycle gas turbines configured as 1× 1× 1 on a single shaft.

CCGT–CCS H− class combined− cycle gas turbines configured as 1× 1× 1 on a single shaft
with 90% post-combustion carbon capture.

PV Solar PV with single-axis tracking arrays and battery storage.
MSF Two multi-stage flash systems are considered: once-through and recycle.

SWRO Two-pass seawater reverse-osmosis configuration with two stages for the
second pass.
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Table 4 presents the specifications of the cogeneration system, both baseline, and
expansion, in terms of supply and demand and the different possible combinations or
configurations. One baseline configuration was proposed for the initial 50% capacity
(CCGT–MSF) as BL–50, and four expansion options were offered for the 50% expansion
capacity after twelve years of operation: (CCGT–PV–SWRO) as EO–1, (CCGT–CCS–MSF)
as EO–2, (CCGT–CCS–PV–SWRO) as EO–3, and (PV–SWRO) as EO–4.

Table 4. Cogeneration capacities for baseline and expansion options configurations.

Technology BL–50 EO–1 EO–2 EO–3 EO–4

CCGT 630 MW 310 MW - - -
CCGT–CCS - - 740 MW 370 MW -

PV - 730 MW - 730 MW 1460 MW
MSF 100 km3d−1 - 100 km3d−1 - -

SWRO - 100 km3d−1 - 100 km3d−1 100 km3d−1

Four scenarios were developed for the real options valuation with an additional
baseline scenario (BLS) which exemplifies the business-as-usual (BAU) case. Each scenario
constitutes the baseline and expansion configurations based on four expansion options (see
Figure 4).
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Plant capacities for the power block vary from configuration to another because
of the different capacity factors used for each technology. Capacity variation between
configurations is essential to maintain consistent supply and meet total demand. The
capacity factors for each power generation technology are listed in Table 5 [32].

Table 5. Capacity factors per power generation technology.

Technology Capacity Factor

CCGT 57.3%
CCGT–CCS 48.9%

PV 24.3%
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The capacity factor for CCGT–CCS was reduced by 14.7% from the CCGT factor [33].
A 100% capacity factor for the water block was assumed since it is a standard practice in
the industry to apply what is known as ‘N+1’ installed capacity (a.k.a. redundancy). It
was further assumed that the associated capital and operating expenses for the redundant
capacity for the water block are already included in the rates used in this study because the
data is based on operational units. The capital and operating cost rates per unit output for
all the technologies are listed in Table 6 [34,35].

Table 6. Capital and operating cost rates for all production technologies.

Technology Capital Expense Rate Fixed OPEX Rate Variable OPEX Rate

CCGT 1084 USD/kW 14.10 USD/kW 2.55 USD/MWh
CCGT–CCS 2481 USD/kW 27.60 USD/kW 5.84 USD/MWh

PV 1755 USD/kW 31.27 USD/kW -
MSF 2282 USD/m3d−1 30.00 USD/m3 76.00 USD/m3d−1

SWRO 1651 USD/m3d−1 89.00 USD/m3 138.00 USD/m3d−1

Capital cost was assumed at current levels throughout the facility’s lifetime; therefore,
the potential decrease in capital cost for renewables due to technology improvements was
not considered. The operating cost was further divided into fixed and variable costs. The
solar PV technology does not incur any variable operating cost by design. The fixed and
variable operational expenses for the water technologies applicable for the Arabian Gulf
region were estimated from the total operating cost at 28% and 72% for MSF and 39% and
61% for SWRO, respectively [35].

The average energy intensity for seawater desalination determines the additional
electric energy requirement and the total grid demand. It is 4 kWh/m3 for MSF and
2.5 kWh/m3 for SWRO [35]. Due to the integrated nature of the configurations, both the
electrical and thermal energies required for the desalination process are provided from
the power block to the water block at no charge. Therefore, the following quantities were
deducted from the total variable cost for each seawater desalination technology. For MSF,
52% was removed from the total variable cost due to thermal energy synergy and 14% due
to electrical energy synergy. SWRO technology does not require any thermal energy input;
hence, only 41% was deducted from the total variable cost due to the electrical energy
synergy [35].

At the moment, there is no established wholesale market for freshwater. The av-
erage sales price of traded water in the US states of Arizona, California, and Texas
between 2009 and 2018 was around 2888 USD/acre-feet, equivalent to 2.34 USD/m3

(1 acre-foot = 1233 m3) [36]. Recently, an index for water trading in the US State of Califor-
nia was established in the Nasdaq stock market (NQH2O), facilitating water as a commodity
and tracking the spot price based on market supply and demand. The market has slightly
over one year’s worth of data. It is at a very early stage of extracting any market dynamics
that can be used for analysis, such as long-term mean and market volatility. The prices
reflect the commodity value of water at the source and do not include additional costs
associated with transportation or any losses. The situation for water desalination trading is
even worse since each facility has its specific breakeven cost of production in addition to a
profit margin which also varies from operator to operator.

For this case study, the average cost of desalination plus an assumed profit margin
was used. Table 7 details the financial figures for both MSF and SWRO. The average
wholesale price of freshwater from the producer to the network operator was assumed to
be 1.8 USD/m3. This price is typically negotiated regularly; however, this rate will be the
long-term mean due to the lack of a better wholesale price indicator.



Energies 2023, 16, 1250 14 of 22

Table 7. Freshwater price economics [35].

Parameter MSF SWRO

Cost of production (USD/m3) 1.44 1.38
Profit margin (%) 30 25

The suggested configurations are low-carbon options that have not been implemented
in the State of Qatar, and this is the first study (to the best of our knowledge) that com-
prehensively evaluates and reports the improvements over baseline with promise for
stakeholder reference and possibly for consideration in future project feasibility studies.

5. Results and Discussion

Multivariate statistical analysis, principal components analysis, geometric Brown-
ian motion modelling, and stochastic time-series simulations were coded using Python.
However, net present valuations and binomial lattice modelling were implemented using
Microsoft Excel.

5.1. Principal Component Analysis and Stochastic Time-Series Simulation Results

Figures 5–7 show a single realisation of the back-transformed wholesale electricity,
natural gas, and CO2 price simulations based on PCA and MCS. The forecasted prices
capture the correlation of the time series and the joint volatility, which began at low levels
and then increased over time.

Energies 2023, 16, 1250 15 of 23 
 

 

with transportation or any losses. The situation for water desalination trading is even 
worse since each facility has its specific breakeven cost of production in addition to a profit 
margin which also varies from operator to operator. 

For this case study, the average cost of desalination plus an assumed profit margin 
was used. Table 7 details the financial figures for both MSF and SWRO. The average 
wholesale price of freshwater from the producer to the network operator was assumed to 
be 1.8 USD/m3. This price is typically negotiated regularly; however, this rate will be the 
long-term mean due to the lack of a better wholesale price indicator. 

Table 7. Freshwater price economics [35]. 

Parameter MSF SWRO 
Cost of production (USD/m3) 1.44 1.38 

Profit margin (%) 30 25 

The suggested configurations are low-carbon options that have not been imple-
mented in the State of Qatar, and this is the first study (to the best of our knowledge) that 
comprehensively evaluates and reports the improvements over baseline with promise for 
stakeholder reference and possibly for consideration in future project feasibility studies. 

5. Results and Discussion 
Multivariate statistical analysis, principal components analysis, geometric Brownian 

motion modelling, and stochastic time-series simulations were coded using Python. How-
ever, net present valuations and binomial lattice modelling were implemented using Mi-
crosoft Excel. 

5.1. Principal Component Analysis and Stochastic Time-Series Simulation Results 
Figures 5–7 show a single realisation of the back-transformed wholesale electricity, 

natural gas, and CO2 price simulations based on PCA and MCS. The forecasted prices 
capture the correlation of the time series and the joint volatility, which began at low levels 
and then increased over time. 

 
Figure 5. A single realisation of wholesale electricity price simulation. 
Figure 5. A single realisation of wholesale electricity price simulation.

Energies 2023, 16, 1250 16 of 23 
 

 

 
Figure 6. A single realisation of natural gas price simulation. 

 
Figure 7. A single realisation of CO2 price simulation. 

One hundred stochastic time-series simulation cash flow realisations were generated 
per configuration. One such realisation is presented in Figure 8, illustrating the uncer-
tainty in future cash flows for configuration BL–50 using SP–4 conditions. 

 
Figure 8. A single realisation of the cash flow series for baseline configuration BL–50. 

Figure 6. A single realisation of natural gas price simulation.



Energies 2023, 16, 1250 15 of 22

Energies 2023, 16, 1250 16 of 23 
 

 

 
Figure 6. A single realisation of natural gas price simulation. 

 
Figure 7. A single realisation of CO2 price simulation. 

One hundred stochastic time-series simulation cash flow realisations were generated 
per configuration. One such realisation is presented in Figure 8, illustrating the uncer-
tainty in future cash flows for configuration BL–50 using SP–4 conditions. 

 
Figure 8. A single realisation of the cash flow series for baseline configuration BL–50. 

Figure 7. A single realisation of CO2 price simulation.

One hundred stochastic time-series simulation cash flow realisations were generated
per configuration. One such realisation is presented in Figure 8, illustrating the uncertainty
in future cash flows for configuration BL–50 using SP–4 conditions.
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The discounted cash flow data determined the stochastic NPV for each configuration.
A histogram for the stochastic NPV for EO–4 is presented in Figure 9. Furthermore,
the preliminary statistical results for all configurations in the stochastic environment are
detailed in Table 8. Based on the data, the mean stochastic NPV per configuration was used
for the real options valuation.
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Table 8. Basic statistics of the stochastic NPV distribution for all configurations (Million USD).

Statistic BL–50 EO–1 EO–2 EO–3 EO–4

Min 197 (396) (1652) (409) 878
Max 279 989 361 502 932

Mean 240 522 (600) 119 906
Median 240 542 (593) 132 907
Mode 235 553 (351) 92 912

The benefit of using principal component analysis is to improve the computational
efficiency of the stochastic time-series simulation approach. This contrasts with the alterna-
tive approach of fitting the historical natural gas, CO2, and electricity price data using time
series models independently based on their statistical properties and further simulating
them without the consideration of possible correlation structures in the data. Instead, in
the proposed approach, the PC1 scores were simulated and back transformed to generate
the NPV distribution, as illustrated in Figure 9.

5.2. Real Options Analysis Results

The binomial lattice trees were developed for all the different scenarios. The evolution
of the baseline configuration for SC–1 (see Figure 4) is shown in Figure 10 for illustration
purposes. Similarly, the evolution of the expansion configuration based on the highest
future value of the baseline configuration is presented in Figure 11. Low market volatility
was assumed for an extended period, set at 10% for the tree evolution.
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Figure 10. Binomial lattice model of SC–1 baseline configuration (Million USD).

Figure 11. Binomial lattice model for the highest future value node of SC–1 expansion configuration
(Million USD).
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The results of comparative analyses between the traditional and ROA valuation
methods is illustrated in Figure 12 for the extended net present value (e–NPV), i.e., for all
the four scenarios when compared to the baseline scenario (BLS) at 10% market volatility.
The ROA approach improved the valuation for all the scenarios by: USD 0.13 billion for
BLS; USD 1.27 billion for SC–1; USD 0.44 billion for SC–2; USD 1.45 billion for SC–3; and
USD 2.49 billion for SC–4 (the values are indicative). It was noted that using traditional
valuation approach only the baseline scenario BLS is feasible. In contrast, a staged valuation
methodology using the ROA approach indicates that including a share of PV technology
in the energy portfolio, even as high as 50% in scenario SC–4, that significantly adds to
the CAPEX of the project, turns out to be highly feasible. This is because of three reasons:
(a) adding PV technology in the energy portfolio is a valuable hedge against the negative
impact of fuel and CO2 price volatilities; (b) all the energy portfolio investment scenarios
considered are spread across time (in two steps, for example, in this study) assumes staged
plant capacity increase in-line with the expected rise in energy demand, thereby providing
the expected revenues; and (c) allowing the spread of investment over time could have
a greater potential to mitigate the risk of losses and positive net returns from the project.
Moreover, such decisions based on risk-based models could also promote sustainable
performance of energy investments.
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Figure 12. Comparative analysis of extended net present value (e–NPV) using both traditional and
ROA approaches.

It was also noted that all scenarios with PV share in the electricity mixture had positive
e–NPV. In the case of SC–2, which is an expansion option using CCS technology, had a
negative e–NPV owing to its combined exposure to high volatilities in natural gas and CO2
prices, which meant that this scenario was not feasible in these market conditions. However,
scenario SC–3 which is also based on CCS includes PV technology as a hedging option
against future market risks thereby giving a positive e–NPV. Meanwhile, scenarios SC–1
(portfolio including both CCGT and PV technologies) and SC–4 (only PV technology) were
53% and 124% higher than the baseline BLS. On the other hand, based on the assessments
for sensitivity of option values to possible increase in future market volatility. As illustrated
in Figure 13, it is noted that for the assumed scenarios (BLS and SC–1 to SC–4), generally
speaking, there is improvement in the long-term option values (e–NPV) with the increase
in price volatilities.
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Overall, the baseline scenario BLS is more favourable at the current average wholesale
electricity price due to the lower capital cost and higher energy efficiency. However, in the
future, as more renewable energy sources enter the electricity mix, the wholesale electricity
price would increase to support the renewable energy transition together with the decrease
in capital costs of PV technology the world is already witnessing today. The outcomes of
the real options analyses from this study provides a useful indication in terms of planning
on how and when expansion of the business-as-usual case for cogeneration in the Arabian
Gulf region should be executed in a robust and sustainable manner to cater the growing
global demand in the future.

6. Conclusions

Several low-carbon pathways are possible for power and freshwater cogeneration
systems, including natural gas, carbon capture, and renewable energy technologies. This
study applied the real options valuation for cogeneration systems’ planning and investment
in the Arabian Gulf region based on three market risks: wholesale electricity, natural
gas, and CO2 prices. A baseline scenario composed of conventional technologies was
compared to four other scenarios consisting of a mixture of renewables and carbon capture
technologies with different mix shares. Real options analysis (ROA) was conducted using
multivariate principal components analysis (PCA) and stochastic time-series simulation to
generate various realisations of future market conditions.

The ROA valuation results using a recombining binomial tree lattice method illustrate
that while the baseline scenario’s net present value (NPV) was positive, the NPVs for some
of the alternative configurations were more profitable in the long-term. Configurations
mixed with PV technology were particularly favourable. Those configurations, that use
the carbon capture and storage (CCS) technology, PV provides a useful long-term hedging
option against future market risks thereby giving a positive extended NPV. Meanwhile, a
comparison between scenarios considering portfolio with both CCGT and PV technology
mix and that with only PV technology increased the baseline scenario value by 53% and
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124%, respectively. This result reasserts that PV technology is potentially risk-free, although
the right wholesale electricity price would be required, as its capital cost is significantly
higher than that of the baseline technology, i.e., CCGT natural gas power plant.

Generally speaking, due to the higher capital costs for the expansion options con-
sidered, natural gas would continue to dominate the power generation sector until other
technologies become more cost-effective. As such, the levelised costs of renewable energy
sources must continue to decline for greater penetration in the future energy mix. In addi-
tion, the CO2 markets would also need to provide a forcing effect through the significant
increase in CO2 prices from its current levels, since higher prices would undoubtedly
accelerate the transition to low-carbon pathways, as seen from the sensitivity analysis.

The available time series dataset used in this study, including historical natural gas,
CO2 and electricity prices, are currently limited in terms of both duration (10 years) and time
resolution (monthly scales). As such, the study assesses the long-term benefits for project
investment, and hence it was considered more beneficial to capture the relevant macro-
features in the prices, including trends, seasonality, and anomalies (jumps), to perform real
options analysis. On the other hand, it would still be considered insufficient for the accurate
estimation of price volatilities, particularly in the wider investment field. Moreover, for
the application of more modern approaches for project valuation and investment, such as
machine learning and artificial intelligence tools that are becoming increasingly popular
in the literature, extensive data would be required for the purposes of model selection,
hypothesis testing, model training, validation of predictions, and their interpretation under
possible energy policy scenarios that could arise in the future. In terms of the multivariate
analytic approach that was adopted in this study, exhaustive test cases for the comparative
analyses, e.g., with and without the application of the principal component analysis (PCA)
technique, was not thus far conducted. Such investigations could provide further insight
into the joint effect of multiple risk factors, and the relationship between their evolving
correlation states and market conditions that are also dependent on the energy policies.

The binomial tree was applied as a real options analysis tool to assess only certain
pre-defined energy portfolios in this study. This is a limitation considering the possibility
of greater flexibility and synergy of cogeneration systems. Future work will investigate the
optimisation of energy portfolio mixes and the timing of their investment to potentially
improve the profitability of project expansions under the same multidimensional risk
conditions. The proposed methodology, however, could consider any additional sources
of risk, such as the wholesale freshwater prices and the impact of future introduction of
hydrogen energy for large-scale utility applications.
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