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Abstract: Production forecasting using numerical simulation has become a standard in the oil and
gas industry. The model construction process requires an explicit definition of multiple uncertain
parameters; thus, the outcome of the modelling is also uncertain. For the reservoirs with production
data, the uncertainty can be reduced by history-matching. However, the manual matching procedure
is time-consuming and usually generates one deterministic realization. Due to the ill-posed nature
of the calibration process, the uncertainty cannot be captured sufficiently with only one simulation
model. In this paper, the uncertainty quantification process carried out for a gas-condensate reservoir
is described. The ensemble-based uncertainty approach was used with the ES-MDA algorithm,
conditioning the models to the observed data. Along with the results, the author described the
solutions proposed to improve the algorithm’s efficiency and to analyze the factors controlling
modelling uncertainty. As a part of the calibration process, various geological hypotheses regarding
the presence of an active aquifer were verified, leading to important observations about the drive
mechanism of the analyzed reservoir.
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1. Introduction

The purpose of using numerical models is to generate forecasts and optimize produc-
tion from hydrocarbon reservoirs [1]. The importance of reliable production prognoses is
driven by their influence on reservoir management decisions [2], which typically represent
multi-million dollar expenses. From a practical point of view, the reservoir simulation
consists of a numerical solution of nonlinear differential equations in a grid of cells with
variable rock and fluid properties [3]. The majority of parameters used in the models
are subject to uncertainty, therefore, the modelling outcome is also uncertain [4–6]. This
problem has been known by the academic community and industry for decades, and still
motivates researchers to further work.

For the reservoirs with production data, modeling uncertainty can be reduced by
history-matching. The matching process lies in the fine-tuning of input parameters. Typ-
ically, this is performed manually until the mismatch between the model response and
the observed data is reduced to an acceptable level [2]. Usually, this approach is time-
consuming and generates one calibrated realization [4,7]. Due to the ill-posed nature
of the calibration process, the uncertainty cannot be captured sufficiently with only one
model [8]. In that case, the obvious method for assessing the uncertainty would be to
history-match multiple simulation models, generated based on poorly known input pa-
rameters [9]. For years this approach was not feasible due to the high computing power
cost. However, thanks to IT development and cost reduction initiatives, ensemble-based
methods have been adopted for history-matching and uncertainty quantification problems.
In this study, a modern data assimilation algorithm was used to analyze a gas-condensate
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reservoir. For this application, the standard workflow was upgraded by the authors with
solutions that improved the algorithm’s efficiency and enabled better interpretation of the
modelling results.

1.1. State-of-the-Art Solutions

Among recently published papers covering the uncertainty quantification topic, con-
siderable attention is focused on the data assimilation algorithms, e.g., Ensemble Kalman
Filter (EnKF), Ensemble Smoother (ES) or Ensemble Smoother With Multiple Data Assimi-
lation (ES-MDA) [10–12]. Mentioned solutions originate from the Kalman filter theory and
belong to a class of particle methods where the model of the system is characterized by
probability distribution functions (pdfs) of selected parameters [13,14]. In history-matching
applications, those algorithms use the pdfs represented by the ensemble of models. At
each assimilation step, the algorithm analyses the impact of a specific parameter on the
ensemble’s history match quality and proposes an update. The purpose of the update is
to condition the entire set of models to the observed data. At the final step, the ensemble
of alternative, equally likely and calibrated models can be used to quantify the modelling
uncertainty [15].

In this study, the ES-MDA was used to quantify the modelling uncertainty of a gas-
condensate reservoir. This method was introduced by Emerick and Reynolds [11] as a
complementary solution to the ES. The ES eliminates the need for the recurrent simulation
model restarts required in the EnKF. However, in many applications, it has problems with
the satisfactory calibration of models due to resolute parameter updates [11]. To overcome
the aforementioned drawback, the ES-MDA was introduced. The improvement with this
solution was achieved through multiple data assimilations with gentler adjustments. This
effect controls the inflated measurement error covariance matrix [10]. Greater history-
matching quality leads to better characterization of the uncertainty in the ensemble and
future predictions.

The ES-MDA follows the below steps [11,16]:

1. Initialization: to generate the initial ensemble of models by sampling the ranges of
predefined history-matching parameters and to store the properties of the models in
the vector

{
m0

j }
Ne
j=1 , to determine the number of assimilation steps Na, the ensemble

size Ne and the inflation coefficients αl consistent with Equation (1).

∑Na
l=1

1
αl

= 1 (1)

2. For l = 1 to Na − 1:

(a) Forecast step: run simulation models over a historical period to generate the
vector of predicted data

dl
j = g

(
ml

j

)
for j = 1, 2, . . . , Ne (2)

where g(m) reflects the observation from the simulation model, generated
using parameters captured by vector ml

j.

(b) Perturbation of observed data vector:

dl
uc,j = dobs +

√
αl+1C1/2

D zd for j = 1, 2, . . . , Ne (3)

where dobs is the historical data vector, C1/2
D is the measurement error ma-

trix with standard deviations of measurement uncertainties at diagonal, and
zd ∼ N(0, INn) represents an identity matrix with randomly picked numbers
from normal distribution on diagonal.



Energies 2023, 16, 1153 3 of 16

(c) Analysis step: update the vector of parameters for a new set of simulation
models

ml+1
j = ml

j + Cl
MD

(
Cl

DD +αl+1CD

)−1(
dl

uc,j − dl
j

)
for j = 1, 2, . . . , Ne (4)

where Cl
MD, Cl

DD represent the covariance matrices calculated using the fol-

lowing data vectors
{

ml
j, dl

j

}Ne

j=1
.

The perturbation step from the above workflow incorporates the inaccuracies of histor-
ical data into the calibration process. From a practical point of view, higher perturbations
mean less confidence in the measurements and greater trust in the estimates from the
simulation models [17]. The consequence of the above statement is that with higher un-
certainty around the observed data, the ES-MDA delivers more gentle updates through
the assimilation steps. The ES-MDA originates from the Kalman filter concept. In this
solution for the linear cases, the weight given to the measurements error and estimates
error controls parameter K, called the Kalman gain. In Equation (4), the role of the Kalman
gain represents the fraction with covariance matrices in the denominator. The mentioned
fraction acts similarly to the Kalman gain, where a low value gives smoother updates,
while a high value gives more confidence in the models, leading to stronger parameter
updates [18].

1.2. Observed Limitations

The literature review revealed the following areas of improvement for the history-
matching and uncertainty quantification workflows conducted by the ES-MDA:

Initial ensemble sampling: as indicated by various researchers, the sampling of the
initial ensemble is crucial for the successful application of the data assimilation algorithms
in history-matching problems [14,16,19,20]. The selection of parameters should generate an
ensemble with optimistic and pessimistic realizations [14], giving the algorithm representa-
tive solution space to properly analyze results and propose parameter updates, eliminating
the subjective bias introduced by manual tuning of the initial input parameters.

History-matching outcome analysis: the ensemble calibration process is considered a
nonlinear and multidimensional problem [11,12]. An analysis of a particular parameter’s
impact on the history-matching quality and modelling uncertainty is not straightforward.
As a consequence of the above, there is a need for a solution that enables tracking of the
modifications introduced by the algorithm during the calibration process, and highlights
the most important uncertainties associated with the analyzed reservoir.

2. Case Study
2.1. Subject of Analysis

The ensemble-based history-matching process presented in this paper was carried
out for a real gas-condensate reservoir. The hydrocarbons in this field are present in two
formations separated by a thick, impermeable shale layer. Table 1 summarizes the average
petrophysical properties of the hydrocarbon saturated intervals.

Table 1. The summary of basic petrophysical properties of the analyzed reservoir.

Parameter Name Unit Mean SD Min Max

Permeability mD 347 603 0.1 3859
Porosity - 0.16 0.03 0.05 0.24

Net to gross - 0.73 0.33 0.001 1
Water saturation - 0.2 0.17 0.028 0.4

The gas–water contact was estimated based on the pressure data from the exploration
and appraisal wells. The development was conducted with three vertical gas producers
equipped with permanently installed downhole pressure gauges. Due to a limited number
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of reservoir simulator licenses, only the first five years of production data were used in this
study. Figure 1 shows the water saturation distribution within the simulation model.
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Norway AS.

2.2. Description of the Simulation Model and History-Matching Parameterization

Due to the size of the analyzed field, its numerical model uses a black-oil Pressure
Volume Temperature (PVT) model. This choice was dictated by the optimization of the
computing time [21], therefore the model was created in Eclipse reservoir simulator from
Schlumberger. The history-matching process controlled by the ES-MDA was carried out by
modification of the following properties, e.g., pore volume, permeability and transmissibil-
ity of the faults. Figure 2 illustrates twenty-three areas and eight faults where the ES-MDA
introduced the amendments. The main objective of the history-matching was to replicate
the historical shut-in bottom-hole pressures recorded in the gas producers over one and
two years of production. The remaining production data was used as a validation set to
check the history match quality and mapped uncertainties. Due to the lack of formation
water production, there was no need to calibrate water rates. Calibration of the gas–oil
ratio was unnecessary as the PVT model provided reliable condensate rates as long as the
model matched pressures and gas rates.

The regions from Figure 2 were proposed based on the experience from other history-
matching exercises conducted for the neighboring fields. Regions 1, 2, 3, 11, 12 and
13 are penetrated by the gas producers, whereas the remaining regions cover areas in
between the wells. The above split enabled good control over near-wellbore and boundary
effects responsible for model calibration. The ranges of uncertain parameters used in the
calibration process have been established based on the geological documentation prepared
before the production start-up.

The list of all parameters with respective multipliers is summarized in Table 2. For
hydrocarbon-saturated regions, the permeability could vary from −50% up to +20%,
whereas the pore volume could change by ±30%. A wider multiplier range is assumed for
region 20, to reflect higher uncertainty around the size and hydrodynamic properties of the
water-bearing sandstones. The transmissibility for all faults could change from closed (mul-
tiplier = 0) to fully open (multiplier = 1). The outcome of the first history-matching attempt,
performed using data from Table 2, is further described in the text as a mixed scenario. In
this case, the ES-MDA could decide whether the aquifer is activated or deactivated during
the conditioning process.
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Figure 2. The regions where the ES-MDA introduced updates during the history-matching process.
(a) Shallower formation; (b) deeper formation; (c) faults. Source: PGNiG Upstream Norway AS.

Table 2. The ranges of uncertain parameters used by the ES-MDA during the history-matching.

Permeability Pore Volume Fault Transmissibility

Parameter
Mult. Range

Parameter
Mult. Range

Parameter
Mult. Range

Min Max Min Max Min Max

Perm_M(1) 0.5 1.2 PV_M(1) 0.7 1.3 Fault(1) 0 1
Perm_M(2) 0.5 1.2 PV_M(2) 0.7 1.3 Fault(2) 0 1
Perm_M(3) 0.5 1.2 PV_M(3) 0.7 1.3 Fault(3) 0 1
Perm_M(4) 0.5 1.2 PV_M(4) 0.7 1.3 Fault(4) 0 1
Perm_M(5) 0.5 1.2 PV_M(5) 0.7 1.3 Fault(5) 0 1
Perm_M(6) 0.5 1.2 PV_M(6) 0.7 1.3 Fault(6) 0 1
Perm_M(7) 0.5 1.2 PV_M(7) 0.7 1.3 Fault(7) 0 1
Perm_M(8) 0.5 1.2 PV_M(8) 0.7 1.3 Fault(8) 0 1

Perm_M(9) 0.5 1.2 PV_M(9) 0.7 1.3
Perm_M(10) 0.5 1.2 PV_M(10) 0.7 1.3
Perm_M(11) 0.5 1.2 PV_M(11) 0.7 1.3
Perm_M(12) 0.5 1.2 PV_M(12) 0.7 1.3
Perm_M(13) 0.5 1.2 PV_M(13) 0.7 1.3
Perm_M(14) 0.5 1.2 PV_M(14) 0.7 1.3
Perm_M(15) 0.5 1.2 PV_M(15) 0.7 1.3
Perm_M(16) 0.5 1.2 PV_M(16) 0.7 1.3
Perm_M(17) 0.5 1.2 PV_M(17) 0.7 1.3
Perm_M(18) 0.5 1.2 PV_M(18) 0.7 1.3
Perm_M(19) 0.5 1.2 PV_M(19) 0.7 1.3
Perm_M(20) 0 1.2 PV_M(20) 0 3
Perm_M(21) 0.5 1.2 PV_M(21) 0.7 1.3
Perm_M(22) 0.5 1.2 PV_M(22) 0.7 1.3
Perm_M(23) 0.5 1.2 PV_M(23) 0.7 1.3

In order to verify the solutions provided by the ES-MDA, it was decided to perform
additional history-matching runs after the first conditioning. Further modelling included
two explicitly defined aquifer scenarios. The first assumed no active aquifer, while the
second always had an active aquifer with variable strength. The above scenarios were
modelled by the parameters set out in Table 3. The aquifer’s permeability and pore volume
are controlled by multipliers in region 20, whereas 4, 5 and 6 faults act as barriers limiting
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water drive. Other parameters remained unchanged compared to the values used for the
mixed scenario.

Table 3. The list of parameters used for aquifer scenario modelling.

Geological Scenario—No Aquifer Geological Scenario—Aquifer

Parameter
Mult. Range

Parameter
Mult. Range

Min Max Min Max

Perm_M(20) 0 0 Perm_M(20) 0.1 1.2
PV_M(20) 0 0 PV_M(20) 0.7 3
Fault(4) 0 0 Fault(4) 0.01 1
Fault(5) 0 0 Fault(5) 0.01 1
Fault(6) 0 0 Fault(6) 0.01 1

2.3. ES-MDA Settings

The uncertainty related to the observed data has also been included in the ES-MDA
workflow. For the analyzed field, the historical data uncertainty concerns the shut-in
bottom-hole pressures. The downhole pressure gauges in the production wells are installed
shallower than the top of the reservoir section. This well design enables the accumulation
of liquids below the gauge during the shut-in periods, leading to potential underestimation
of the reservoir pressure. The measurement uncertainty of the pressure gauge is defined by
the manufacturer at the level of ± 1 bar. This, together with the mentioned liquid problem,
allowed the author to propose the following shut-in bottom-hole pressure uncertainties
listed in Table 4.

Table 4. The shut-in bottom hole pressures uncertainty for production wells.

Well Name Min (Bar) Max (Bar)

P1 −1 5.24
P2 −1 2.47
P3 −1 4.17

The inflation coefficients and the number of assimilation steps were set as proposed
by Emerick and Reynolds [21]: α1 = 9.33, α2 = 7, α3 = 4, α4 = 2. In addition, the author
added a fifth assimilation step in the workflow, which does not include the observed
data perturbation step during the data assimilation process. The purpose of that was
to check the impact of the observed data uncertainty on the history match quality and
mapped uncertainties.

Taking into account the complexity of the conducted calibration exercise and the
examples of other assisted history-matching cases available in the literature, the author
arbitrarily assumed that every ensemble consists of forty simulation models.

After the history-matching, the models were switched to the prediction mode. During
the first five years, the production was controlled by historically measured gas rates,
but after that point in time, the inlet separator pressure dictated the performance of the
wells. The outcome of these runs helped to check the predictiveness of models at various
assimilation steps and to map the uncertainty around the production forecast.

3. Proposed Improvements

In this paragraph, the author describes ideas proposed to overcome the limitations
highlighted in the introduction section. The solutions proposed in this text were formulated
only to improve the modelling work of the analyzed reservoir. However, it is believed that
a similar approach can be optimized for other, more complex cases.
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3.1. Clustering Concept

The data clustering concept is commonly used for statistical data analysis. Its purpose
is to join parameters into groups sharing similar characteristics. The division can be per-
formed by the user or by an algorithm searching for predefined similarities in the analyzed
data set. The grouping reduces the dimensionality, which enhances the data analysis for
multidimensional problems. The main step in clustering is to choose a representative
measure (metric) which assigns the parameters to classes that have a noticeable impact
on the model and future predictions [22]. The history-matching of the analyzed reservoir
was concentrated around the bottom hole pressures in the gas producers. Therefore, the
history-matching parameters were assigned to the classes originating from the material
balance concept for a gas-condensate field, where the energy of the system comes from the
gas expansion and influx of the aquifer [23,24]. In this case, the bottom hole pressure in a
gas producer is a function of four variables:

P(i) = P(A, B, C, D) (5)

where:

P(i)—bottom hole pressures in a particular gas producer, consistent with observed
data vector dobs in Equation (3),
A—hydrodynamic communication in the hydrocarbon saturated zone (permeability,
faults transmissibility),
B—gas in-place volumes (pore volume),
C—hydrodynamic communication in the water zone (permeability, faults transmissi-
bility),
D—water in-place volumes (pore volume).

The above relationship formulated a basis for the number and type of classes assigned
to history-matching parameters. The exact assignment was performed using available
geological documentation, as well as the outcome of the sensitivity runs. The summary of
this work highlights in Table 5.

Table 5. The assignment of the history-matching parameters to classes.

Permeability Pore Volume Faults Transmissibility

Parameter Class Type Parameter Class Type Parameter Class Type

Perm_M(1) A PV_M(1) B Fault(1) A
Perm_M(2) A PV_M(2) B Fault(2) A
Perm_M(3) A PV_M(3) B Fault(3) A
Perm_M(4) A PV_M(4) B Fault(4) C
Perm_M(5) A PV_M(5) B Fault(5) C
Perm_M(6) A PV_M(6) B Fault(6) C
Perm_M(7) A PV_M(7) B Fault(7) A
Perm_M(8) A PV_M(8) B Fault(8) A

Perm_M(9) A PV_M(9) B
Perm_M(10) A PV_M(10) B
Perm_M(11) A PV_M(11) B
Perm_M(12) A PV_M(12) B
Perm_M(13) A PV_M(13) B
Perm_M(14) A PV_M(14) B
Perm_M(15) A PV_M(15) B
Perm_M(16) A PV_M(16) B
Perm_M(17) A PV_M(17) B
Perm_M(18) A PV_M(18) B
Perm_M(19) A PV_M(19) B
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Table 5. Cont.

Permeability Pore Volume Faults Transmissibility

Parameter Class Type Parameter Class Type Parameter Class Type

Perm_M(20) C PV_M(20) D
Perm_M(21) A PV_M(21) B
Perm_M(22) A PV_M(22) B
Perm_M(23) A PV_M(23) B

3.2. Initial Ensemble Sampling

In order to improve the initial ensemble sampling, the author decided to use a two-level
factorial design, a case of the experimental design concept [25]. Experimental design explores
the variation of input parameters and response of the system to parameter change. In the
case of the analyzed problem, this sampling method ensures that the extreme solutions are
represented by the ensemble members. However, with 54 history-matching parameters, a
direct application of this approach is not computationally optimal, as 254 simulation models
are required to obtain representative results. To reduce the number of simulation runs
without compromising the quality, the author combined the two-level full factorial design
with the clustering concept. This solution reduces the number of variables and narrows the
size of the initial ensemble to only 24 models. Table 6 summarizes all combinations of the
extreme ranges for the predefined classes.

Table 6. The design matrix for the two-level full factorial design with four classes.

Class
Model

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A min min min min min min min min max max max max max max max max
B min min min min max max max max min min min min max max max max
C min min max max min min max max min min max max min min max max
D min max min max min max min max min max min max min max min max

Ultimately, the history-matching parameters inherit the maximum or minimum value
from the class they originate from. Table 7 shows an example of the parameters used to
build the first model from Table 6.

Table 7. The summary of parameters used to generate the first simulation model from Table 6.

Permeability Pore Volume Faults Transmissibility

Parameter Value Parameter Value Parameter Value

Perm_M(1) 0.5 PV_M(1) 0.7 Fault(1) 0
Perm_M(2) 0.5 PV_M(2) 0.7 Fault(2) 0
Perm_M(3) 0.5 PV_M(3) 0.7 Fault(3) 0
Perm_M(4) 0.5 PV_M(4) 0.7 Fault(4) 0
Perm_M(5) 0.5 PV_M(5) 0.7 Fault(5) 0
Perm_M(6) 0.5 PV_M(6) 0.7 Fault(6) 0
Perm_M(7) 0.5 PV_M(7) 0.7 Fault(7) 0
Perm_M(8) 0.5 PV_M(8) 0.7 Fault(8) 0

Perm_M(9) 0.5 PV_M(9) 0.7
Perm_M(10) 0.5 PV_M(10) 0.7
Perm_M(11) 0.5 PV_M(11) 0.7
Perm_M(12) 0.5 PV_M(12) 0.7
Perm_M(13) 0.5 PV_M(13) 0.7
Perm_M(14) 0.5 PV_M(14) 0.7
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Table 7. Cont.

Permeability Pore Volume Faults Transmissibility

Parameter Value Parameter Value Parameter Value

Perm_M(15) 0.5 PV_M(15) 0.7
Perm_M(16) 0.5 PV_M(16) 0.7
Perm_M(17) 0.5 PV_M(17) 0.7
Perm_M(18) 0.5 PV_M(18) 0.7
Perm_M(19) 0.5 PV_M(19) 0.7
Perm_M(20) 0 PV_M(20) 0
Perm_M(21) 0.5 PV_M(21) 0.7
Perm_M(22) 0.5 PV_M(22) 0.7
Perm_M(23) 0.5 PV_M(23) 0.7

3.3. History-Matching Outcome Analysis

The clustering concept was also used by the author to improve the interpretation of
the history-matching results. For this purpose, similarly to the solution that helped with
the initial ensemble sampling, all uncertain parameters were divided into four classes,
following the Formula (5). Further, the analysis was carried out around the updates of the
parameters within a particular class. The focus was on the minimum, maximum and mean
values of the parameters. This simplification allowed the author to trace the variability of
solutions proposed by the ES-MDA over the assimilation steps, and link them with general
factors controlling the drive mechanism of the analyzed reservoir.

4. Results
4.1. Initial Ensemble Sampling

Figure 3 demonstrates the ES-MDA performance over the assimilation steps. The left
chart shows the history-matching improvement for the initial ensemble generated using
Monte Carlo sampling, whereas the right one is for the sampling procedure proposed by
the author. The new sampling procedure slightly degraded the calibration quality for the
initial ensemble, but ultimately allowed for a considerable improvement compared to the
random sampling method.
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Figure 3. The root mean square error (RMSE) for the history-matching quality over the assimilation
steps, geological scenario mix. (a) Results with Monte Carlos sampling; (b) and the sampling
procedure proposed by the author.

Figure 4 shows the observed data coverage by alternatively generated initial ensembles.
The Monte Carlo sampling procedure, presented to the left, does not provide optimistic and
pessimistic realizations within the initial ensemble. The solution introduced by the author
provided coverage of the observed data, giving a favourable environment for efficient
algorithm functioning.
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Figure 4. The coverage of observed data (black dots) by the initial ensembles. (a) Monte Carlo
sampling; (b) proposed sampling procedure.

4.2. Uncertainty around History-Matching Parameters—One Year of Production Data—Scenario Mix

The clustering concept was used to generate Figure 5. The analysis of individual
classes for the mixed scenario suggests that the reduction of the aquifer’s strength is
needed to improve the history match quality, while the drive part coming from the gas
expansion needs to be increased. The minimum and maximum ranges of the four classes
indicated high variability among the calibration parameters. The above continued to the
third iteration, whereas further assimilation steps reduced the posterior uncertainty around
the calibration parameters.
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4.3. History-Matching—One and Two Years of Production Data—All Aquifer Scenario

Figure 6 indicates that the predictiveness of the models increases with the calibration
quality. Moreover, two regression lines can be seen, suggesting that history-matching
using two years of production data gives a step increase in predictiveness compared to
conditioning with only one year of production history.
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Figure 7 illustrates that the uncertainty around gas reserves and in-place volumes is
a function of the history-matching quality. Together, with improved calibration quality, a
reduction of uncertainty for gas reserves and in-place can be seen.
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Figure 7. The impact of history match quality to the modelling uncertainty. (a) Gas reserves, (b) in-
place volumes.

Figures 8 and 9 highlight that an unambiguous definition of the aquifer scenarios
enabled the determination of a wider range of uncertainty around the gas reserves and in-
place volumes. Moreover, the constant presence of an active aquifer generates realizations
with the lowest gas in-place volume.
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Figures 10 and 11 show that for runs with an active aquifer, the history match quality
improvement has always been obtained by applying reductions to the strength of the aquifer.
For history-matching with two years of production history, the aquifer strength reduction
was applied faster in the assimilation process than when only one year of production data
was used. Furthermore, the average values of parameters affecting the hydrodynamic
communication and in-place volumes for hydrocarbon-saturated regions do not correlate
with the aquifer’s strength.
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5. Discussion

The optimization of the initial ensemble sampling was performed by application of
the two-level full factorial design combined with the clustering concept. This approach
provided sufficient variability within the initial ensemble, hence the ES-MDA could search
for potential solutions more efficiently and calibrate the models more accurately. Ultimately,
the ensemble’s history-matching quality at the fifth assimilation step was improved by
73% compared to the Monte Carlo sampling method. Furthermore, the uncertainty around
predictions was reduced from circa 20 down to 2 per cent, leading to a 90% improvement.

Regarding the history match quality improvement for various aquifer scenarios, the
average RMSE for models calibrated using one year of production data was reduced from
10.3 down to 1.65 bar, leading to an 84% enhancement. For models calibrated using two
years of production history, the average RMSE was reduced from 13.91 down to 1.72 bar.
The mentioned change represents an 87.6% improvement. The models with the lowest
calibration mismatch lie well within the observed data uncertainty summarized in Table 4.
The above proves that the ES-MDA can deliver a decent history match quality.

The updates proposed by the ES-MDA usually lead to a reduction of the aquifer’s
strength. Moreover, the models with the active aquifer have smaller gas in-place volumes.
This observation is explained by the fact that the aquifer delivers additional energy to the
system, giving the possibility to replicate the historical pressures in models with lower gas
in-place volumes.

The average variability of the parameters controlling the hydrodynamic communi-
cation and in-place volume of gas does not correlate with the aquifer’s strength. The
above observation explains the fact that the gas in-place volumes can be distributed across
the reservoir in several alternative ways, combined with suitable permeability and faults
transmissibility modifications. This effect highlights Figure 5, which was created using
the data clustering concept. Figure 5 illustrates that the ranges of history-matching param-
eters are similar to the initial ensemble through the assimilation steps, while the RMSE
decreases as per Figure 2. The fifth iteration does not follow the above trend because
the observed data uncertainty was not included in conditioning at this step. Thanks to
this change, the algorithm provided strong updates, leading to variability reduction of
history-matching parameters.

The validation of calibrated models using the remaining three years of production
history has shown that calibration using two years of production data increases the pre-
dictiveness of the ensemble. The models calibrated using two years of production history
generally have higher reserves, in-place volumes and limited aquifer strength compared
to the models calibrated using only the first year of production. In addition, the models
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calibrated with two years of production at the fifth assimilation step have higher uncer-
tainty around gas reserves and in-place volumes. This situation can be explained by a
slightly worse history match quality compared to the models calibrated with one year of
production data.

The uncertainty associated with the gas in-place volumes and reserves correlates with
the history match quality. This observation explains a reduction of solutions variability
with a history match quality increase, as demonstrated in Figure 5. Less variability means
fewer alternative forecasts, hence narrower modelling uncertainty. For an average RMSE of
2 bar, the uncertainty span of the gas in-place volume and reserves is at the level of nine
per cent, while for the RMSE of 1.6 bar, the same uncertainty is around one per cent. All of
the above illustrates the high importance of the observed data uncertainty quantification
before conditioning the ensemble of models.

6. Conclusions

The ES-MDA has proven to be a useful tool for history-matching and uncertainty
quantification problems concerning the real gas-condensate reservoir.

The method for the initial ensemble sampling proposed by the authors improved the
efficiency of the ES-MDA algorithm. Ultimately, a 73% increase in the calibration quality
was obtained versus Monte Carlo sampling. Better calibration leads to a 90% reduction of
uncertainty around gas in-place volumes and reserves.

The clustering concept enabled the more efficient analysis of the history-matching
results. The ability to trace global parameters governing the uncertainty improved the
understanding of the modelling results.

The author believes that a similar approach for the initial ensemble sampling and
results analysis can apply to more complex history-matching cases. However, the number
of proposed classes and assumptions around the two-level full factorial design has to
be optimized.

The results for various aquifer scenarios demonstrate that more efficient mapping of
modelling uncertainty is possible when the main parameters controlling reservoir behavior
are identified. Furthermore, the ES-MDA should be used as a verification tool for multiple
geological hypotheses, instead of a black box.
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Nomenclature

EnKF ensemble Kalman filter
ES ensemble smoother
ES-MDA ensemble smoother with multiple data assimilation
PDF probability distribution function
MIX maximum value
MIN minimum value
RMSE root mean square error

RMSE History
root mean square error, used to quantify the
history-matching!quality

RMSE Prediction
root mean square error, calculated using validation data set to
quantify the predictiveness of the models

INIT
initial range of parameters created based on available
geological documentation
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EN0
initial ensemble creased by sampling predefined
history-matching parameters

EN1, EN2 . . . EN5 the ensemble of models at a certain assimilation step
Perm_M(1) to Perm_M(23) the value of the permeability multiplier in regions from 1 to 23
PV_M(1) to PV(23) the value of the pore volume multiplier in regions from 1 to 23

Fault(1) to Fault(8)
the value of the transmissibility multiplier associated with the
faults from 1 to 8
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