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Abstract: A smart city is a city that binds together technology, society, and government to enable
the existence of a smart economy, smart mobility, smart environment, smart living, smart people,
and smart governance in order to reduce the environmental impact of cities and improve life quality.
The first step to achieve a fully connected smart city is to start with smaller modules such as smart
homes and smart buildings with energy management systems. Buildings are responsible for a third of
the total energy consumption; moreover, heating, ventilation, and air conditioning (HVAC) systems
account for more than half of the residential energy consumption in the United States. Even though
connected thermostats are widely available, they are not used as intended since most people do
not have the expertise to control this device to reduce energy consumption. It is commonly set
according to their thermal comfort needs; therefore, unnecessary energy consumption is often caused
by wasteful behaviors and the estimated energy saving is not reached. Most studies in the thermal
comfort domain to date have relied on simple activity diaries to estimate metabolic rate and fixed
values of clothing parameters for strategies to set the connected thermostat’s setpoints because of
the difficulty in tracking those variables. Therefore, this paper proposes a strategy to save energy by
dynamically changing the setpoint of a connected thermostat by human activity recognition based
on computer vision preserving the occupant’s thermal comfort. With the use of a depth sensor
in conjunction with an RGB (Red–Green–Blue) camera, a methodology is proposed to eliminate
the most common challenges in computer vision: background clutter, partial occlusion, changes
in scale, viewpoint, lighting, and appearance on human detection. Moreover, a Recurrent Neural
Network (RNN) is implemented for human activity recognition (HAR) because of its data’s sequential
characteristics, in combination with physiological parameters identification to estimate a dynamic
metabolic rate. Finally, a strategy for dynamic setpoints based on the metabolic rate, predicted mean
vote (PMV) parameter and the air temperature is simulated using EnergyPlus™ to evaluate the
energy consumption in comparison with the expected energy consumption with fixed value setpoints.
This work contributes with a strategy to reduce energy consumption up to 15% in buildings with
connected thermostats from the successful implementation of the proposed method.

Keywords: energy savings; recurrent neural networks; metabolic rate; thermal comfort; depth sensor;
computer vision

1. Introduction

The International Energy Agency (IEA) estimated that buildings have become the third
largest energy consumer in the world [1]. Generally, energy usage in buildings is expended
on lighting, electrical equipment, and heating, ventilation, and air conditioning (HVAC)
systems. HVAC systems, which play an important role in ensuring occupant comfort,
are among the largest energy consumers in buildings with up to 60% of the total energy
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consumption in households [1]. Performance enhancements to traditional HVAC systems
therefore offer an exciting opportunity for significant reductions in energy consumption.

Several studies show that almost 50% [2] of USA’s energy usage in buildings is utilized
for indoor climate conditioning. Moreover, the worldwide energy consumption by HVAC
equipment also shows considerable high values. In Europe, they represent around 40% of
energy consumption [3]. In China, about 20% of the total energy usage in the year 2004 is
reported with a constant annual increase [4]. In the Middle East, more than 65% of energy
consumption is reported for use of cooling systems [5] and in Mexico, the cooling system
makes up to 44% of the total energy consumption [6].

The increase in building energy consumption is highly affected by building design,
change of occupant comfort standard, building operation, maintenance, and HVAC system
design. Especially important has been the intensification of energy consumption in HVAC
systems, which has now become almost essential in parallel to the spread in the demand for
thermal comfort, considered a luxury not long ago. All those aspects should be conceived
with energy consumption and occupant comfort in mind.

Thermal comfort is all about human satisfaction with the thermal environment. The de-
sign and calculation of air conditioning systems to control the thermal environment in a
way that also achieves an acceptable standard of air quality inside a building should com-
ply with the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) standard 55-2017 [7]. This standard acknowledges the two main research areas
in thermal comfort: thermal physiology and human behavior.

As for the first area, it includes two common indicators called predicted mean vote
(PMV) and the predicted percentage of dissatisfied (PPD) known as the Fanger’s model [2,3].
The PMV predicts the mean value of the votes on the seven-point thermal sensation scales:

• +3 Hot;
• +2 Warm;
• +1 Slight warm;
• 0 Neutral;
• −1 Slight cool;
• −2 Cool;
• −3 Cold.

On the other hand, the PPD represents the prediction of the percentage of occupants
that feel uncomfortable and its value ranges from 0% to 100%. Thus, an acceptable range of
thermal comfort goes from slight warm to slight cool for 20% of dissatisfied for the residen-
tial sector [2]. The ASHRAE-55 calls this the PMV-PPD model described by the Fanger’s
equation, considered to be the milestone of the development of a thermal model [8]:

M−W = C + R + E + (Cres + Eres) + S (1)

where:

M: the metabolic rate;
W: mechanical work is done;
C: convective heat loss from the clothed body;
R: radiative heat loss from the clothed body;
E: evaporative heat loss from the clothed body;
Cres: convective heat loss from respiration;
Eres: evaporative heat loss from respiration;
S: the rate at which heat is stored in the body tissues.

The ASHRAE-55 standard uses empirical tables with common activities and their
respective met units (metabolic rate) and clothing insulations for different garments in clo
units. However, the use of fixed value tables has some limitations in real time analysis and
only works for statistical analysis or estimations.

The second area is related to a hypothesis in which the perception of thermal comfort
is related to outdoor weather conditions, and it is based on adaptive opportunities of
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occupants to control their own comfort [1,4,9]. This thermal adaptation was defined by
three categories [10]: behavioral adjustment which includes personal modifications such
as removing garments, or doing physical activity, and external modifications such as
opening a window or changing the air conditioner; physiological adaptation referring
to the acclimatization or even genetic adaptation; psychological adaptation refers to the
expectations due to past experiences [10].

Both PMV and the adaptive models are aggregate models, which means they are
designed to predict the average thermal comfort of large populations and ultimately
present limitations in real case scenarios [11]. As many studies have shown [12–15], the
measurement of thermal comfort in office buildings is limited by the subjectivity and
high dependency on the six mandatory parameters used for heating and air conditioning
setpoint controls. Four variables are related to the environment:

• Air temperature;
• Air speed;
• Humidity;
• Radiant temperature.

Two variables are related to the occupant:

• Metabolic rate;
• Clothing insulation.

Furthermore, the work in [16] highlights the difficulty and the cost of obtaining some
of these variables. For example, mean radiant temperature and air speed are two of
the environmental variables that are not typically monitored as they require expensive
instruments for measuring [16]. Moreover, the two personal variables metabolic rate and
clothing insulation are said to be impossible to collect in real time [17]; hence, the process is
simplified with the assumed values or fixed set of data collected from laboratory or field
measurements, which ultimately causes erroneous estimations [14].

Hence, the contribution of this paper is focused on a methodology for an on-line
estimation of the metabolic rate of a single occupant to improve simulations of energy
consumption in smart homes with an HVAC system, as there is still not a way to measure
the two variables of thermal comfort related to the occupant: metabolic rate and clothing
insulation [17]. The metabolic rate estimation is based on Human Activity Recognition with
RGB-D data using a skeleton-based model over a 3D representation with a recurrent neural
network as the classification method. The RGB-D data are intended to reduce privacy issues
in comparison with the RGB data, as the 3D skeleton model is used to reduce data used for
the classification method compared with a pixel’s image data. The recognized activity is
paired with a metabolic rate value that is used as an input variable for the human-centered
approach of the adaptive thermal comfort on a simulation for comparing energy savings
between setpoints with fixed values and adaptable setpoints.

This paper is organized as follows: Section 2 shows the literature overview for human
activity recognition. Section 3 describes the materials and methods used for the proposal.
Section 4 shows the results of the proposal. Finally, Section 5 discusses and presents the
improvements from implementing depth sensors for activity recognition and its impact on
energy consumption analysis in HVAC systems.

2. Literature Overview

Thermostats that control HVAC systems are employed in about 85% of households;
thus, they represent an opportunity for saving energy at home. Initial approaches for saving
energy through connected thermostats are presented with gamification techniques [18,19],
data analysis [20], behavior analysis [21], and usability of interfaces [22–24]. However,
a first approach using the adaptive model to measure the differences between increasing
or decreasing the thermostat setpoint depending on the season was analyzed. Reductions
and thermal comfort were achieved. The research suggested more information about the
householder and how, for instance, clothing insulation and metabolic rates affect thermal
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comfort. Hence, in [25,26], the authors proposed to measure thermal comfort in smart
homes through dynamic clothing insulation with cameras; the activities were inferred
depending on the position of the householder and the clothing insulation of twelve homes.
They found that energy reductions are achievable and that tailored strategies were required
as not all the homes achieved thermal comfort, and there were homes where the comfort
was not met and the energy consumption increased. Therefore, in [27,28], they proposed
using cameras to measure the clo value dynamically through a Convolutional Neural
Network (CNN) model classification and obtain the thermal comfort range of a household
in Concord, California. These approaches considered only the clo value and assumed a
metabolic rate of 1.0. Furthermore, in [25,26], the authors pointed out the need to measure
the activities as well to obtain dynamic thermal comfort models instead of conventional
models.

Human Activity Recognition (HAR) requires a series of physical actions that construct
one physical activity, where a physical action is defined as any bodily movement produced
by skeletal muscles and the activity itself is the sequence of those produced movements [29].
HAR research focuses on types of activities that humans perform within a time interval;
thus, it is based on sensors and/or video data analysis. Moreover, the two types of sensors
found in HAR are: wearables and ambient sensors [30].

Wearables sensors are attached to the person’s body to measure a given attribute such
as electrocardiogram (ECG), location, temperature, motion, electroencephalogram (EEG),
etc. [31–34]. All the data of these sensors may be sent to another device for processing;
regularly this device can be a computer, an embedded system, or a smartphone. Moreover,
the smartphone itself can be used as a wearable sensor because of all the technological
progress made on them [35–37]. The main disadvantages of wearables are they require
batteries, thus charging them may be annoying for the user; some data may be synchronized
manually because of no communication between them; and finally, the user may feel them
intrusive so they may not wear them at all [38].

On the other hand, ambient sensors are not intrusive and may be connected directly
to a source of power. Video cameras today are low-cost devices to obtain the necessary
data over time. A sequence of images is directly used to make human activity recognition
and they need to be processed by a computer. The disadvantage of the camera is that
there may be privacy issues; therefore, a strong acceptance of this technology may be
needed by the user. Other ambient sensors (also known as binary sensors) such as motion
detectors, pressure sensors, contact switches, etc., can be an effective way to track human
activity [39,40].

The field of HAR has become an important research area due to its increasing number of
applications and therefore, recent surveys about this field offer a precise description of state-
of-the-art methods, publicly available databases, and actual research challenges [30,41–44].
The vision-based HAR research is divided based on data type; the most common is Red,
Green, and Blue (RGB) data from a normal camera (CCTV, webcam, etc.) and the Red, Green,
Blue and Depth (RGB-D) data that incorporate depth information. The RGB data have
achieved lower accuracy compared to the RGB-D data but the configuration complexity,
high cost, and the need for big datasets of the RGB-D data are the reasons why RGB data is
mainly used [45].

A key component for vision-based HAR is human body modeling. The three most com-
mon types are: skeleton-based model, contour-based model, and volume-based model [46].
The skeleton-based model represents a set of joint locations following a human body skele-
tal structure; this model is visually identified as a stick-figure. The contour-based model
contains the contour information of the human body, and it is often represented with
rectangles of a person silhouette. Lastly, the volume-based model is represented in 3D by
geometric shapes (cylinders, conics, cubes) or meshes that resemble a human body [47].

Depending on the data type and the human body model used for HAR, a 2D or
3D representation of the data can be selected to work with. Regarding the data type,
the RGB only offers information in 2D while the RGB-D can work with 2D and 3D data
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representation. On the other hand, regarding human body modeling the skeleton-based
model can be used with 2D and 3D data, the contour-based model with 2D data and the
volume-based-model with 3D data [47].

Finally, the most used methods of classification for human activities can be divided
in two: conventional neural networks and other machine learning methods [41]. Machine
learning methods such as K-nearest neighbors (KNN), Support Vector Machines (SVM),
decision trees, and Hidden Markov Models (HNN) are mainly used with wearables sensors
and some ambient sensors; while neural networks methods such as Artificial Neural
Networks (ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks
(RNN) are used with vision-based sensors [41,43].

Figure 1 depicts a diagram with the previously described classification of vision- based
HAR-related works based on: data representation, data type, body modeling and methods
for classification. Moreover, the figure shows the characteristics this paper focuses on.
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Figure 1. Vision-based HAR components classification based on the literature overview.

3. Materials and Methods

Figure 2 presents the general methodology proposed for obtaining MET values de-
pending on the activity detected on-line. A MET is a ratio of the working metabolic rate
relative to the resting metabolic rate, where one MET is the energy spent sitting at rest.
First, the data preprocessing consists of obtaining the 3D-axis joints information of a human
skeleton shape detected by a depth vision sensor. This 3D data is then transformed to
change orientation and size in a new reference 3D plane. Next, the transformed 3D data
is input in a Recurrent Neural Network with a classification layer that detects the activity
performed by a human; this network needs to be trained with a custom-created database.
Finally, a MET value is obtained depending on the activity detected. On the other hand, a
simulation of energy usage on a house with an HVAC adaptive setpoint based on the MET
value over a whole week is made to get an estimated energy saving that can be achieved
with the proposed methodology.
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3.1. Data Preprocessing

The data preprocessing consists of five steps that take a combination of image and
depth information into signals that can be classified to recognize different activities. Figure 3
depicts the five steps of the proposed methodology. Each step is described next.
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The first step is to extract the joints in a 3D coordinate system of a skeleton model using
the Azure Kinect Body Tracking SDK (Software Development Kit). This uses the depth
sensor’s information built in the Kinect Azure and an ANN to track multiple human bodies
at the same time. Then, the preprocessing is made with the 3D coordinate information of
each joint for the objective to make the data invariant to different orientations towards the
camera.

The skeleton model consists of 32 joints (Figure 4a) over a 3D frame of reference that
depends on the actual position of the camera as shown in Figure 4. The 3D coordinate
system is represented as metric [X, Y, Z] coordinate triplets with units in millimeters.
The origin [0, 0, 0] is located at the focal point of the camera with the orientation such that
the positive X-axis points right, the positive Y-axis points forward, and the positive Z-axis
points up.
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As the joint position and orientation are estimates relative to the global depth sensor’s
frame of reference, the second step of the preprocessing is to translate the skeleton joints
to a new reference centered on the origin of the coordinate plane to eliminate distance
variability of the subject. Figure 5 depicts the original joints data on a side view (plane
YZ) and a top view (plane XY) with the translated data, which now is centered on the joint
corresponding to the pelvis on the origin (0, 0, 0). In the same Figure 5, it can be noticed
that the 3D model is inclined in reference to plane XY, although the real position of the
body is in perpendicular position to the floor (standing). This is due to the actual position
of the camera/depth sensor in reference to the floor. Hence, the next step is to correct the
pitch and roll rotations due to the position of the camera/depth sensor to make the activity
recognition independent of where the camera/depth sensor is located. Figure 6 depicts the
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roll and pitch angles referenced to the camera and how it can affect the perspective view of
the person.

Energies 2023, 16, 1078 7 of 22 
 

 

As the joint position and orientation are estimates relative to the global depth sensor’s 
frame of reference, the second step of the preprocessing is to translate the skeleton joints 
to a new reference centered on the origin of the coordinate plane to eliminate distance 
variability of the subject. Figure 5 depicts the original joints data on a side view (plane YZ) 
and a top view (plane XY) with the translated data, which now is centered on the joint 
corresponding to the pelvis on the origin (0, 0, 0). In the same Figure 5, it can be noticed 
that the 3D model is inclined in reference to plane XY, although the real position of the 
body is in perpendicular position to the floor (standing). This is due to the actual position 
of the camera/depth sensor in reference to the floor. Hence, the next step is to correct the 
pitch and roll rotations due to the position of the camera/depth sensor to make the activity 
recognition independent of where the camera/depth sensor is located. Figure 6 depicts the 
roll and pitch angles referenced to the camera and how it can affect the perspective view 
of the person. 

 

Figure 5. Step 2: Joints translation to the origin of the coordinate plane (0, 0, 0) on the pelvis joint. 

 
Figure 6. Pitch and roll angles from the camera and human body perspective correction. 

The correction of the position of the camera/depth sensor uses the Inertial Measure-
ment Unit’s (IMU) accelerometer of the device with three axes to determine the angle in-
dividually of each axis. The reference position of the device is taken with the X- and Y-

Figure 5. Step 2: Joints translation to the origin of the coordinate plane (0, 0, 0) on the pelvis joint.

Energies 2023, 16, 1078 7 of 22 
 

 

As the joint position and orientation are estimates relative to the global depth sensor’s 
frame of reference, the second step of the preprocessing is to translate the skeleton joints 
to a new reference centered on the origin of the coordinate plane to eliminate distance 
variability of the subject. Figure 5 depicts the original joints data on a side view (plane YZ) 
and a top view (plane XY) with the translated data, which now is centered on the joint 
corresponding to the pelvis on the origin (0, 0, 0). In the same Figure 5, it can be noticed 
that the 3D model is inclined in reference to plane XY, although the real position of the 
body is in perpendicular position to the floor (standing). This is due to the actual position 
of the camera/depth sensor in reference to the floor. Hence, the next step is to correct the 
pitch and roll rotations due to the position of the camera/depth sensor to make the activity 
recognition independent of where the camera/depth sensor is located. Figure 6 depicts the 
roll and pitch angles referenced to the camera and how it can affect the perspective view 
of the person. 

 

Figure 5. Step 2: Joints translation to the origin of the coordinate plane (0, 0, 0) on the pelvis joint. 

 
Figure 6. Pitch and roll angles from the camera and human body perspective correction. 

The correction of the position of the camera/depth sensor uses the Inertial Measure-
ment Unit’s (IMU) accelerometer of the device with three axes to determine the angle in-
dividually of each axis. The reference position of the device is taken with the X- and Y-

Figure 6. Pitch and roll angles from the camera and human body perspective correction.

The correction of the position of the camera/depth sensor uses the Inertial Measure-
ment Unit’s (IMU) accelerometer of the device with three axes to determine the angle
individually of each axis. The reference position of the device is taken with the X- and
Y-axes in the plane of horizon with 0 g field and the Z-axis orthogonal to the horizon with
1 g field in rest.

To perform a rotation in Euclidean space, a rotation matrix is used to transform a vector
such as the earth’s gravitational field vector g. In a 3D coordinate system, the rotations of
the X-, Y- and Z-axes in a counterclockwise direction when looking towards the origin are
represented by the matrices in Equations (2)–(4) [48]:

Rx(ϕ) =

1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

, (2)
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Ry(θ) =

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

, (3)

Rx(φ) =

 cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1

, (4)

Any rotation can be given as a composition of rotations about three axes (Euler’s
rotation theorem), thus the matrix R with the order roll, pitch, and yaw and with the effect
of the earth’s gravitational field of 1 g initially aligned downwards along the Z-axis is
shown in Equation (5) and solved in (6) and (7):

Rxyz

0
0
1

 = Rx(ϕ)Ry(θ)Rx(φ)

0
0
1

 (5)

Rxyz

0
0
1

 =

 cos θ cos φ cos θ sin φ − sin θ
cos φ sin θ sin ϕ− cos ϕ sin φ cos ϕ cos φ + sin θ sin ϕ sin φ cos θ sin ϕ
cos ϕ cos φ sin θ + sin ϕ sin φ cos ϕ sin θ sin φ− cos φ sin ϕ cos θ cos ϕ

0
0
1

 (6)

Rxyz

0
0
1

 =

 − sin θ
cos θ sin ϕ
cos θ cos ϕ

 (7)

Rewriting Equation (7) relating the normalized accelerometer reading A to the rotation
angles gives Equation (8): − sin θ

cos θ sin ϕ
cos θ cos ϕ

 =
1√

A2
x + A2

y + A2
z

Ax
Ay
Az

 (8)

Thus, the roll and pitch angles equations can be obtained solving Equation (8) with
the normalized accelerometer reading as shown in Equations (9) and (10) [49]:

θ = tan−1

 Ax√
A2

y + A2
z

, (9)

ϕ = tan−1

(
Ay√

A2
x + A2

z

)
, (10)

where:

Ax—normalized accelerometer reading in X-axis;
Ay—normalized accelerometer reading in Y-axis;
Az—normalized accelerometer reading in Z-axis.

Figure 7 shows the result of step 3 that corrects the human skeleton position by
applying pitch and roll rotations. The rotation is applied to the skeleton with Euler angle
transformations [50] with the parameters previously calculated from the accelerometer.
This process is only made once at starting the activity recognition as it is assumed the depth
sensor is in a fixed position.
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Step 4 is to make a yaw rotation of the skeleton (through the Z-axis) to make it always
face front to the depth sensor (anatomically anterior position) as Figure 4a. Figure 8
depicts the implemented rotation of the skeleton from a side view (YZ plane) and the
top view (plane XY). This process takes the relative position of the left and right clavicle
joints forming a vector that should be parallel to the X-axis and the nose-head joint vector
pointing negative into the Y-axis. In this way the invariance in position of the skeleton
is achieved to be always in the same reference. The last step of the transformations is to
eliminate the variance of heights.
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As the reference values of the joints are in millimeters, the subjects’ measures add a
variable to the classification process that should be removed. Figure 9 depicts the result



Energies 2023, 16, 1078 10 of 22

of step 5, the normalization of all values from −1 to 1, applying Equation (11) to each
joint’s data.

x′ = 2
x−min(x)

max(x)−min(x)
. (11)
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Finally, this process is repeated for each frame of the captured data as a set of frames
will be required to detect the activity. The time series generated with the data of each of the
three axes of each joint is used as one feature for the Recurrent Neural Network. Figure 10
depicts the data that make up the input for the RNN, the sequential data of each axis for
every joint.
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3.2. RNN + Activity Classification

Recurrent Neural Networks (RNN) are typically used to solve time series analysis
problems, hence the use of this type of network in the Human Activity Recognition problem.

Figure 11 depicts a representation of an RNN where Xt is some input in the form of a
vector representing a time series, ht is the output hidden state vector, and the blue line is
the loop representing that the output is fed back as an input in the network. Unrolling the
basic representation of the RNN, it is clear that the loop allows information to be passed
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from one step of the network to the next, where t represents the number of observations
in time. Therefore, an RNN consists of a function F dependent on the past state vector
and the current input feature which outputs the current hidden state vector ht, as stated in
Equation (12):

ht = F(Xt, ht−1) (12)
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However, the RNN is highly susceptible to the vanishing gradient problem because
the hidden layer of one observation is used to train the hidden layer of the next observation,
meaning that the cost function of the network is calculated for each observation [51].
Therefore, the cost function calculated at a deep layer will be used to change the weights of
neurons at the shallow layers; because of the multiplicative nature of the backpropagation
algorithm, the gradients calculated at those deep layers either have too small or too large
of an impact on the weights of neurons in the shallow layers [51]. This effect is depicted in
Equation (13), where the gradient on the current state vector hc from the past state vector
hp is the product of gradients for all intermediate state vectors:

∂hc

∂hp
=

c−p−1

∏
r=0

∂

∂hc−r−1
F(Xc−r, hc−r−1) (13)

There are many techniques to try to solve the vanishing gradient problem [52,53], but
the most important is a specific type of network called Long Short-Term Memory Networks
(LSTMs). The LSTM solves the problem by setting the weight initialization to 1 but also
adding new components to the traditional RNN architecture: forget gate, input gate, cell
state, and output gate. Figure 12 depicts the difference between a normal RNN (Figure 13a)
and an LSTM architecture (Figure 12b).
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With the forget layer, operated by a sigmoid function, the magnitude of the gradient
of LSTM does not decrease, thereby avoiding the gradient problem [54]. The output of
the forget layer is between 0 and 1 for each value in the cell state, where a 0 represents
to completely forget the value while a 1 represents to totally keep the state as shown in
Equation (14):

ft = σ
(

W f ·[ht−1, Xt] + b f

)
(14)

The next part handles what information is stored in the cell state by including the
input gate layer with a sigmoid function and a tanh function that creates the vector for new
C̃t candidate values [54]. Therefore, the updated cell state is described by Equation (15):

Ct = ft ∗ Ct−1 + it ∗ C̃t (15)

Finally, the output gate is a filtered version of the cell state evaluated by a sigmoid
function that decides what parts of the cell states are used [54]. Hence, the output ht is
described in Equation (16):

ht = σ(Wo·[ht−1, Xt] + bo) ∗ tanh(Ct) (16)

As for the specific architecture of the LSTM used in this paper, the model is defined
as a sequential Keras model with a single hidden layer and a dropout layer of 10% with
the goal of reducing overfitting of the model to the training data. A dense, fully connected
layer is implemented to interpret the features extracted by the LSTM and its final output
layer implements a softmax function to classify the three activities: raising hands, sitting,
and walking. The inputs of the network consist in 96 data that represent 3 axis values for
each of the 32 joints. Figure 13 depicts the architecture described and the Python code for
implementation.

3.3. Study Case: Metablic Rate Dynamic Analysis Applied on Thermostats

A dataset of daily activities for periods of 15 min during a week’s time was obtained
from the RNN classification. Thus, 672 observations were obtained with 3 different ac-
tivities. Then, two energy simulations were performed during the extremely hot week
for a household located in Concord, California. The first simulation was the baseline that
considered the building, electric loads, and occupation schedules presented in [55] with a
fixed value of metabolic rate. This home has two conditioning zones: bedroom two and
living room zones. This paper analyzed the living room. The cooling setpoint was 24.4 ◦C,
and the heating setpoint was 21.7 ◦C, the same initial values considered in [27]. As the
extremely hot week was during the summer period, the clo value considered was 0.5 [7].
The second simulation considered the three different activities in the dining and living
zone. The energy model was simulated using LadybugTools V1.5.0 software plugin for
Grasshopper by Ladybug Tools LLC, USA [56,57].

Then, a strategy to save energy considering thermal comfort was proposed to be
compared to the first two simulations. This strategy consisted of increasing or decreasing
the cooling and heating setpoints by 1 ◦C [58,59] or even turning off the thermostat,
depending on the following considerations:
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1. The difference between outdoor temperature and operative temperature. As the
operative temperature tends to match the outdoor temperature, we will call heating
tendency when the outdoor temperature is higher than the operative temperature and
cooling tendency otherwise.

2. The thermal sensation scale evaluation with the PMV equation [60]. If the thermal
sensation at a particular moment is negative, the occupant feeling tends to be cool
while a positive value means the occupant feeling tends to be hotter.

3. Four rules are obtained with the combination of the two previous considerations.
If the natural tendency is heat and the occupant sensation is negative, the AC is
turned off, but if the occupant sensation is positive then the setpoints decrease by 1 ◦C.
Moreover, if the natural tendency is cooling and the occupant sensation is negative,
the setpoint is increased by 1 ◦C; on the contrary, if the occupant sensation is positive,
then the AC is turned off.

This strategy is evaluated with two more simulations, the first one using the previously
described baseline and the second considering the same three activities’ recognition of
the last simulations. Finally, both results are compared for energy consumption and total
comfort state.

Moreover, those activities were converted into W per person because the energy
simulation requires that measure. Table 1 depicts these activities, the metabolic rate, and
the W/person. The W/person was calculated by multiplying 58.1 W/m2 equal to 1 met,
and 1.8 m2 is equal to the skin surface of an average individual of 1.70 m in height and
68 kg [61]. Table 1 depicts these activities, the metabolic rate, and the W/person.

Table 1. Activities considered for the energy simulation.

Activity Met W/Person

Desk work 1.8 188
Standing/walking 2.5 261

Cleaning light 2.3 241
Out 0 0

Finally, a comparison between the base model and the dynamic activities model was
performed. This comparison included the differences between the total hours of thermal
comfort and the total kWh HVAC consumption.

4. Results

This section presents the results of two simulated processes, first the activity recogni-
tion depicted in Figure 2 and then the energy saving simulation with the dynamic setpoint
for HVAC systems. First, the activity recognition results are shown with the use of an
RNN and how a small dataset of activities was created to train the neural network. Then,
the evaluation of a simulated model of a house with an HVAC system to obtain an analysis
of energy savings between a model with a fixed setpoint and one with an adaptive setpoint
is presented.

4.1. Activity Recognition

To show the capability of an RNN to classify activities of daily living (ADL) with the
proposed methodology, a small dataset of three activities (sitting, walking, raising arms)
was created as most of the available datasets are vision-based (images) or sensor-based as
reviewed by [62,63].

The total data gathered for training included 201,600 values as shown in Table 2. This
corresponds to 40, 50 and 50 repetitions of each of the three activities to train: sitting,
walking, and raising arms. Each repetition consists of 15 timesteps at 2.5 frames per second;
and each observation has 96 values corresponding to the x-axis, y-axis, and z-axis values
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for 32 joints of a 3D skeleton human model. The activities were performed by four different
subjects indistinctly with parameters shown in Table 3.

Table 2. Total data for training the RNN.

Activity Repetitions Timesteps
per Action

Joints per
Observation

Axes per
Joint

Recorded
Data

Sitting 40 15 32 3 57,600
Walking 50 15 32 3 72,000

Raising arms 50 15 32 3 72,000

Total 201,600

Table 3. Training subject’s physiology information.

Subject Gender Age Height [cm] Weight [kg]

Person A Male 26 1.67 68
Person B Male 25 1.71 72
Person C Female 29 1.60 69
Person D Male 24 1.81 61

Of the total data gathered, the values of five joints were discarded: nose, eye left, eye
right, ear left, and ear right as they are not necessary since they do not provide relevant
information for the detection of the activity.

Figure 14 depicts the office plan where the training and test data were gathered
and the four different positions where the device was located. For the training data, the
camera/depth sensor was placed on position 3, while for the testing data the device was
placed on the four positions marked to evaluate if the proposed methodology can deal
with different view perspectives for classifying the activity. Table 4 shows the position
characteristics for each location referenced to the camera/depth sensor. Figure 15 shows
the position 2 (a) and position 3 (b) different view perspectives for the testing data.
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4 121 6.3 1.3
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Moreover, different levels of ambient lightning were used for the testing data. For mea-
suring the light, precision light sensor 1127 was used. Three levels of lightning for each
different position of the camera/depth sensor were tested: fully illuminated (513 lux),
partially illuminated (235 lux) and dark (4 lux).

The data recorded for evaluating the model in which 15, 17 and 16 repetitions for
sitting, walking, and raising arms respectively were recorded are shown in Table 5. The data
were recorded in different camera/depth sensor positions (Figure 14), different lighting,
with partial occlusions and with three different subjects (Table 6) as depicted in Figure 16.
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Table 5. Total data for testing the RNN.

Activity Repetitions Timesteps
per Action

Joints per
Observation

Axis per
Joint

Recorded
Data

Sitting 15 15 32 3 21,600
Walking 17 15 32 3 24,480

Raising arms 16 15 32 3 23,040

Total 69,120

Table 6. Test subject’s physiology information.

Subject Gender Age Height [m] Weight [kg]

Person A Male 22 1.77 72
Person B Male 44 1.72 80
Person C Male 34 1.64 65

Because of the stochastic nature of neural networks, different models will result when
training with the same data configuration. Therefore, the evaluation of the RNN model was
repeated multiple times for a specific number of epochs to be trained and then changed
to compare the results. Table 7 summarizes the mean and standard deviation of the
performance of the model for 5, 10, 15 and 20 epochs. The mean gives the average accuracy
of the model on the dataset, whereas the standard deviation gives the average variance of
the accuracy from the mean.

Table 7. Performance of the RNN model.

Epochs Mean Standard Deviation

5 93.33% 6.166
10 94.79% 3.125
15 90.21% 6.458
20 91.88% 4.792

After observing the results, the best values correspond to the model for 10 epochs of
training. In addition, Figure 17 depicts a confusion matrix showing the performance of the
model with the test data.
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tion we only use 81 signals over 15 timesteps that represent the movement in three axes for
the skeleton joints of a human model.

4.2. Energy Savings Simulation

An experiment consisting of four simulations is proposed to evaluate the power con-
sumption; these were made using LadybugTools V1.5.0 by Ladybug Tools LLC, USA. The
experiment first consisted of two simulations comparing the estimated energy consumption
of a living room with an HVAC system, as described in Section 3.3, for a constant met value
set to 1.1 and with variable met values, as described in Table 1, emulating the process of
activity recognition, as described in Section 3.1. The simulation is configured to evaluate
the parameters every 15 min over a period of 24 h for 7 days (a complete week) but only
the time between 7:00 to 21:00 was considered for the results as it is the busiest time for
that specific room. The results given by the simulations are:

• Condition: Value between −3 and +3 representing the PMV index within the thermal
sensation scale.

• Comfort: Binary value that evaluates whether the occupant is comfortable (1) or not
(0) with the current environmental and occupant-related variables according to the
adaptive thermal comfort model.

• Energy: Energy consumed in kWh.

The results for the first simulation with constant met values and the second simulation
with variable met values are listed in Table 8.

Table 8. Results of first and second simulation.

(No Energy Saving Strategy) Met = 1.1 Variable Met

Condition (average) −0.7347 0.3367
Comfort (sum) 104 72
Energy (sum) 7.597 7.54

The ideal average of the condition should be 0 as it would represent that for every
period of 15 min, the thermal sensation is “normal”. More positive values would represent
that the thermal sensation is “hotter” and more negative values would represent a “colder”
sensation. For a constant met value, the general sensation would be slightly cold; as for the
variable met simulation, the sensation is almost normal with a little tendency to be a bit
hot.

The result of the sum of comfort values represents how many periods of fifteen minutes
the occupant felt comfortable according to the adaptive thermal comfort model. The higher
the value the more comfortable the occupant is. It can be observed that the simulation with
constant met values has a higher value.

The sum of energy consumed in kWh is the third observable result. For both simula-
tions the consumption is almost the same with a difference of 0.0567 kWh.

The second part of the experiment consists of two more simulations. This time the
proposed strategy for saving energy described in Section 3.3 was applied to the setpoint
limits of the thermostat and the other parameters remain the same as for the first two
simulations. The results for these new simulations are shown in Table 9.

Table 9. Results of third and fourth simulation.

(With Energy Saving Strategy) Met = 1.1 Variable Met

Condition (average) −0.6581 0.3648
Comfort (sum) 134 61
Energy (sum) 5.0557 6.5234
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The condition result shows that using a constant met value, the average sensation for
the whole week is colder than having a variable met. In comparison with the previous
simulations, for the constant met the condition improved as it got closer to zero.

The sum of comfort for a constant met doubled for the variable met. As for comparing
with the first simulations, the comfort increased for a constant met but decreased for
variable met.

The sum of energy consumption is almost 1.5 kWh less for the constant met simulation
than for the variable met simulation. However, in comparison with the first two simulations,
both decreased at least 15% with the energy saving strategy proposed.

5. Discussion

This paper focuses on three main aspects to propose a strategy to try to reduce energy
consumed by a HVAC system in a building without compromising the thermal comfort of
the occupant. The first one considers a dynamic met value that can change according to the
activity carried out by the occupant in the calculations of comfort. Moreover, the activity
must be detected on-line to let the thermal comfort models update as the occupant-related
variables change. Therefore, the way to go is a vision-based system, as deep learning
techniques have significantly progressed [46] and offer less intrusive sensing.

The second aspect is using a depth sensor-based system to recognize human activities
of daily living to avoid the main challenges an RGB-based classification system faces. With
the presented methodology that uses a skeleton model with 3D data of 32 joints to make a
classification using a simple LSTM network, it is shown that the recognition of activities can
be achieved with high accuracy and with less data for training in comparison with similar
public available datasets [46]. Moreover, the manipulation of 3D information allowed the
recognition without affecting the position in which the camera was placed, the orientation
of the occupant with respect to the camera when carrying out the activity or even the
physiological differences of the occupants, as could be demonstrated in the tests carried
out and obtaining a high level of accuracy.

The last aspect is the strategy to save energy by increasing or decreasing by 1 ◦C the
heating and cooling setpoints of a connected thermostat. The proposed strategy showed
in the simulations that the comfort level for a constant met value is higher than the one
for a variable met value, showing that actual models are not giving a real perspective
of the occupant’s comfort as they are estimating higher values of comfort when in real-
life scenarios depending on the activity of the occupant, the comfort values should be
lower. The results also showed that the energy consumption decreased by 33% compared
to the simulations with constant met value and 14.2% comparing with the variable met
values simulations. As the variable met simulation offers more realistic information it is
important to notice that the 14.2% of energy saving comes with a decrease of 11 points
in comfort, meaning that in eleven time slots of 15 min of the whole week the occupant
felt not comfortable; that is, 165 min less than without using the energy saving strategy.
A 14.2% of energy saving for a 1.63% decrease in comfort can be considered an acceptable
strategy; moreover, the decrease in comfort can be improved by introducing the capacity of
changing occupant’s clothes in future work.

The implementation of an on-line estimation of metabolic rate on a connected thermo-
stat opens the possibility to implement energy saving strategies that currently are limited to
just the information obtained by the environment sensors allocated in the thermostat. The
simulation presented in this paper shows a strategy that reaches 14% of energy saving com-
pared to a strategy that does not include the on-line metabolic rate information, showing
the importance of adding the information of all thermal comfort parameters. Furthermore,
incorporating a vision-based sensing system allows not just to incorporate the metabolic
rate information to the thermal comfort analysis but also the clothing insulation of a person
to increase even more the thermal comfort estimations.
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6. Conclusions

In this paper, a preprocessing methodology for using 3D data from a depth sensor
was proposed. By using the preprocessed data, the classification algorithm that used an
LSTM neural network was able to effectively classify three different common activities of
daily life to later assign them a MET value. The activity recognition process validates the
ability to identify the MET values on-line inside a smart home or smart building. Moreover,
the simulation results for energy savings with a variable MET value as part of the comfort
model reduced the energy consumption by 14% without significatively affecting the comfort
of the occupants. Therefore, it can be concluded that the inclusion of the on-line metabolic
rate information offers a more accurate picture of the thermal comfort analysis to propose
energy saving strategies based on HVAC systems. Moreover, the proposed strategy showed
positive results for saving energy and can be improved by including clothing detection
based on the same vision system.

As this paper only considered three activities and a fixed set of rules for the energy
saving strategy, our future work can include the increment of the activity database and
the investigation of a reinforcement learning (RL) algorithm to improve the energy saving
strategy. This strategy could learn to maximize comfort and minimize energy consumption
by modifying the connected thermostat setpoint.
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