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Abstract: The performance of a hybrid solar desalination system is predicted in this work using an
enhanced prediction method based on a supervised machine-learning algorithm. A humidification–
dehumidification (HDH) unit and a single-stage flashing evaporation (SSF) unit make up the hybrid
solar desalination system. The Al-Biruni Earth Radius (BER) and Particle Swarm Optimization
(PSO) algorithms serve as the foundation for the suggested algorithm. Using experimental data, the
BER–PSO algorithm is trained and evaluated. The cold fluid and injected air volume flow rates were
the algorithms’ inputs, and their outputs were the hot and cold fluids’ outlet temperatures as well
as the pressure drop across the heat exchanger. Both the volume mass flow rate of hot fluid and
the input temperatures of hot and cold fluids are regarded as constants. The results obtained show
the great ability of the proposed BER–PSO method to identify the nonlinear link between operating
circumstances and process responses. In addition, compared to the other analyzed models, it offers
better statistical performance measures for the prediction of the outlet temperature of hot and cold
fluids and pressure drop values.

Keywords: humidification–dehumidification; flashing desalination; machine learning; meta-heuristic
optimization

1. Introduction

One of the necessities of existence, fresh water, is insufficiently accessible to billions of
people worldwide. Although governments and humanitarian organizations have recently
assisted many people living in water-stressed areas acquire access, the issue is expected
to worsen due to the rapid population rise. About 97% of the water sources on earth are
salty, and there are almost 800 million people who lack access to clean drinking water.
Furthermore, by 2050, it is anticipated that 50% of the world’s water would be utilized [1].
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Physical scarcity, which occurs when there is a lack of water due to regional ecological
circumstances, and economic scarcity, which occurs when there is insufficient water infras-
tructure, are the two main types of water scarcity. Most experts agree that the Middle East
and North Africa (MENA) region experiences the most physical water stress. The MENA
region experiences lower rainfall than other places, yet several of its nations have rapidly
expanding, highly populated urban areas that demand more water. However, many of
these nations, particularly the wealthier ones, continue to fulfil their water needs. Desalina-
tion is a clever and practical solution that grows proportionally with population growth to
the problem of freshwater resources. To address this issue successfully, numerous water
desalination techniques have been employed. Due to their straightforward construction,
long operational lives, and affordable clean water production, solar stills (SSs) are the
most widely used technique of desalinating water. When combined with low-grade and
renewable energy sources such as wind and solar, SS, which is seen as a promising entrant
to the desalination process, gives an alternative way for lowering dependence on fossil fuels
while also delivering different environmental benefits. SS, on the other hand, produces
little. Therefore, numerous performance improvement initiatives were made to increase the
output of SSs. Hybridization with other techniques, such as HDH, is one technique used
to enhance the SS to achieve high performance. In order to produce a more cost-effective
product, provide a better match between power demand and water requirements, and
achieve the best possible combination of the properties of the two processes, a hybrid
desalination system combines two or more processes [2]. Three models have been used
to predict the effectiveness of solar stills and other desalination techniques. These models
use numerical solutions [3], regression models [4], Artificial Neural Network (ANN) and
machine learning technology, which is widely used in many energy system aspects based
on actual experimental measurements, such as desalination systems [5].

ANNs are a prediction model and classification strategy when simulating complex
interactions between sets of cause-and-effect variables or discovering patterns in data.
Methods from transient detection, pattern recognition, approximation, and time series
prediction are all potentially applicable [6,7]. ANN is a system of information processing
that mimics how the human brain does. Neurons are the central component of this network,
and they solve problems by collaborating. In situations where it is essential to extract
the structure from existing data to formulate an algorithmic solution, a neural network
comes in helpful [8,9]. Meta-heuristic algorithms are one of the most powerful techniques
available for resolving challenges encountered in a variety of application contexts [10].
Most of these algorithms derive their logic from the physical algorithms present in the
natural world. These optimization methods often yield acceptable solutions with minimal
computational work and in a fair amount of time. Early detection of coronavirus can
significantly reduce the spread of the disease, improving the prognosis for patients. This
has led to the suggestion of several forms of artificial intelligence (AI) for use in solar
desalination systems [11,12]. Ensemble method, the objective is to ensemble a prediction
model by integrating the features of several independent base models. There are numerous
ways in which this idea can be put into practice. Some more effective ways involve
resampling the training set, while others use different prediction algorithms or tweak
various parameters of the predictive strategy, etc. Finally, an ensemble of methods is
used to combine the results of each prediction [13,14]. When more variables are included
in the optimization process, Al-Biruni Earth Radius (BER) optimization algorithm [15]
performs worse. Additionally, the algorithm’s convergence is premature. A significant
advantage is the successful balancing of exploration and exploitation. The suggested
method takes use of this advantage by using the BER algorithm. Despite its ease of use and
balancing ability between exploration and exploitation, the Particle Swarm Optimization
(PSO) algorithm [16] has drawbacks including performance declines when many local
optimum solutions are present and a low exploration rate. This study employs the Al-
Biruni Earth Radius optimizer to exploit the advantages and overcome the drawbacks of
the PSO technique.
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Based on measured values of water and air temperatures and yield, Kabeel and El-Said
El-Said [17] offered some of the relations that help evaluate the hybrid desalination system
(HDH-SSF) and the suggested BER–PSO classification model, excellent prediction accuracy
of parameters include water yield, GOR, cost, and thermal efficiency is achieved. The
proposed (BER–PSO) technique is initially applied to feature selection from the tested
dataset using a binary version. The binary BER–PSO (bBER–PSO) algorithm is tested first
compared to PSO [16], Grey Wolf Optimizer (GWO) [18], hybrid of PSO and GWO (GWO-
PSO) [19], Whale Optimization Algorithm (WOA) [20], Biogeography-Based Optimizer
(BBO) [21], Bowerbird Optimizer (SBO) [22], Firefly Algorithm (FA) [23], Genetic Algorithm
(GA) [24], and Bat Algorithm (BA) [25]. The tested dataset is next assessed using a classifier
built using the specified BER–PSO algorithm. Comparisons are made between the Decision
Tree Regressor (DTR) [26], MLP Regressor (MLP) [27], K-Neighbors Regressor (KNR) [28],
Support Vector Regression (SVR) [29], and Random Forest Regressor (RFR) [30] models
and the “BER–PSO” algorithm. Additionally, two ensembles for creating new estimators
are Average Ensemble (AVE) and Ensemble utilizing KNR (EKNR).

The following is a condensed list of the most important contributions that can be
drawn from this body of work:

• Novel machine-learning techniques to predict the impact of various design and opera-
tional parameters on the thermos-fluid functionality of the HDH-SSF system.

• An improved Al-Biruni Earth Radius (BER) optimization-based Particle Swarm Opti-
mization (BER–PSO) algorithm is suggested.

• The suggested algorithm’s binary variant, the binary BER–PSO algorithm, is used to
select features from the dataset under test.

• For the purpose of raising the accuracy of tested dataset prediction, a BER–PSO-based
classifier is introduced.

• The statistical significance of the BER–PSO algorithm can be determined by employing
the Wilcoxon rank-sum and ANOVA tests.

• Both the binary BER–PSO and the BER–PSO-based classification algorithms can be
tested for a variety of datasets.

The remaining portions of the document are arranged as follows. A description of the
system and applications of AI is covered in Section 2. The methods utilized by machine
learning (ML) to estimate the HDH-SSF’s thermos-fluid performance parameters are intro-
duced in Section 3. Meanwhile, Section 4 presents a description of the proposed BER–PSO
algorithm. Section 5 presents performance metrics, statistical parameters, experimental
results, findings, and discussion. The study’s key conclusions are presented in Section 6.

2. Background

Based on Kabeel and El-Said [17], the experimental setup of the hybrid desalination
system (HDH-SSF) is under investigation in this study. HDH-SSF system was primarily
based on two concepts: the air humidification and dehumidification process (HDH), and
the flash evaporation of saline water (SSF), as shown in Figure 1. A humidifier, dehumidifier
(water cooled exchanger), air heater (flat plate collector), water heater (flat plate collector),
and flashing evaporation unit make up the majority of the system. HDH system is made
up of two loops, one for heating water and the other for heating air with a packed tower
as a humidifier. Hot air passes through the humidifier and transfers the water that has
evaporated to the dehumidifier, which cools to extract the fresh water. The condenser and
flashing chamber are the main components of the single stage flashing evaporation system
(SSF). Pump (P4) in the water loop delivers water from the mixing tank and splits it into
two major lines, a feeding line and a bypass line, which are both controlled by valves (V15).
The humidifier’s top is where the heated saline water is sprayed. The water drips to the
humidifier’s bottom, where it is sent to a mixing tank for reheating. A centrifugal blower
(placed on the humidifier’s input) pulls air from the atmosphere into the air loop, where it
passes through the air solar heater. Hot air passes through the humidifier and transfers
the water that has evaporated to the dehumidifier, which cools and dehumidifies the air.
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Condenser and flashing chamber make up the SSF system. In the closed loop of saline
water flow between the flashing chamber and heat exchanger (HHEx), a portion of the salty
water in the mixing tank (MT) is flowed to the helical heat exchanger (HHEx) to backup
water, while the remainder is drained using valve (V5). Pumped to a flashing chamber
under sub-atmospheric pressure, hot saline water from a heat exchanger evaporates by
flashing. The condenser receives the water vapor that was extracted from the flashing
chamber. The flashing unit condenser receives the saline-cooled water, which condenses
the water vapor and discharges it. The bottom tray of the condenser holds the desalinated
water, which is drawn up and pumped to the product tank. The pressure drop affects the
flashing evaporation. In order to vacuum the condenser and flashing chamber, a vacuum
pump is used. The rejected brine water from the humidifier is then combined with the
saline water that exits the flashing unit condenser. Since the saline water is cold when it
leaves the dehumidifier, it must be emptied. The following are some stages that can be
used to illustrate the precise operational procedures of the experimental apparatus shown
in Figure 1 [17]:

1. Until the operational levels are reached, fill the system’s salty water loops.
2. Set and modify the test case’s flow rates and temperature settings.
3. Run the electrical heater (EH) and pump (P1) in the solar water heater loop until the

tank’s water temperature (TK1) reaches the desired level.
4. Set and modify the solenoid valve’s (SV1) open and closing periods in accordance

with the flow rates of the backup water.
5. Operate the vacuum pump (P3) until the desired pressure is reached inside the

flashing chamber.
6. Start the feeding pump (P2) to dispense saline water throughout the flashing chamber.
7. Use the level indicator, water bleeding through valve (V4), and control valve (V8) to

adjust the brine pool’s height.
8. Turn on the air blower.
9. Turn on the feeding pump (P4) to supply the salty water to the humidifier sprayers.
10. Run the cooling water pump (P6) to pump the saline water to the condenser (C1) and

dehumidifier.
11. Run the circulation pump (P5) to pump the saline water mixing tank (C2)

The performance of the HDH-SSF system is predicted in this work using an enhanced
prediction method based on a supervised machine-learning algorithm. It is essential to be
aware of the intricate physical processes that occur inside the system. Some examples of
these processes include the process of heat and mass transfer between water air streams,
as well as the formation of humid air. Because of this, it is difficult to evaluate the ef-
fects of the design and operational parameters on the HDH-SSF’s thermal and economic
performance [31–33]. Another difficult problem that needs to be taken into account is
the existence of phase change processes. Additionally, the abrupt variations in the air
and water streams’ temperature, and flow rate would cause a complicated behavior [34].
Therefore, it is believed that the variation in the air and water streams flow rates and
temperature, are crucial parameters affect the performance of HDH-SSF. As a consequence,
more emphasis should be given to analyzing its implications on the overall performance of
hybrid desalination systems such as HDH-SSF, which includes thermos-fluid processes.
The majority of the evaluation the effect of design and operational parameters on the HDH-
SSF’s performance is conducted through the utilization of numerical and experimental
methodologies. Mathematical problems involving complicated nonlinear systems should
be solved with the use of simplified assumptions and numerical methods [35]. Contrarily,
in experimental approaches, expensive and time-consuming trials are conducted out before
system characteristics and the considered results are correlated statistically. Unfortunately,
both approaches’ outcomes may be impacted by noisy circumstances [36]. Therefore, it
would be ideal to create a reliable and accurate approach for simulating and forecasting
the effects design and operational parameters on the HDH-SSF’s performance. Artificial
intelligence-based algorithms can be learned by doing through a training process that is
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inspired by the brain [37]. Once trained, these algorithms can be a potent tool for predicting
the link between the HDH-SSF parameters and the design and operational parameters.
The ability of artificial intelligence approaches to generalize means that they can forecast
behavior in situations that they were not exposed to during the training phase. By us-
ing these techniques, one can avoid issues with experimental methods, such as the use
of low accuracy statistical-based correlations between HDH-SSF’s parameters derived
from experimental data, or issues with numerical methods, such as those associated with
solving nonlinear mathematical models [38]. The relationship between HDH-SSF design
and operating variables is poorly understood and has not been the subject of extensive
experimental research.
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Figure 1. HDH-SSF experimental setup schematic diagram. F (Flow meter), T (Thermocouple),
S (Pyrometer), H (Thermo hygrometer), V (Valve), P (Pump), LI (Level indicator), MT (Mixing Tank),
TK (Tank), EH (Electric Heater), SV (Solenoid), SWH (Solar Water Heater), SAH (Solar Air Heater),
HHEX (Helical Heat Exchanger), FC (Flashing Chamber), C1 (Condenser), and C2 (Dehumidifier).

3. Materials and Methods
3.1. Al-Biruni Earth Radius (BER) Algorithm

The optimization procedure for the BER algorithm [15] begins by separating the
population into two groups for exploration and exploitation. Agents are separated into
subgroups, and within each subgroup, agents are dynamically adjusted to enhance the bal-
ancing ability between exploration and exploitation processes. The exploration group com-
prises 70 percent of the population, whereas the exploitation group comprises 30 percent.
To raise the fitness levels of individuals in each group, the exploitation and exploration
groups’ individuals are updated to allow for a more significant increase in the global
average of individuals’ fitness. Mathematically, the agents in the exploration group seek
out promising regions surrounding its current position in the search space. This is achieved
by repeatedly looking for a higher option in terms of fitness value among the surrounding
viable options. The following equations are used for this reason in the BER investigation:

Optimization algorithms discover the optimum solution given constraints. BER can
depict a population member as a vector, S = S1, S2, . . . , Sd ∈ R, where Sd is the search space
size, and d is the optimization problem parameter or feature. Use the fitness function F to
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evaluate the agent’s performance up to a certain point. The optimization phases explore
populations for a fitness-optimal vector S∗.

3.1.1. Exploration Operation

Exploration finds intriguing portions of the search space and avoids local optimum
stagnation by moving toward the optimal solution, as discussed below.

• The group’s lone explorer will utilize this strategy to find intriguing new areas to
explore nearby. One must look through the many local possibilities to choose the best
one. BER study uses the following equations:

r = h
cos(x)

1− cos(x)
(1)

S(t + 1) = S(t) + D(2r2 − 1), D = r1(S(t)− 1) (2)

where r1 and r2 are calculated by Equation (1), 0 < x ≤ 180, and h is within [0, 2].
The vector S(t) represents a solution at iteration t, and D indicates circle diameter of
search area.

3.1.2. Exploitation Operation

Exploitation teams must improve existing solutions. Each iteration, the BER honors
the fittest participants. The BER uses two distinct methods to exploit.

• The equation that is presented here is utilized in order to proceed in the best solution
direction.

S(t + 1) = r2(S(t) + D), D = r3(L(t)− S(t)) (3)

where vector L(t) denotes the best solution, vector S(t) represents the solution at
iteration t, and D is the distance vector. r3 is a random vector that is calculated
using Equation (1), and it governs the movement steps that are taken towards the
best solution.

• The area surrounding the best solution constitutes an interesting potential choice.
Individuals will find ways to improve the situation by investigating possibilities
somewhat close to the best solution. To complete the aforementioned process, the BER
will apply the following equation.

S’(t + 1) = r(S∗(t) + k), k = 1 +
2× t2

T2
max

(4)

where S∗(t) denotes the best solution to the problem. Following a comparison of the
S(t + 1) and S’(t + 1) it is possible to pick the S∗ option as the optimal one. If the best
fitness has not changed during the course of the preceding two iterations, the solution
will be updated in accordance with the following equation.

S(t + 1) = k ∗ z2 − h
cos(x)

1− cos(x)
(5)

where z denotes random value within [0, 1].

3.1.3. Selection of the Best Solution

The BER chooses the best for the next cycle to ensure high-quality solutions. Mutation
and exploration group members give the BER excellent exploration capabilities. BER
exploration delays convergence. Algorithm 1 shows BER pseudo-code. The BER receives
size of population, rate of mutation, and maximum iterations. The BER splits participants
into exploratory and exploitative groups. The BER algorithm dynamically alters group
sizes during iterative solution search. Each team performs tasks in two ways. To ensure
variety and depth, the BER shuffles answers between iterations. An exploration group
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solution may progress to the exploitation group in the next iteration. BER elitism prevents
leader replacement.

Algorithm 1 AL-Biruni earth radius (BER) algorithm

1: Initialize BER population Si(i = 1, 2, . . . , d) with population size of d, maximum
iterations of Tmax, objective function Fn, t = 1, and other parameters

2: Calculate objective function Fn for each agent Si
3: Find the best solution and denote it as S∗

4: Divide agents into exploration group, n1, and exploitation group, n2
5: while t ≤ Tmax do
6: Update r = h cos(x)

1−cos(x) , r1 = h1
cos(x)

1−cos(x) , r2 = h2
cos(x)

1−cos(x) , r3 = h3
cos(x)

1−cos(x)
7: for (i = 1 : i < n1 + 1) do
8: Find parameter D as r1(S(t)− 1)
9: Update agents’ positions as S(t + 1) = S(t) + D(2r2 − 1)

10: end for
11: for (i = 1 : i < n2 + 1) do
12: Find parameter D as r3(L(t)− S(t))
13: Update agents’ positions as S(t + 1) = r2(S(t) + D)

14: Calculate parameter k as 1 + 2×t2

Max2
iter

15: Update agents’ positions around the best solution as S’(t + 1) = r(S∗(t) + k)
16: Compare S(t + 1) and S’(t + 1) and select the best solution as S∗

17: if best value of objective function is the same for last two rounds then
18: Mutate the solution using S(t + 1) = k ∗ z2 − h cos(x)

1−cos(x)
19: end if
20: end for
21: Update objective function Fn for each agent Si
22: Update the parameters, t = t + 1
23: end while
24: Return S∗

3.2. Particle Swarm Optimization (PSO) Algorithm

In the PSO algorithm, potential solutions (particles) in the search space, imitating the
natural bird swarms intelligence [16]. A particle’s velocity is the pace at which it changes
location. Throughout time, the positions of the particles are modified. Throughout its flight,
a particle’s speed is stochastically increased to its previous best location. The position
vector is denoted by Si(i = 1, 2, . . . , n) with size n while the velocity vector is denoted by
Vi(i = 1, 2, . . . , n). The following equations are applied to update the particle at iteration
t + 1 to a region close to the optimal solution.

S(t + 1) = S(t) + V(t + 1), (6)

V(t + 1) = V(t) + C1g1((S∗) + S(t)) + C2g2(Sgbest − S(t)) (7)

where g1 and g2 are random variables within [0, 1], and C1 and C2 are constants.

4. Proposed BER–PSO Algorithm

The proposed BER–PSO algorithm uses the advantages of both BET and PSO algo-
rithms. Algorithm 2 shows the steps of the proposed algorithm. The algorithm starts by
initializing the population positions Si(i = 1, 2, . . . , n) and velocities Vi(i = 1, 2, . . . , n)
with n agents—the parameters of the BER and PSO algorithms and the maximum iterations
and objective function fn. The objective function is then calculated for each Si, and the
best agent (S∗) is selected. During the iterations, the proposed algorithm swaps between
the BER and PSO algorithms to update the agents. Finally, the optimal solution (S∗) is
calculated.
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Algorithm 2 Proposed BER–PSO algorithm

1: Initialize BER–PSO population positions Si(i = 1, 2, . . . , d) with population size d,
maximum iterations Tmax, objective function Fn, t = 1, and other parameters

2: Calculate objective function Fn for each agent Si
3: Find the best solution as S∗

4: Divide agents into exploration group, n1, and exploitation group, n2
5: while t ≤ Tmax do
6: if (t%2) then
7: Update r = h cos(x)

1−cos(x) , r1 = h1
cos(x)

1−cos(x) , r2 = h2
cos(x)

1−cos(x) , r3 = h3
cos(x)

1−cos(x)
8: for (i = 1 : i < n1 + 1) do
9: Calculate parameter D as r1(S(t)− 1)

10: Update agents’ positions as S(t + 1) = S(t) + D(2r2 − 1)
11: end for
12: for (i = 1 : i < n2 + 1) do
13: Calculate parameter D as r3(L(t)− S(t))
14: Update agents’ positions as S(t + 1) = r2(S(t) + D)

15: Calculate k = 1 + 2×t2

Max2
iter

16: Update agents’ positions around the best solution as S’(t + 1) = r(S∗(t) + k)
17: Compare S(t + 1) and S’(t + 1) and select the best solution S∗

18: if best value of objective function is the same for last two rounds then
19: Mutate solution as S(t + 1) = k ∗ z2 − h cos(x)

1−cos(x)
20: end if
21: end for
22: else
23: Update velocities as V(t + 1) = V(t) + C1g1((S∗) + S(t)) + C2g2(Sgbest − S(t))
24: Update agents’ positions as S(t + 1) = S(t) + V(t + 1)
25: end if
26: Update objective function Fn for each agent Si
27: Update the BER–PSO parameters, t = t + 1
28: end while
29: Return S∗

4.1. Computational Complexity

The computational complexity of the BER–PSO algorithm is denoted as follows. The
complexity is defined as follows for iterations Tmax with a population of n.

• Initialize BER–PSO parameters: O(1).
• Calculate fitness function for each agent: O(n).
• Get the best agent: O (n).
• Update agents’ positions: O(Tmax × n).
• Update agents’ positions around best solution: O(Tmax × n).
• Compare positions to select best solution: O(Tmax × n).
• Mutate solutions: O(Tmax × n).
• Update velocities: O(Tmax × n).
• Update positions to head toward best solution: O(Tmax × n).
• Update fitness function: O(Tmax).
• Update BER–PSO parameters: O(Tmax).
• Get best agent xGbest: O(1)

The computation complexity is chosen at based on the BER–PSO algorithm analysis
that was conducted above to O(Tmax × n) and to O(Tmax × n× d) for d dimension.

4.2. Proposed Binary BER–PSO Algorithm

To make the process of choosing features from the dataset easier, the continuous values
of the proposed BER–PSO algorithm will be converted to binary [0,1] in this section. In the
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event of feature selection concerns, the BER–PSO algorithm answers can be strictly binary
[0 or 1] by utilizing the following equation.

The following equation is used in this investigation and is based on the Sigmoid
function [39].

xt+1
d =

{
1 if Sigmoid(m) ≥ 0.5
0 otherwise

,

Sigmoid(m) =
1

1 + e−10(m−0.5)
,

(8)

where the binary answer at iteration t and dimension d is indicated by xt+1
d . The output

solutions can be scaled to be binary ones using the Sigmoid function. The value will
change to 1 if Sigmoid(m) ≥ 0.5, otherwise it will remain at 0. The algorithm’s chosen
features are reflected in the m parameter. In Algorithm 3, the binary BER–PSO algorithm is
thoroughly explained. The computing complexity of the BER–PSO method is determined
to be O(tmax × n) and will be O(tmax × n× d) for the d dimension.

Algorithm 3 Proposed Binary BER–PSO algorithm.

1: Initialize the BER–PSO parameters and population
2: Convert solution to binary [0 or 1]
3: Calculate objective function for each agent
4: Find best solution
5: Divide agents into exploration group, n1, and exploitation group, n2
6: while t ≤ Tmax do
7: if (t%2) then
8: for (i = 1 : i < n1 + 1) do
9: Update agents’ positions

10: end for
11: for (i = 1 : i < n2 + 1) do
12: Update agents’ positions
13: Update agents’ positions around best solution
14: Compare updated positions and select the best solution
15: if best value of objective function is the same for last two rounds then
16: Mutate solution
17: end if
18: end for
19: else
20: Update agents’ velocities and positions
21: end if
22: Convert updated solution to binary
23: Update objective function for each individual
24: Update the BER–PSO parameters
25: end while
26: Return best solution

5. Experimental Results

The findings of this investigation are thoroughly explained in this section. There are
two different situations for the experiments. The first case covers the BER–PSO algorithm’s
feature selection capabilities for the dataset under test, while the second scenario demon-
strates the algorithm’s classification capabilities. In the tested dataset, the volume flow
rates, temperatures, and weather conditions were the inputs to the algorithms, and the
outputs of the algorithms were the outlet temperatures of the air and water as well as the
humidity added by the humidifier.
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5.1. Feature Selection Scenario

The proposed (BER–PSO) algorithm’s binary version is employed to choose features
from the dataset under test. The feature selection outcomes of the BER–PSO method
provided in this work are examined in the first scenario. Table 1 displays the configuration
of the BER–PSO method for each parameter utilized in the experiment, while Table 2
displays the configuration of the comparison algorithms. PSO [16], GWO [18], hybrid
GWO-PSO [19], WOA [20], BBO [21], SBO [22], FA [23], GA [24], and BA [25] are tested
against the binary BER–PSO (bBER–PSO) algorithm.

Table 1. Parameters for BER–PSO algorithm configuration.

Parameter (s) Value (s)

No. of Agents 10
No. of Iterations 80

No. of Runs 20
Dimension No. of features
Wmax, Wmin [0.9, 0.6]

C1, C2 [2, 2]
α of Fn 0.99
β of Fn 0.01

Table 2. Parameter settings for the compared algorithms.

Algorithm Parameter (s) Value (s)

PSO Acceleration constants [2, 2]
Inertia Wmax, Wmin [0.6, 0.9]
Particles 10
Iterations 80

GWO a 2 to 0
Iterations 80
Wolves 10

GA Cross over 0.9
Mutation ratio 0.1
Selection mechanism Roulette wheel
Iterations 80
Agents 10

WOA r [0, 1]
Iterations 80
Whales 10
a 2 to 0

SBO Size of step 0.94
Mutation probability 0.05
Upper and lower limit 0.02

FA Number of fireflies 10
BA Pluse rate 0.5

Loudness 0.5
Frequency [0, 1]

BBO Probability of Immigration [0, 1]
Probability of Mutation 0.05
Probability of Habitat modification 1.0
Size of step 1.0
Rate of migration 1.0
Maximum immigration 1.0
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In the binary BER–PSO method, the quality of a solution is assessed using the objective
equation, fn. The following objective equation, fn, includes total number of features, S,
number of selected features, s, and classifier’s error rate, Err.

fn = αErr + β
|s|
|S| (9)

where β = 1− α and α ∈ [0, 1] denote the population significance of the provided trait. If
the method can offer a subset of features with a low classification error rate, it is successful.
K-nearest neighbor (k-NN) is a popular and simple categorization method. This method
makes use of the k-NN as a classifier to guarantee the validity of the features selected. The
shortest distance between the query instance and the training instances is the sole criterion
for classifier selection; this experiment does not make use of a K-nearest neighbor model.

The performance metrics used in this experiment are average error, average select size,
average fitness, best fitness, worst fitness, and standard deviation, as listed mathematically
in Table 3. Table 4 shows the out results for the presented bBER–PSO algorithm and
compared algorithms. The bBER–PSO algorithm gives an average error of 0.5623, which
is better than other algorithms. The second-best average error of (0.5795) is achieved by
bGWO, while the worst average error of (0.6229) is achieved by bBA. The box plot analysis
of the presented bBER–PSO and compared algorithms is also presented in Figure 2. The
bBER–PSO algorithm shows better results over 15 runs over average error metric.

Table 3. Feature selection performance metrics.

Metric Value

Average Error 1− 1
M ∑M

j=1
1
N ∑N

i=1 Match(Ci, Li)

Average Select Size 1
M ∑M

j=1

size(g∗j )

D
Average Fitness 1

M ∑M
j=1 g∗j

Best Fitness MinM
j=1g∗j

Worst Fitness MaxM
j=1g∗j

Standard Deviation
√

1
M−1 ∑(g∗j −Mean)2

Table 4. Results of the proposed bBER–PSO algorithm and comparison.

Performance Metric bBER–PSO bGWO bGWO_PSO bPSO bBA bWOA bBBO bSBO bFA bGA

Average error 0.5623 0.5795 0.6188 0.6133 0.6229 0.6131 0.5815 0.6216 0.6117 0.5931
Average Select size 0.5151 0.7151 0.8484 0.7151 0.8545 0.8785 0.8789 0.8854 0.7496 0.6575
Average Fitness 0.6255 0.6417 0.65 0.6401 0.663 0.6479 0.6458 0.6798 0.692 0.6531
Best Fitness 0.5273 0.562 0.6035 0.6204 0.5527 0.612 0.6355 0.6229 0.6107 0.5564
Worst Fitness 0.6258 0.6289 0.7135 0.6881 0.6543 0.6881 0.722 0.7026 0.7083 0.6715
Standard deviation Fitness 0.4478 0.4525 0.4707 0.4519 0.4618 0.4541 0.4968 0.5128 0.4887 0.4541

Statistical analysis is performed to confirm the algorithm’s performance. Table 5
shows the ANOVA test results of the presented bBER–PSO algorithm versus compared
algorithms. Table 6 presents the Wilcoxon Signed Rank test results of the presented bBER–
PSO algorithm and compared algorithms over 15 runs. The ANOVA and Wilcoxon Signed
Rank tests results confirm the performance of the bBER–PSO algorithm.

5.2. Classification Scenario

The HDH and SSF test data classification results using the suggested BER–PSO algo-
rithm are shown in this section. Table 7 shows the performance evaluation metrics applied
in this scenario. With N parameter as the total number of observations in the dataset, the
(V̂n) and (Vn) are the nth estimated and observed bandwidth, and ( ¯̂Vn) and (Vn) are the
arithmetic means of the estimated and observed values.
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Figure 2. The given bBER–PSO and comparable algorithms are depicted in a box plot over the
average error metric.

Table 5. Results of an ANOVA test comparing the presented bBER–PSO method to other algorithms.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.06272 9 0.006969 F (9, 140) = 184.1 p < 0.0001
Residual (within columns) 0.005299 140 3.79 × 10−5 - -
Total 0.06802 149 - - -

Table 6. Results of the provided bBER–PSO method and compared algorithms in the Wilcoxon Signed
Rank Test.

bBER–PSO bGWO bGWO_PSO bPSO bBA bWAO bBBO bSBO bFA bGA

Theoretical median 0 0 0 0 0 0 0 0 0 0
Actual median 0.5623 0.5795 0.6188 0.6133 0.6229 0.6131 0.5815 0.6216 0.6117 0.5931
Number of values 15 15 15 15 15 15 15 15 15 15
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 120 120 120 120 120 120 120 120 120 120
Sum of positive ranks 120 120 120 120 120 120 120 120 120 120
Sum of negative ranks 0 0 0 0 0 0 0 0 0 0
p value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Exact or estimate? Exact Exact Exact Exact Exact Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.5623 0.5795 0.6188 0.6133 0.6229 0.6131 0.5815 0.6216 0.6117 0.5931

5.2.1. Results and Discussion Using HDH Data

The findings from the suggested BER–PSO method for the HDH test data are presented
in this section. First, tests are conducted on the fundamental Decision Tree Regressor (DTR),
MLP Regressor (MLP), K-Neighbors Regressor (KNR), Support Vector Regression (SVR),
and Random Forest Regressor (RFR) models. Additionally, two ensembles for creating
new estimators are Average Ensemble (AVE) and Ensemble utilizing KNR (EKNR). Table 8
compares the experimental findings of the BER–PSO-based model with those of the basic
and ensemble models. The BER–PSO-based model achieved an RMSE of (0.0053), better
than the compared models. The EKNR model achieved the second-best RMSE of (0.0130).

The presented BER–PSO algorithm is also compared with other optimization tech-
niques of PSO [16], GWO [18], WOA [20], and GA [24] algorithms. Figure 3 illustrates the
box plot of the presented BER–PSO and compared algorithms for the HDH-tested data. The
BER–PSO algorithm shows better results over 16 runs over HDH. While Figure 4 discusses
the histogram of the presented BER–PSO and compared algorithms for the HDH-tested
data. The BER–PSO algorithm shows better performance over the histogram of HDH.
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Table 7. Performance evaluation metrics.

Metric Value

RMSE
√

1
N ∑N

n=1(V̂n −Vn)2

RRMSE RMSE
∑N

n=1 V̂n
× 100

MAE 1
N ∑N

n=1 |V̂n −Vn|

NSE 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(Vn− ¯̂Vn)2

MBE 1
N ∑N

n=1(V̂n −Vn)

R2 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(∑N

n=1 Vn)−Vn)
2

WI 1− ∑N
n=1 |V̂n−Vn |

∑N
n=1 |Vn−V̄n |+|V̂n− ¯̂Vn |

r ∑N
n=1(V̂n− ¯̂Vn)(Vn−V̄n)√

(∑N
n=1(V̂n− ¯̂Vn)2)(∑N

n=1(Vn−V̄n)2)

Table 8. Experimental findings of the BER–PSO based model for the HDH test data in comparison to
basic and ensemble models.

Model MAE MBE RMSE RRMSE % r NSE WI R2

DTR 0.0473 −0.00182 0.0636 17.0871 0.9627 0.9264 0.8870 0.9267
MLP 0.0350 0.0008 0.04734 12.7164 0.9795 0.9593 0.9162 0.9594
KNR 0.0129 −0.0022 0.0188 5.0413 0.9969 0.9936 0.9692 0.9938
SVR 0.0335 0.0048 0.0448 12.0484 0.9819 0.9634 0.9198 0.9641
RFR 0.0788 −0.0003 0.1021 27.4233 0.9005 0.8105 0.8118 0.8109
AVE 0.0325 0.0003 0.0442 5.0413 0.9830 0.9644 0.9224 0.9664

EKNR 0.0089 −0.0010 0.0130 3.4871 0.9985 0.9969 0.9788 0.9970
BER–PSO 0.0034 0.0008 0.0053 0.9815 0.9997 0.9993 0.9906 0.9994

Figure 3. For the HDH tested data, a box plot of the offered BER–PSO and comparing algorithms.

Figure 5 displays the quantile-quantile (QQ) plots as well as the residual plots for the
presented BER–PSO method and the algorithms that were compared for the HDH-tested
data. The ROC curve of the proposed BER–PSO algorithm compared to the ROC curve
of the PSO algorithm for the HDH-tested data is displayed in Figure 6. The performance
of the suggested BER–PSO algorithm for the HDH-tested data is demonstrated by these
statistics, which prove its effectiveness.
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Figure 4. For the HDH-tested data, a histogram of the offered BER–PSO and comparing algorithms
is shown.

Figure 5. BER–PSO and comparable methods for the HDH-tested data are provided in QQ and
residual plots for the HDH-tested data.

In this section, statistical analysis is carried out in order to verify the effectiveness
of the BER–PSO algorithm. The descriptive statistics of the provided BER–PSO method
and the algorithms that are being compared for the HDH data are presented in Table 9.
The description includes the minimum, median, maximum, mean, and standard (Std.)
deviation of the RMSE for the tested data over 16 runs. The results of the ANOVA test for
the suggested BER–PSO algorithm in comparison to the other algorithms are presented
in Table 10. The results of the Wilcoxon Signed Rank Test for the presented BER–PSO
algorithm and the algorithms that were compared may be found in Table 11.
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Figure 6. ROC curve comparing the PSO algorithm and the provided BER–PSO algorithm for the
HDH testing data.

Table 9. Descriptive statistics of the compared methods for the HDH data and the provided BER–PSO
algorithm.

BER–PSO PSO GWO WOA GA

Number of values 16 16 16 16 16
Minimum 0.004314 0.006789 0.00712 0.00844 0.009178
25% Percentile 0.005314 0.007789 0.00812 0.00944 0.009978
Median 0.005314 0.007789 0.00812 0.00944 0.009978
75% Percentile 0.005314 0.007789 0.00812 0.00944 0.009978
Maximum 0.005314 0.007989 0.00912 0.00999 0.009998
Range 0.001 0.0012 0.002 0.00155 0.00082
Mean 0.005252 0.007739 0.008163 0.009431 0.009929
Std. Deviation 0.00025 0.000258 0.000404 0.000305 0.0002
Std. Error of Mean 6.25 × 10−5 6.46 × 10−5 0.000101 7.61 × 10−5 5.01 × 10−5

Sum 0.08402 0.1238 0.1306 0.1509 0.1589

Table 10. Results of an ANOVA test comparing the proposed BER–PSO method against
other algorithms.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.000214 4 5.35 × 10−5 F (4, 75) = 628.5 p < 0.0001
Residual (within columns) 6.38 × 10−6 75 8.51 × 10−8 - -
Total 0.00022 79 - - -

5.2.2. Results and Discussion Using SSF Data

The results based on the proposed BER–PSO algorithm for the SSF test data are
discussed in this section. The basic models of DTR, MLP, KNR, SVR, and RFR are tested
first. In addition, AVE and EKNR are also tested. Table 12 shows the experimental results
of the BER–PSO-based model versus basic and ensemble models for the SSF test data.
The presented method achieved an RMSE of (0.00490), which is better than the compared
models. The RFR achieved the worst RMSE of (0.1040).

The presented BER–PSO algorithm is also compared with other optimization tech-
niques of PSO, GWO, WOA, and GA algorithms. Figure 7 illustrates the box plot of the
presented BER–PSO and compared algorithms for the SSF -tested data. While Figure 8
discusses the histogram of the presented BER–PSO and compared algorithms for the SSF
-tested data. The QQ and residual plots of the presented BER–PSO and compared algo-
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rithms for the SSF -tested data are shown in Figure 9. Figure 10 shows the ROC curve of
the proposed BER–PSO algorithm versus the PSO algorithm for the SSF -tested data.

Table 11. Results of the given BER–PSO algorithm and compared algorithms in the Wilcoxon Signed
Rank Test.

BER–PSO PSO GWO WOA GA

Theoretical median 0 0 0 0 0
Actual median 0.005314 0.007789 0.00812 0.00944 0.009978
Number of values 16 16 16 16 16
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 136 136 136 136 136
Sum of positive ranks 136 136 136 136 136
Sum of negative ranks 0 0 0 0 0
p value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Exact or estimate? Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.005314 0.007789 0.00812 0.00944 0.009978

Table 12. Results of the experimental comparison of the basic and ensemble models with the BER–PSO
based model for the SSF test data.

Model MAE MBE RMSE RRMSE % r NSE WI R2

DTR 0.0533 −0.0029 0.0708 18.4687 0.9522 0.9064 0.8689 0.9066
MLP 0.0445 −0.0010 0.0574 14.9891 0.9688 0.9384 0.8905 0.9385
KNR 0.0252 −0.0046 0.0362 9.4493 0.9880 0.9755 0.9380 0.9761
SVR 0.0362 0.0061 0.0477 12.4410 0.9789 0.9575 0.9109 0.9583
RFR 0.0807 0.0048 0.1040 27.1374 0.8949 0.7980 0.8013 0.8009
AVE 0.0368 0.0005 0.0504 9.4493 0.9773 0.9526 0.9095 0.9551
EKNR 0.0219 −0.0018 0.0305 7.9679 0.9913 0.9826 0.9460 0.9827
BER–PSO 0.0031 0.0003 0.00490 0.9031 0.9997 0.9994 0.9914 0.9994

Figure 7. For the SSF tested data, a box plot of the offered BER–PSO and comparing algorithms.
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Figure 8. For the SSF tested data, a histogram of the offered BER–PSO and comparing algorithms
is shown.

Figure 9. BER–PSO and comparable methods for the SSF tested data are provided in QQ and residual
plots.

The Statistical analysis is also performed here to confirm the BER–PSO algorithm’s
performance for the SSF data. Table 13 presents the descriptive statistics of the presented
BER–PSO algorithm and the compared algorithms for the SSF data. The description
includes the minimum, median, maximum, mean, and standard (Std.) deviation of the
RMSE for the tested data over 16 runs. Table 14 shows the ANOVA test results of the
proposed BER–PSO algorithm versus compared algorithms. Finally, Table 15 presents the
Wilcoxon Signed Rank Test results of the presented BER–PSO algorithm and compared
algorithms.
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Figure 10. ROC curve comparing the PSO algorithm and the provided BER–PSO algorithm for the
SSF testing data.

Table 13. Descriptive statistics of the compared methods for the SSF data and the provided BER–PSO
algorithm.

BER–PSO PSO GWO WOA GA

Number of values 16 16 16 16 16
Minimum 0.004698 0.00666 0.00713 0.00915 0.00916
25% Percentile 0.004898 0.00766 0.00813 0.00945 0.00966
Median 0.004898 0.00766 0.00813 0.00945 0.00966
75% Percentile 0.004898 0.00766 0.00813 0.00945 0.00966
Maximum 0.004898 0.00766 0.00913 0.0099 0.00998
Range 0.0002 0.001 0.002 0.00075 0.00082
Mean 0.004879 0.007591 0.008173 0.009478 0.009668
Std. Deviation 5.44 × 10−5 0.00025 0.000403 0.000157 0.000172
Std. Error of Mean 1.36 × 10−5 6.24 × 10−5 0.000101 3.93 × 10−5 4.29 × 10−5

Sum 0.07807 0.1215 0.1308 0.1517 0.1547

Table 14. Results of the ANOVA test comparing the presented BER–PSO algorithm against other
algorithms for the SSF data.

SS DF MS F (DFn, DFd) p Value

Treatment (between columns) 0.000238 4 5.96 × 10−5 F (4, 75) = 1057 p < 0.0001
Residual (within columns) 4.23 × 10−6 75 5.64 × 10−8 - -
Total 0.000243 79 - - -

Table 15. Results of the Wilcoxon Signed Rank Test for the SSF data using the provided BER–PSO
algorithm and comparative algorithms.

BER–PSO PSO GWO WOA GA

Theoretical median 0 0 0 0 0
Actual median 0.004898 0.00766 0.00813 0.00945 0.00966
Number of values 16 16 16 16 16
Wilcoxon Signed Rank Test
Sum of signed ranks (W) 136 136 136 136 136
Sum of positive ranks 136 136 136 136 136
Sum of negative ranks 0 0 0 0 0
p value (two tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Exact or estimate? Exact Exact Exact Exact Exact
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.004898 0.00766 0.00813 0.00945 0.00966
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6. Conclusions and Future Work

This work employed an improved prediction method based on a supervised machine-
learning algorithm to forecast the performance of a hybrid solar desalination system. The
proposed algorithm is based on the Al-Biruni Earth Radius (BER) and Particle Swarm
Optimization (PSO) algorithms. The BER–PSO algorithm was trained and assessed using
experimental data. The outcomes demonstrated the BER–PSO method’s excellent capacity
to pinpoint the nonlinear relationship between process responses and operating conditions.
Additionally, in comparison to the other models under consideration, it provided higher
statistical performance measures for the forecasting of pressure drop values and outlet
temperatures for hot and cold fluids. The findings of many algorithms were compared to
decide which was the most accurate.
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