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Abstract: A smart city is a city that binds together technology, society, and government to enable 

the existence of a smart economy, smart mobility, smart environment, smart living, smart people, 

and smart governance in order to reduce the environmental impact of cities and improve life qual-

ity. The first step to achieve a fully connected smart city is to start with smaller modules such as 

smart homes and smart buildings with energy management systems. Buildings are responsible for 

a third of the total energy consumption; moreover, heating, ventilation, and air conditioning 

(HVAC) systems account for more than half of the residential energy consumption in the United 

States. Even though connected thermostats are widely available, they are not used as intended since 

most people do not have the expertise to control this device to reduce energy consumption. It is 

commonly set according to their thermal comfort needs; therefore, unnecessary energy consump-

tion is often caused by wasteful behaviors and the estimated energy saving is not reached. Most 

studies in the thermal comfort domain to date have relied on simple activity diaries to estimate 

metabolic rate and fixed values of clothing parameters for strategies to set the connected thermo-

stat’s setpoints because of the difficulty in tracking those variables. Therefore, this paper proposes 

a strategy to save energy by dynamically changing the setpoint of a connected thermostat by human 

activity recognition based on computer vision preserving the occupant’s thermal comfort. With the 

use of a depth sensor in conjunction with an RGB (Red–Green–Blue) camera, a methodology is pro-

posed to eliminate the most common challenges in computer vision: background clutter, partial 

occlusion, changes in scale, viewpoint, lighting, and appearance on human detection. Moreover, a 

Recurrent Neural Network (RNN) is implemented for human activity recognition (HAR) because 

of its data’s sequential characteristics, in combination with physiological parameters identification 

to estimate a dynamic metabolic rate. Finally, a strategy for dynamic setpoints based on the meta-

bolic rate, predicted mean vote (PMV) parameter and the air temperature is simulated using Ener-

gyPlus™ to evaluate the energy consumption in comparison with the expected energy consumption 

with fixed value setpoints. This work contributes with a strategy to reduce energy consumption up 

to 15% in buildings with connected thermostats from the successful implementation of the proposed 

method. 

Keywords: energy savings; recurrent neural networks; metabolic rate; thermal comfort; depth  

sensor; computer vision 

 

1. Introduction 

The International Energy Agency (IEA) estimated that buildings have become the 

third largest energy consumer in the world [1]. Generally, energy usage in buildings is 

expended on lighting, electrical equipment, and heating, ventilation, and air conditioning 

(HVAC) systems. HVAC systems, which play an important role in ensuring occupant 

comfort, are among the largest energy consumers in buildings with up to 60% of the total 
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energy consumption in households [1]. Performance enhancements to traditional HVAC 

systems therefore offer an exciting opportunity for significant reductions in energy con-

sumption. 

Several studies show that almost 50% [2] of USA’s energy usage in buildings is uti-

lized for indoor climate conditioning. Moreover, the worldwide energy consumption by 

HVAC equipment also shows considerable high values. In Europe, they represent around 

40% of energy consumption [3]. In China, about 20% of the total energy usage in the year 

2004 is reported with a constant annual increase [4]. In the Middle East, more than 65% of 

energy consumption is reported for use of cooling systems [5] and in Mexico, the cooling 

system makes up to 44% of the total energy consumption [6]. 

The increase in building energy consumption is highly affected by building design, 

change of occupant comfort standard, building operation, maintenance, and HVAC sys-

tem design. Especially important has been the intensification of energy consumption in 

HVAC systems, which has now become almost essential in parallel to the spread in the 

demand for thermal comfort, considered a luxury not long ago. All those aspects should 

be conceived with energy consumption and occupant comfort in mind. 

Thermal comfort is all about human satisfaction with the thermal environment. The 

design and calculation of air conditioning systems to control the thermal environment in 

a way that also achieves an acceptable standard of air quality inside a building should 

comply with the American Society of Heating, Refrigerating and Air-Conditioning Engi-

neers (ASHRAE) standard 55-2017 [7]. This standard acknowledges the two main research 

areas in thermal comfort: thermal physiology and human behavior. 

As for the first area, it includes two common indicators called predicted mean vote 

(PMV) and the predicted percentage of dissatisfied (PPD) known as the Fanger’s model 

[2,3]. The PMV predicts the mean value of the votes on the seven-point thermal sensation 

scales: 

 +3 Hot; 

 +2 Warm; 

 +1 Slight warm; 

 0 Neutral; 

 −1 Slight cool; 

 −2 Cool; 

 −3 Cold. 

On the other hand, the PPD represents the prediction of the percentage of occupants 

that feel uncomfortable and its value ranges from 0% to 100%. Thus, an acceptable range 

of thermal comfort goes from slight warm to slight cool for 20% of dissatisfied for the 

residential sector [2]. The ASHRAE-55 calls this the PMV-PPD model described by the 

Fanger’s equation, considered to be the milestone of the development of a thermal model 

[8]: 

� − � =  � +  � +  � +  (����  +  ����)  +  � (1)

where:  

M: the metabolic rate; 

W: mechanical work is done; 

C: convective heat loss from the clothed body; 

R: radiative heat loss from the clothed body; 

E: evaporative heat loss from the clothed body; 

Cres: convective heat loss from respiration; 

Eres: evaporative heat loss from respiration; 

S: the rate at which heat is stored in the body tissues. 

The ASHRAE-55 standard uses empirical tables with common activities and their re-

spective met units (metabolic rate) and clothing insulations for different garments in clo 
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units. However, the use of fixed value tables has some limitations in real time analysis 

and only works for statistical analysis or estimations. 

The second area is related to a hypothesis in which the perception of thermal comfort 

is related to outdoor weather conditions, and it is based on adaptive opportunities of oc-

cupants to control their own comfort [1,4,9]. This thermal adaptation was defined by three 

categories [10]: behavioral adjustment which includes personal modifications such as re-

moving garments, or doing physical activity, and external modifications such as opening 

a window or changing the air conditioner; physiological adaptation referring to the accli-

matization or even genetic adaptation; psychological adaptation refers to the expectations 

due to past experiences [10]. 

Both PMV and the adaptive models are aggregate models, which means they are de-

signed to predict the average thermal comfort of large populations and ultimately present 

limitations in real case scenarios [11]. As many studies have shown [12–15], the measure-

ment of thermal comfort in office buildings is limited by the subjectivity and high depend-

ency on the six mandatory parameters used for heating and air conditioning setpoint con-

trols. Four variables are related to the environment: 

 Air temperature; 

 Air speed; 

 Humidity; 

 Radiant temperature. 

Two variables are related to the occupant: 

 Metabolic rate; 

 Clothing insulation. 

Furthermore, the work in [16] highlights the difficulty and the cost of obtaining some 

of these variables. For example, mean radiant temperature and air speed are two of the 

environmental variables that are not typically monitored as they require expensive instru-

ments for measuring [16]. Moreover, the two personal variables metabolic rate and cloth-

ing insulation are said to be impossible to collect in real time [17]; hence, the process is 

simplified with the assumed values or fixed set of data collected from laboratory or field 

measurements, which ultimately causes erroneous estimations [14]. 

Hence, the contribution of this paper is focused on a methodology for an on-line es-

timation of the metabolic rate of a single occupant to improve simulations of energy con-

sumption in smart homes with an HVAC system, as there is still not a way to measure the 

two variables of thermal comfort related to the occupant: metabolic rate and clothing in-

sulation [17]. The metabolic rate estimation is based on Human Activity Recognition with 

RGB-D data using a skeleton-based model over a 3D representation with a recurrent neu-

ral network as the classification method. The RGB-D data are intended to reduce privacy 

issues in comparison with the RGB data, as the 3D skeleton model is used to reduce data 

used for the classification method compared with a pixel’s image data. The recognized 

activity is paired with a metabolic rate value that is used as an input variable for the hu-

man-centered approach of the adaptive thermal comfort on a simulation for comparing 

energy savings between setpoints with fixed values and adaptable setpoints. 

This paper is organized as follows: Section 2 shows the literature overview for human 

activity recognition. Section 3 describes the materials and methods used for the proposal. 

Section 4 shows the results of the proposal. Finally, Section 5 discusses and presents the 

improvements from implementing depth sensors for activity recognition and its impact 

on energy consumption analysis in HVAC systems. 

2. Literature Overview 

Thermostats that control HVAC systems are employed in about 85% of households; 

thus, they represent an opportunity for saving energy at home. Initial approaches for sav-

ing energy through connected thermostats are presented with gamification techniques 

[18,19], data analysis [20], behavior analysis [21], and usability of interfaces [22–24]. 
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However, a first approach using the adaptive model to measure the differences between 

increasing or decreasing the thermostat setpoint depending on the season was analyzed. 

Reductions and thermal comfort were achieved. The research suggested more information 

about the householder and how, for instance, clothing insulation and metabolic rates af-

fect thermal comfort. Hence, in [25,26], the authors proposed to measure thermal comfort 

in smart homes through dynamic clothing insulation with cameras; the activities were 

inferred depending on the position of the householder and the clothing insulation of 

twelve homes. They found that energy reductions are achievable and that tailored strate-

gies were required as not all the homes achieved thermal comfort, and there were homes 

where the comfort was not met and the energy consumption increased. Therefore, in 

[27,28], they proposed using cameras to measure the clo value dynamically through a 

Convolutional Neural Network (CNN) model classification and obtain the thermal com-

fort range of a household in Concord, California. These approaches considered only the 

clo value and assumed a metabolic rate of 1.0. Furthermore, in [25,26], the authors pointed 

out the need to measure the activities as well to obtain dynamic thermal comfort models 

instead of conventional models. 

Human Activity Recognition (HAR) requires a series of physical actions that con-

struct one physical activity, where a physical action is defined as any bodily movement 

produced by skeletal muscles and the activity itself is the sequence of those produced 

movements [29]. HAR research focuses on types of activities that humans perform within 

a time interval; thus, it is based on sensors and/or video data analysis. Moreover, the two 

types of sensors found in HAR are: wearables and ambient sensors [30]. 

Wearables sensors are attached to the person’s body to measure a given attribute 

such as electrocardiogram (ECG), location, temperature, motion, electroencephalogram 

(EEG), etc. [31–34]. All the data of these sensors may be sent to another device for pro-

cessing; regularly this device can be a computer, an embedded system, or a smartphone. 

Moreover, the smartphone itself can be used as a wearable sensor because of all the tech-

nological progress made on them [35–37]. The main disadvantages of wearables are they 

require batteries, thus charging them may be annoying for the user; some data may be 

synchronized manually because of no communication between them; and finally, the user 

may feel them intrusive so they may not wear them at all [38]. 

On the other hand, ambient sensors are not intrusive and may be connected directly 

to a source of power. Video cameras today are low-cost devices to obtain the necessary 

data over time. A sequence of images is directly used to make human activity recognition 

and they need to be processed by a computer. The disadvantage of the camera is that there 

may be privacy issues; therefore, a strong acceptance of this technology may be needed 

by the user. Other ambient sensors (also known as binary sensors) such as motion detec-

tors, pressure sensors, contact switches, etc., can be an effective way to track human ac-

tivity [39,40]. 

The field of HAR has become an important research area due to its increasing number 

of applications and therefore, recent surveys about this field offer a precise description of 

state-of-the-art methods, publicly available databases, and actual research challenges 

[30,41–44]. The vision-based HAR research is divided based on data type; the most com-

mon is Red, Green, and Blue (RGB) data from a normal camera (CCTV, webcam, etc.) and 

the Red, Green, Blue and Depth (RGB-D) data that incorporate depth information. The 

RGB data have achieved lower accuracy compared to the RGB-D data but the configura-

tion complexity, high cost, and the need for big datasets of the RGB-D data are the reasons 

why RGB data is mainly used [45]. 

A key component for vision-based HAR is human body modeling. The three most 

common types are: skeleton-based model, contour-based model, and volume-based 

model [46]. The skeleton-based model represents a set of joint locations following a human 

body skeletal structure; this model is visually identified as a stick-figure. The contour-

based model contains the contour information of the human body, and it is often repre-

sented with rectangles of a person silhouette. Lastly, the volume-based model is 
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represented in 3D by geometric shapes (cylinders, conics, cubes) or meshes that resemble 

a human body [47]. 

Depending on the data type and the human body model used for HAR, a 2D or 3D 

representation of the data can be selected to work with. Regarding the data type, the RGB 

only offers information in 2D while the RGB-D can work with 2D and 3D data represen-

tation. On the other hand, regarding human body modeling the skeleton-based model can 

be used with 2D and 3D data, the contour-based model with 2D data and the volume-

based-model with 3D data [47]. 

Finally, the most used methods of classification for human activities can be divided 

in two: conventional neural networks and other machine learning methods [41]. Machine 

learning methods such as K-nearest neighbors (KNN), Support Vector Machines (SVM), 

decision trees, and Hidden Markov Models (HNN) are mainly used with wearables sen-

sors and some ambient sensors; while neural networks methods such as Artificial Neural 

Networks (ANN), Convolutional Neural Networks (CNN), and Recurrent Neural Net-

works (RNN) are used with vision-based sensors [41,43]. 

Figure 1 depicts a diagram with the previously described classification of vision- 

based HAR-related works based on: data representation, data type, body modeling and 

methods for classification. Moreover, the figure shows the characteristics this paper fo-

cuses on. 

 

Figure 1. Vision-based HAR components classification based on the literature overview. 

3. Materials and Methods 

Figure 2 presents the general methodology proposed for obtaining MET values de-

pending on the activity detected on-line. A MET is a ratio of the working metabolic rate 

relative to the resting metabolic rate, where one MET is the energy spent sitting at rest. 

First, the data preprocessing consists of obtaining the 3D-axis joints information of a hu-

man skeleton shape detected by a depth vision sensor. This 3D data is then transformed 

to change orientation and size in a new reference 3D plane. Next, the transformed 3D data 

is input in a Recurrent Neural Network with a classification layer that detects the activity 

performed by a human; this network needs to be trained with a custom-created database. 

Finally, a MET value is obtained depending on the activity detected. On the other hand, a 

simulation of energy usage on a house with an HVAC adaptive setpoint based on the MET 

value over a whole week is made to get an estimated energy saving that can be achieved 

with the proposed methodology. 
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Figure 2. General methodology for estimating an on-line MET value with an RNN. 

3.1. Data Preprocessing 

The data preprocessing consists of five steps that take a combination of image and 

depth information into signals that can be classified to recognize different activities. Fig-

ure 3 depicts the five steps of the proposed methodology. Each step is described next. 

 

Figure 3. Proposed five steps for image preprocessing. 

The first step is to extract the joints in a 3D coordinate system of a skeleton model 

using the Azure Kinect Body Tracking SDK (Software Development Kit). This uses the 

depth sensor’s information built in the Kinect Azure and an ANN to track multiple human 

bodies at the same time. Then, the preprocessing is made with the 3D coordinate infor-

mation of each joint for the objective to make the data invariant to different orientations 

towards the camera. 

The skeleton model consists of 32 joints (Figure 4a) over a 3D frame of reference that 

depends on the actual position of the camera as shown in Figure 4. The 3D coordinate 

system is represented as metric [X, Y, Z] coordinate triplets with units in millimeters. The 

origin [0, 0, 0] is located at the focal point of the camera with the orientation such that the 

positive X-axis points right, the positive Y-axis points forward, and the positive Z-axis 

points up. 

 

Figure 4. (a) Skeleton model joints; (b) skeleton model detected over the RGB image with its 3D 

coordinate reference. 
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As the joint position and orientation are estimates relative to the global depth sensor’s 

frame of reference, the second step of the preprocessing is to translate the skeleton joints 

to a new reference centered on the origin of the coordinate plane to eliminate distance 

variability of the subject. Figure 5 depicts the original joints data on a side view (plane YZ) 

and a top view (plane XY) with the translated data, which now is centered on the joint 

corresponding to the pelvis on the origin (0, 0, 0). In the same Figure 5, it can be noticed 

that the 3D model is inclined in reference to plane XY, although the real position of the 

body is in perpendicular position to the floor (standing). This is due to the actual position 

of the camera/depth sensor in reference to the floor. Hence, the next step is to correct the 

pitch and roll rotations due to the position of the camera/depth sensor to make the activity 

recognition independent of where the camera/depth sensor is located. Figure 6 depicts the 

roll and pitch angles referenced to the camera and how it can affect the perspective view 

of the person. 

 

Figure 5. Step 2: Joints translation to the origin of the coordinate plane (0, 0, 0) on the pelvis joint. 

 

Figure 6. Pitch and roll angles from the camera and human body perspective correction. 

The correction of the position of the camera/depth sensor uses the Inertial Measure-

ment Unit’s (IMU) accelerometer of the device with three axes to determine the angle in-

dividually of each axis. The reference position of the device is taken with the X- and Y-
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axes in the plane of horizon with 0 g field and the Z-axis orthogonal to the horizon with 1 

g field in rest. 

To perform a rotation in Euclidean space, a rotation matrix is used to transform a 

vector such as the earth’s gravitational field vector g. In a 3D coordinate system, the rota-

tions of the X-, Y- and Z-axes in a counterclockwise direction when looking towards the 

origin are represented by the matrices in Equations (2)–(4) [48]: 

��(�) = �

1 0 0
0 cos(�) sin(�)

0 − sin(�) cos(�)
� , (2)

��(�) = �
cos(�) 0 − sin(�)

0 1 0
sin(�) 0 cos(�)

� , (3)

��(�) = �
cos(�) sin(�) 0

− sin(�) cos(�) 0
0 0 1

� , (4)

Any rotation can be given as a composition of rotations about three axes (Euler’s ro-

tation theorem), thus the matrix R with the order roll, pitch, and yaw and with the effect 

of the earth’s gravitational field of 1 g initially aligned downwards along the Z-axis is 

shown in Equation (5) and solved in (6) and (7): 

���� �
0
0
1

� = ��(�)��(�)��(�) �
0
0
1

� (5)

���� �
0
0
1

�

= �

cos � cos � cos � sin � − sin �
cos � sin � sin � − cos � sin � cos � cos � + sin � sin � sin � cos � sin �
cos � cos � sin � + sin � sin � cos � sin � sin � − cos � sin � cos � cos �

� �
0
0
1

� 

(6)

���� �
0
0
1

� = �

−sin �
cos � sin �
cos � cos �

� (7)

Rewriting Equation (7) relating the normalized accelerometer reading A to the rota-

tion angles gives Equation (8): 

�

−sin �
cos � sin �
cos � cos �

� =
1

���
� + ��

� + ��
�

�

��

��

��

� (8)

Thus, the roll and pitch angles equations can be obtained solving Equation (8) with 

the normalized accelerometer reading as shown in Equations (9) and (10) [49]: 

� = tan�� �
��

���
� + ��

�
� , (9)

� = ����� �
��

���
� + ��

�
� , (10)

where: 

Ax—normalized accelerometer reading in X-axis; 

Ay—normalized accelerometer reading in Y-axis; 

Az—normalized accelerometer reading in Z-axis. 
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Figure 7 shows the result of step 3 that corrects the human skeleton position by ap-

plying pitch and roll rotations. The rotation is applied to the skeleton with Euler angle 

transformations [50] with the parameters previously calculated from the accelerometer. 

This process is only made once at starting the activity recognition as it is assumed the 

depth sensor is in a fixed position. 

 

Figure 7. Step 3: Pitch and roll angles correction. 

Step 4 is to make a yaw rotation of the skeleton (through the Z-axis) to make it always 

face front to the depth sensor (anatomically anterior position) as Figure 4a. Figure 8 de-

picts the implemented rotation of the skeleton from a side view (YZ plane) and the top 

view (plane XY). This process takes the relative position of the left and right clavicle joints 

forming a vector that should be parallel to the X-axis and the nose-head joint vector point-

ing negative into the Y-axis. In this way the invariance in position of the skeleton is 

achieved to be always in the same reference. The last step of the transformations is to 

eliminate the variance of heights. 

 

Figure 8. Step 4: Yaw rotation on skeleton to face on −Y direction (anatomically anterior position). 
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As the reference values of the joints are in millimeters, the subjects’ measures add a 

variable to the classification process that should be removed. Figure 9 depicts the result 

of step 5, the normalization of all values from −1 to 1, applying Equation (11) to each joint’s 

data. 

 

Figure 9. Step 5: Normalization of skeleton joint values between −1 and +1 (scaling). 

�� = 2
� − min(�)

max(�) − min(�)
. (11)

Finally, this process is repeated for each frame of the captured data as a set of frames 

will be required to detect the activity. The time series generated with the data of each of 

the three axes of each joint is used as one feature for the Recurrent Neural Network. Figure 

10 depicts the data that make up the input for the RNN, the sequential data of each axis 

for every joint. 

 

Figure 10. Frame sequence representing time series data for three axes of each joint. 

3.2. RNN + Activity Classification 

Recurrent Neural Networks (RNN) are typically used to solve time series analysis 

problems, hence the use of this type of network in the Human Activity Recognition prob-

lem. 
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Figure 11 depicts a representation of an RNN where Xt is some input in the form of 

a vector representing a time series, ht is the output hidden state vector, and the blue line 

is the loop representing that the output is fed back as an input in the network. Unrolling 

the basic representation of the RNN, it is clear that the loop allows information to be 

passed from one step of the network to the next, where t represents the number of obser-

vations in time. Therefore, an RNN consists of a function F dependent on the past state 

vector and the current input feature which outputs the current hidden state vector ht, as 

stated in Equation (12): 

 

Figure 11. Recurrent Neural Network unrolled equivalent. 

ℎ� = �(��, ℎ���) (12)

However, the RNN is highly susceptible to the vanishing gradient problem because 

the hidden layer of one observation is used to train the hidden layer of the next observa-

tion, meaning that the cost function of the network is calculated for each observation [51]. 

Therefore, the cost function calculated at a deep layer will be used to change the weights 

of neurons at the shallow layers; because of the multiplicative nature of the backpropaga-

tion algorithm, the gradients calculated at those deep layers either have too small or too 

large of an impact on the weights of neurons in the shallow layers [51]. This effect is de-

picted in Equation (13), where the gradient on the current state vector hc from the past 

state vector hp is the product of gradients for all intermediate state vectors: 

�ℎ�

�ℎ�

= �
�

�ℎ�����

�(����, ℎ�����)

�����

���

 (13)

There are many techniques to try to solve the vanishing gradient problem [52,53], but 

the most important is a specific type of network called Long Short-Term Memory Net-

works (LSTMs). The LSTM solves the problem by setting the weight initialization to 1 but 

also adding new components to the traditional RNN architecture: forget gate, input gate, 

cell state, and output gate. Figure 12 depicts the difference between a normal RNN (Figure 

13a) and an LSTM architecture (Figure 12b). 
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Figure 12. Comparison between RNN and LSTM. (a) RNN diagram and (b) LSTM diagram. 

 

Figure 13. Implemented classification network. (a) Python code; (b) architecture of neural network. 

With the forget layer, operated by a sigmoid function, the magnitude of the gradient 

of LSTM does not decrease, thereby avoiding the gradient problem [54]. The output of the 

forget layer is between 0 and 1 for each value in the cell state, where a 0 represents to 

completely forget the value while a 1 represents to totally keep the state as shown in Equa-

tion (14): 

�� = ���� ∙ [ℎ���, ��] + ��� (14)

The next part handles what information is stored in the cell state by including the 

input gate layer with a sigmoid function and a tanh function that creates the vector for 

new ��
�  candidate values [54]. Therefore, the updated cell state is described by Equation 

(15): 

�� = �� ∗ ���� + �� ∗ ��
�  (15)

Finally, the output gate is a filtered version of the cell state evaluated by a sigmoid 

function that decides what parts of the cell states are used [54]. Hence, the output ht is 

described in Equation (16): 

ℎ� = �(�� ∙ [ℎ���, ��] + ��) ∗ tanh(��) (16)

As for the specific architecture of the LSTM used in this paper, the model is defined 

as a sequential Keras model with a single hidden layer and a dropout layer of 10% with 

the goal of reducing overfitting of the model to the training data. A dense, fully connected 

layer is implemented to interpret the features extracted by the LSTM and its final output 

layer implements a softmax function to classify the three activities: raising hands, sitting, 

and walking. The inputs of the network consist in 96 data that represent 3 axis values for 

each of the 32 joints. Figure 13 depicts the architecture described and the Python code for 

implementation. 
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3.3. Study Case: Metablic Rate Dynamic Analysis Applied on Thermostats 

A dataset of daily activities for periods of 15 min during a week’s time was obtained 

from the RNN classification. Thus, 672 observations were obtained with 3 different activ-

ities. Then, two energy simulations were performed during the extremely hot week for a 

household located in Concord, California. The first simulation was the baseline that con-

sidered the building, electric loads, and occupation schedules presented in [55] with a 

fixed value of metabolic rate. This home has two conditioning zones: bedroom two and 

living room zones. This paper analyzed the living room. The cooling setpoint was 24.4 °C, 

and the heating setpoint was 21.7 °C, the same initial values considered in [27]. As the 

extremely hot week was during the summer period, the clo value considered was 0.5 [7]. 

The second simulation considered the three different activities in the dining and living 

zone. The energy model was simulated using LadybugTools V1.5.0 software plugin for 

Grasshopper by Ladybug Tools LLC, USA [56,57]. 

Then, a strategy to save energy considering thermal comfort was proposed to be com-

pared to the first two simulations. This strategy consisted of increasing or decreasing the 

cooling and heating setpoints by 1 °C [58,59] or even turning off the thermostat, depend-

ing on the following considerations: 

1. The difference between outdoor temperature and operative temperature. As the op-

erative temperature tends to match the outdoor temperature, we will call heating 

tendency when the outdoor temperature is higher than the operative temperature 

and cooling tendency otherwise. 

2. The thermal sensation scale evaluation with the PMV equation [60]. If the thermal 

sensation at a particular moment is negative, the occupant feeling tends to be cool 

while a positive value means the occupant feeling tends to be hotter. 

3. Four rules are obtained with the combination of the two previous considerations. If 

the natural tendency is heat and the occupant sensation is negative, the AC is turned 

off, but if the occupant sensation is positive then the setpoints decrease by 1 °C. More-

over, if the natural tendency is cooling and the occupant sensation is negative, the 

setpoint is increased by 1 °; on the contrary, if the occupant sensation is positive, then 

the AC is turned off. 

This strategy is evaluated with two more simulations, the first one using the previ-

ously described baseline and the second considering the same three activities’ recognition 

of the last simulations. Finally, both results are compared for energy consumption and 

total comfort state. 

Moreover, those activities were converted into W per person because the energy sim-

ulation requires that measure. Table 1 depicts these activities, the metabolic rate, and the 

W/person. The W/person was calculated by multiplying 58.1 W/m2 equal to 1 met, and 

1.8m2 is equal to the skin surface of an average individual of 1.70 m in height and 68 kg 

[61]. Table 1 depicts these activities, the metabolic rate, and the W/person. 

Table 1. Activities considered for the energy simulation. 

Activity Met W/Person 

Desk work 1.8 188 

Standing/walking 2.5 261 

Cleaning light 2.3 241 

Out 0 0 

Finally, a comparison between the base model and the dynamic activities model was 

performed. This comparison included the differences between the total hours of thermal 

comfort and the total kWh HVAC consumption. 
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4. Results 

This section presents the results of two simulated processes, first the activity recog-

nition depicted in Figure 2 and then the energy saving simulation with the dynamic set-

point for HVAC systems. First, the activity recognition results are shown with the use of 

an RNN and how a small dataset of activities was created to train the neural network. 

Then, the evaluation of a simulated model of a house with an HVAC system to obtain an 

analysis of energy savings between a model with a fixed setpoint and one with an adap-

tive setpoint is presented. 

4.1. Activity Recognition 

To show the capability of an RNN to classify activities of daily living (ADL) with the 

proposed methodology, a small dataset of three activities (sitting, walking, raising arms) 

was created as most of the available datasets are vision-based (images) or sensor-based as 

reviewed by [62,63]. 

The total data gathered for training included 201,600 values as shown in Table 2. This 

corresponds to 40, 50 and 50 repetitions of each of the three activities to train: sitting, 

walking, and raising arms. Each repetition consists of 15 timesteps at 2.5 frames per sec-

ond; and each observation has 96 values corresponding to the x-axis, y-axis, and z-axis 

values for 32 joints of a 3D skeleton human model. The activities were performed by four 

different subjects indistinctly with parameters shown in Table 3. 

Table 2. Total data for training the RNN. 

Activity Repetitions 
Timesteps per 

Action 

Joints per 

Observation 

Axes per 

Joint 

Recorded 

Data 

Sitting 40 15 32 3 57,600 

Walking 50 15 32 3 72,000 

Raising arms 50 15 32 3 72,000 

    Total 201,600 

Table 3. Training subject’s physiology information. 

Subject Gender Age Height [cm] Weight [kg] 

Person A Male 26 1.67 68 

Person B Male 25 1.71 72 

Person C Female 29 1.60 69 

Person D Male 24 1.81 61 

Of the total data gathered, the values of five joints were discarded: nose, eye left, eye 

right, ear left, and ear right as they are not necessary since they do not provide relevant 

information for the detection of the activity. 

Figure 14 depicts the office plan where the training and test data were gathered and 

the four different positions where the device was located. For the training data, the cam-

era/depth sensor was placed on position 3, while for the testing data the device was placed 

on the four positions marked to evaluate if the proposed methodology can deal with dif-

ferent view perspectives for classifying the activity. Table 4 shows the position character-

istics for each location referenced to the camera/depth sensor. Figure 15 shows the posi-

tion 2 (a) and position 3 (b) different view perspectives for the testing data. 
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Figure 14. Depth sensor locations blueprint for testing and training inside an office, each number 

indicates where the depth sensor was located 

Table 4. Camera/depth sensor location information. 

Location Height (cm) Pitch [°] Roll [°] 

1 173 18.9 −1.8 

2 87 −2.4 1.2 

3 182 20.2 2.8 

4 121 6.3 1.3 

 

Figure 15. (a) Camera/depth sensor position 2 view; (b) camera/depth sensor position 3 view. 

Moreover, different levels of ambient lightning were used for the testing data. For 

measuring the light, precision light sensor 1127 was used. Three levels of lightning for 

each different position of the camera/depth sensor were tested: fully illuminated (513 lux), 

partially illuminated (235 lux) and dark (4 lux). 

The data recorded for evaluating the model in which 15, 17 and 16 repetitions for 

sitting, walking, and raising arms respectively were recorded are shown in Table 5. The 

data were recorded in different camera/depth sensor positions (Figure 14), different light-

ing, with partial occlusions and with three different subjects (Table 6) as depicted in Figure 

16. 

Table 5. Total data for testing the RNN. 

Activity Repetitions 
Timesteps per 

Action 

Joints per 

Observation 

Axis per 

Joint 

Recorded 

Data 

Sitting 15 15 32 3 21,600 

Walking 17 15 32 3 24,480 

Raising arms 16 15 32 3 23,040 

    Total 69,120 
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Figure 16. (a) Partial occlusion for sitting on subject 1; (b) raising hands in different positions from 

the trained data; (c) different lighting; (d) sitting position for subject 2. 

Table 6. Test subject’s physiology information. 

Subject Gender Age Height [m] Weight [kg] 

Person A Male 22 1.77 72 

Person B Male 44 1.72 80 

Person C Male 34 1.64 65 

Because of the stochastic nature of neural networks, different models will result when 

training with the same data configuration. Therefore, the evaluation of the RNN model 

was repeated multiple times for a specific number of epochs to be trained and then 

changed to compare the results. Table 7 summarizes the mean and standard deviation of 

the performance of the model for 5, 10, 15 and 20 epochs. The mean gives the average 

accuracy of the model on the dataset, whereas the standard deviation gives the average 

variance of the accuracy from the mean. 

Table 7. Performance of the RNN model. 

Epochs Mean Standard Deviation 

5 93.33% 6.166 

10 94.79% 3.125 

15 90.21% 6.458 

20 91.88% 4.792 

After observing the results, the best values correspond to the model for 10 epochs of 

training. In addition, Figure 17 depicts a confusion matrix showing the performance of 

the model with the test data. 
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Figure 17. Confusion matrix results. 

The results obtained with the trained model show a very high accuracy and validates 

the methodology proposed for activity recognition where instead of doing image classifi-

cation we only use 81 signals over 15 timesteps that represent the movement in three axes 

for the skeleton joints of a human model. 

4.2. Energy Savings Simulation 

An experiment consisting of four simulations is proposed to evaluate the power con-

sumption; these were made using LadybugTools V1.5.0 by Ladybug Tools LLC, USA. The 

experiment first consisted of two simulations comparing the estimated energy consump-

tion of a living room with an HVAC system, as described in Section 3.3, for a constant met 

value set to 1.1 and with variable met values, as described in Table 1, emulating the pro-

cess of activity recognition, as described in Section 3.1. The simulation is configured to 

evaluate the parameters every 15 min over a period of 24 h for 7 days (a complete week) 

but only the time between 7:00 to 21:00 was considered for the results as it is the busiest 

time for that specific room. The results given by the simulations are: 

 Condition: Value between −3 and +3 representing the PMV index within the thermal 

sensation scale. 

 Comfort: Binary value that evaluates whether the occupant is comfortable (1) or not 

(0) with the current environmental and occupant-related variables according to the 

adaptive thermal comfort model. 

 Energy: Energy consumed in kWh. 

The results for the first simulation with constant met values and the second simula-

tion with variable met values are listed in Table 8. 

Table 8. Results of first and second simulation. 

(No Energy Saving Strategy) Met = 1.1 Variable Met 

Condition (average) −0.7347 0.3367 

Comfort (sum) 104 72 

Energy (sum) 7.597 7.54 

The ideal average of the condition should be 0 as it would represent that for every 

period of 15 min, the thermal sensation is “normal”. More positive values would represent 

that the thermal sensation is “hotter” and more negative values would represent a 

“colder” sensation. For a constant met value, the general sensation would be slightly cold; 

as for the variable met simulation, the sensation is almost normal with a little tendency to 

be a bit hot. 
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The result of the sum of comfort values represents how many periods of fifteen 

minutes the occupant felt comfortable according to the adaptive thermal comfort model. 

The higher the value the more comfortable the occupant is. It can be observed that the 

simulation with constant met values has a higher value. 

The sum of energy consumed in kWh is the third observable result. For both simula-

tions the consumption is almost the same with a difference of 0.0567 kWh. 

The second part of the experiment consists of two more simulations. This time the 

proposed strategy for saving energy described in Section 3.3 was applied to the setpoint 

limits of the thermostat and the other parameters remain the same as for the first two 

simulations. The results for these new simulations are shown in Table 9. 

Table 9. Results of third and fourth simulation. 

(With Energy Saving Strategy) Met = 1.1 Variable Met 

Condition (average) −0.6581 0.3648 

Comfort (sum) 134 61 

Energy (sum) 5.0557 6.5234 

The condition result shows that using a constant met value, the average sensation for 

the whole week is colder than having a variable met. In comparison with the previous 

simulations, for the constant met the condition improved as it got closer to zero. 

The sum of comfort for a constant met doubled for the variable met. As for comparing 

with the first simulations, the comfort increased for a constant met but decreased for var-

iable met. 

The sum of energy consumption is almost 1.5 kWh less for the constant met simula-

tion than for the variable met simulation. However, in comparison with the first two sim-

ulations, both decreased at least 15% with the energy saving strategy proposed. 

5. Discussion 

This paper focuses on three main aspects to propose a strategy to try to reduce energy 

consumed by a HVAC system in a building without compromising the thermal comfort 

of the occupant. The first one considers a dynamic met value that can change according 

to the activity carried out by the occupant in the calculations of comfort. Moreover, the 

activity must be detected on-line to let the thermal comfort models update as the occu-

pant-related variables change. Therefore, the way to go is a vision-based system, as deep 

learning techniques have significantly progressed [46] and offer less intrusive sensing. 

The second aspect is using a depth sensor-based system to recognize human activities 

of daily living to avoid the main challenges an RGB-based classification system faces. With 

the presented methodology that uses a skeleton model with 3D data of 32 joints to make 

a classification using a simple LSTM network, it is shown that the recognition of activities 

can be achieved with high accuracy and with less data for training in comparison with 

similar public available datasets [46]. Moreover, the manipulation of 3D information al-

lowed the recognition without affecting the position in which the camera was placed, the 

orientation of the occupant with respect to the camera when carrying out the activity or 

even the physiological differences of the occupants, as could be demonstrated in the tests 

carried out and obtaining a high level of accuracy. 

The last aspect is the strategy to save energy by increasing or decreasing by 1 °C the 

heating and cooling setpoints of a connected thermostat. The proposed strategy showed 

in the simulations that the comfort level for a constant met value is higher than the one 

for a variable met value, showing that actual models are not giving a real perspective of 

the occupant’s comfort as they are estimating higher values of comfort when in real-life 

scenarios depending on the activity of the occupant, the comfort values should be lower. 

The results also showed that the energy consumption decreased by 33% compared to the 

simulations with constant met value and 14.2% comparing with the variable met values 
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simulations. As the variable met simulation offers more realistic information it is im-

portant to notice that the 14.2% of energy saving comes with a decrease of 11 points in 

comfort, meaning that in eleven time slots of 15 min of the whole week the occupant felt 

not comfortable; that is, 165 min less than without using the energy saving strategy. A 

14.2% of energy saving for a 1.63% decrease in comfort can be considered an acceptable 

strategy; moreover, the decrease in comfort can be improved by introducing the capacity 

of changing occupant’s clothes in future work. 

The implementation of an on-line estimation of metabolic rate on a connected ther-

mostat opens the possibility to implement energy saving strategies that currently are lim-

ited to just the information obtained by the environment sensors allocated in the thermo-

stat. The simulation presented in this paper shows a strategy that reaches 14% of energy 

saving compared to a strategy that does not include the on-line metabolic rate infor-

mation, showing the importance of adding the information of all thermal comfort param-

eters. Furthermore, incorporating a vision-based sensing system allows not just to incor-

porate the metabolic rate information to the thermal comfort analysis but also the clothing 

insulation of a person to increase even more the thermal comfort estimations. 

6. Conclusions 

In this paper, a preprocessing methodology for using 3D data from a depth sensor 

was proposed. By using the preprocessed data, the classification algorithm that used an 

LSTM neural network was able to effectively classify three different common activities of 

daily life to later assign them a MET value. The activity recognition process validates the 

ability to identify the MET values on-line inside a smart home or smart building. Moreo-

ver, the simulation results for energy savings with a variable MET value as part of the 

comfort model reduced the energy consumption by 14% without significatively affecting 

the comfort of the occupants. Therefore, it can be concluded that the inclusion of the on-

line metabolic rate information offers a more accurate picture of the thermal comfort anal-

ysis to propose energy saving strategies based on HVAC systems. Moreover, the proposed 

strategy showed positive results for saving energy and can be improved by including 

clothing detection based on the same vision system. 

As this paper only considered three activities and a fixed set of rules for the energy 

saving strategy, our future work can include the increment of the activity database and 

the investigation of a reinforcement learning (RL) algorithm to improve the energy saving 

strategy. This strategy could learn to maximize comfort and minimize energy consump-

tion by modifying the connected thermostat setpoint.   
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Abbreviations 

ADL  Activities of Daily Living 

AHSRAEAmerican Society of Heating, Refrigerating and Air-Conditioning Engineers 

ANN Artificial Neural Network 

CNN Convolutional Neural Network 

ECG Electrocardiogram 

EEG Electroencephalogram 

HAR Human Activity Recognition 

HMM Hidden Markov Model 

HVAC Heating, Ventilation, and Air Conditioning 

IEA International Energy Agency 

KNN K-nearest neighbors 

kWh kilowatt-hour 

LSTM Long Short-Term Memory Networks 

MET A ratio of the working metabolic rate relative to the resting metabolic rate 

PPD Predicted Percentage of Dissatisfied 

PMV Predicted Mean Vote 

RNN Recurrent Neural Network 

RGB Red, Green, and Blue 

RGB-D  Red, Green, Blue and Depth 

SDK Software Development Kit 

SVM Support Vector Machines 
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