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Abstract: The early fault detection and reliable operation of lithium-ion batteries are two of the main
challenges the technology faces. Here, we report a new methodology for early failure detection
in lithium-ion batteries. This new methodology is based on wavelet spectral analysis to detect
overcharge failure in batteries that is performed for voltage data obtained in cycling tests, subjected
to a standard charge/discharge protocol. The main frequencies of the voltage temporal signal, the
harmonic components in the regular cycling test, and a low frequency pattern were identified. For
the first time, battery failure can be anticipated by wavelet spectral analysis. These results could be
the key to the new early detection of battery failures in order to reduce out-of-control explosions and
fire risks.

Keywords: lithium-ion battery; early battery failure detection; wavelet spectral analysis

1. Introduction

Since the launch of the commercialization Lithium-ion batteries (LIBs) in 1991, they
became the preferred choice for mobile devices. The surge of new anode materials for
lithium-ion batteries with large power and specific energy has been key in the race of a
reliable electric vehicle technology. However, the growing demand for greater storage
capacity, charging rate, and life cycles of lithium-ion batteries increase safety risks for users,
with substantial economic costs for manufacturers, such as the fire incident in the Boeing
787 and in some electric vehicles [1,2]. The source of battery failures depends on external
and internal factors, such as short circuits, overcharge, overdischarge, contact lost between
neighboring cells, etc., which could produce overheating, thermal runaway, or even the
explosion of a battery [3–5].

There are detection and diagnostic methods to avoid or minimize the impact of
failures in battery systems [6]. For such purpose, multiple nonlinear models of different
faults have been applied to the diagnostic Li-ion battery. To mention some examples, the
extended Kalman filter allows engineers to estimate the terminal voltage [7] or to model
current and voltage for fault isolation and diagnosis [8]. Random forest-based classification
algorithms have also been employed to recognize a failure caused by electrolyte leak [9].
Other approach based on a quantitative analysis of probability of battery failures was
applied as well, where a big data platform for electric vehicles were used [10]. A method
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of fault detection in the serial battery connection based on the application on the voltage
signal of the mean square error method and modified z-score was recently proposed [11].
However, most of these methods are based mainly on the periodic cycling test and operating
temperature changes, which cannot be applied to model real operating conditions and
constraints such as electrical perturbations or battery aging [12]. Moreover, most of these
methods detect a battery failure event but do not forecast it. In other words, the previous
and current methods are merely diagnostic based tools, rather than tools with predictive
capability of battery failures.

LIBs are a reliable energy storage technology, used in terrestrial, civil, and military
communications, smart devices, and aerospace, land, and sea transportation vehicles. To
ensure operational capability, information, and communication, algorithms for measuring
the state of LIBs must be developed. To ensure their success in the market, improvements
must be made to their charge speed, power, and charge/discharge cycles. These require-
ments generate high heat production and non-uniform current distribution, leading to
security issues, decreased performance, and reduced quality and durability of the LIBs [13].
Mechanisms to diagnose and pre-warn of errors and failures in the LIBs in a timely manner
must be developed to reduce the risk of explosion or fire [14]. Estimation of the state of the
LIBs is essential, as well as timely identification of the core parameters for a good estimation
of the battery state. The Kalman filter is used to provide real-time state estimates in [15].
Various sensors are used to monitor the parameters of the LIBs. The challenge is to analyze
the battery parameters and the coupled effect of vibration and temperature dynamics on
the model variables during the estimation of the state of the LIBs.

Furthermore, the study of battery aging is of great practical value because the degra-
dation of battery characteristics determines to a great extent the performance and environ-
mental impacts of electric vehicles, particularly the all-electric vehicles.

A first model is obtained by using two differential equations and seven parameters,
allowing the simulation of the capacity change of lithium ion cells in electric vehicles [16].
However, detecting failures in LIBs presents a practical challenge due to the ideal conditions
that are not met in real electric vehicle activities and the lack of voltage signal based methods.
Therefore, in order to have a method that can be implemented in fault diagnosis of batteries
on the voltage signal, the following methodology has been proposed: (a) variational mode
decomposition in the signal analysis part to separate the inconsistency of the cell states,
(b) extraction of the critical characteristics of the signal by using a generalized dimension
indicator construction formula, and (c) detection of standardized anomalies through scatter-
based clustering [17].

As a result of various factors, such as population growth, increased urbanization, and
global economic growth, there has been a significant increase in vehicular emissions, which
has contributed substantially to air pollution [18]. Combustion vehicles emit different
pollutants, such as particulate matter (PM), lead (Pb), hydrocarbons (HC), nitrogen dioxide
(NO2), carbon monoxide (CO), and sulfur dioxide (SO2) that have severe effects on air
quality, climate change, and human health [19].

To reduce air pollutants, the control of emissions and stricter environmental stan-
dards have been implemented for internal combustion vehicles over the last few years
and decades. Since the 1990s, the Mexican government has taken several initiatives to
improve the air quality in the Mexico City Metropolitan Area (MCMA) by introducing
comprehensive air quality programs. In 1994, the Mexican government adopted an emis-
sion monitoring inventory that included four categories [20]: point sources (industry),
area sources (services and residential), mobile sources (transport), and natural sources
(vegetation and soil) [20], as shown in Figure 1.

Taking as a reference the value of PM10 for the last year of available information (2018),
this corresponds to 13,763 ton/year for mobile sources, and if the use of electric vehicles
was aligned with the corresponding reduction in emissions of 25, 50 and 75%, the results
would be 10,322, 6881, and 3441 ton/year, respectively.
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Figure 1. Annual emissions (2000–2018) (tons per year) of the MCMA.

Figure 2 displays the temporal series of emissions for PM10, PM2.5, SO2, CO, NOx
between 2000 and 2018, which were obtained from the official MCMA emissions inven-
tory [21].

In addition to this, the first air quality standards for O3, CO, NO2 and other gases have
been established in order to protect public health. Despite the improvements achieved in
the last three decades, the air quality in Mexico City remains at unhealthy levels for many
days of the year. According to estimations of the Secretariat of Environment (SEDEMA), the
contribution of motor vehicles to the total emissions of Volatile Organic Compounds (VOCs)
in Mexico City was 17 percent in 2016. This percentage is even higher in areas with high
traffic, as well as for more reactive and/or toxic compounds. For example, an estimation
suggests that motor vehicles contribute 23 percent for toluene and 33 percent for benzene,
a carcinogenic compound. In a VOC-limited environment, changes in motor vehicle VOC
can directly affect ambient ozone levels, as well as ambient PM2.5 and toxics [22,23].
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Figure 2. Time series of the emissions of (a) CO, (b) NOx, (c) PM2.5, (d) PM10, and (e) SO2 from 2000
to 2018, obtained from the official MCMA emissions inventory.

Currently, several countries have set goals and policies to promote the use of Electric
Vehicles (EVs) and limit the sale of vehicles that use fossil fuels. For instance, Germany
has committed to having one million EVs on the roads by 2020, Denmark is aiming for an
independence from fossil fuels in the transportation sector by 2050, and France wants to
achieve this by 2030 [24]. These initiatives are designed to reduce pollutants emissions and
improve air quality, especially in urban areas where the population is more exposed to air
pollution and traffic is one of the main sources of emissions [25]. Nonetheless, the current
use of EVs is still low due to several limitations such as the lack of adequate charging
infrastructure [26], the slow charging time [27], and the battery system safety [28]. EVs
require safe and reliable batteries that provide better performance and cost-effectiveness.
Lithium-ion (Li-ion) batteries have become the dominant choice in the market due to
their energy efficiency, longer life span and faster rate of charging when compared to
other batteries. However, as improvements have been made in increasing energy density
and decreasing charging times, safety issues have become more frequent; this has led
to regulators enforcing stricter safety standards. For this last reason, regulatory bodies
seek to enforce stricter safety standards on EV manufacturers. For instance, China has
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implemented mandatory standards that require all EVs to inhibit any fire or explosion for
at least 5 minutes after a thermal leakage incident of the battery occurs [29,30].

2. Data and Spectral Analysis

In order to identify the spectral frequencies that precede a failure, we applied a hybrid
spectral analysis using Fourier and wavelet transforms to the voltage data of battery
cycling tests. This method is used in various fields to analyze one or more time series in the
frequency domain and identify trends, periodicities and phase changes [31]. This analysis
was carried out with LIBs and half-cells tested by four research groups: the Physics Institute
of the University of Puebla (IF-BUAP), the Center for Advanced Life Cycle Engineering of
the University of Maryland (CALCE), the NASA Prognostics Center of Excellence (NASA-
PCE) and University College London (UCL). The results of this evaluation allowed us to
identify frequencies related to degradation or that preceded an overload failure. Based on
this empirical analysis, a model for the early detection of failures in LIBs is proposed. Now,
the spectral analysis used in this work will be described in detail.

The primary goal of a spectral analysis is to determine trends, periodicities, and
changes in the signal, which cannot be easily seen/noted in the time domain, using Fourier
and wavelet transforms. The Fourier Transform (FT) is extensively used due to its high
resolution in the frequency domain [32,33]. It is given by

F(ω) =
∫ ∞

−∞
f (t) e−iwtdt (1)

where f (t) is a signal function. On the other hand, the Fast Fourier Transform (FFT) is an
efficient algorithm used to compute the Discrete Fourier Transform (DFT) of a series of data
samples, which facilitates signal analysis, such as power spectrum analysis [34]. Generally, for
a periodic signal x[n], the FFT is calculated using the following equation:

X(ω) =
∞

∑
n=−∞

x[n] e−iwn (2)

The power of a signal x(t) in the time domain can be obtained through the Parseval
theorem, also known as energy or the Rayleigh energy theorem. It states that the energy
of x(t) is equal to the energy of its Fourier transform X(ω) in the frequency domain [35],
given by

E =
∫ ∞

−∞
‖ x(t) ‖2 dt =

1
2π

∫ ∞

−∞
‖ X(ω) ‖2 dt (3)

Consequently, the average signal power x(t) is equal to the sum of the square of the
magnitudes of the signal during the time interval (t2, t1), that is

P =
1

t2 − t1

∫ t2

t1

‖ x(t) ‖2 dt (4)

The signal x(t) is said to have finite power and satisfy the relation that it is a power
signal over a large interval:

0 <
1
T

∫ t2

t1

‖ x(t) ‖2 dt < ∞ (5)

Moreover, the Continuous Wavelet Transform (CWT) is defined as the integral of the
signal function multiplied by the mother function Φ(t), that is

C(a, b) =
∫ ∞

−∞
f (t)Φ(a, b, t) dt (6)



Energies 2023, 16, 1073 6 of 18

where C(a, b) is the wavelet coefficients, with a being the scaling factor (representing elonga-
tion or compression), and b the time displacement (delay or advance) of the mother wavelet.
The original signal f (t) can be reconstructed when each coefficient C(a, b) is multiplied by
the appropriate scaled factor and the displaced coefficient of the mother wavelet, which
is the inverse wavelet transform. The mother wavelet functions Φ(t)) ∈ L2(R) must have
limited duration and an average value equal to zero [36]:∫

R
Φ = 0 (7)

Generally speaking, the CWT is used to analyze in detail the time-frequency spectral
content for data that have a changing period over time (non-stationary time series). Thus,
the CWT not only provides the frequencies present, but also gives their occurrence times in
the time series [37]. Wavelet analysis can be used as a tool to localize variations of power
in a time series. By decomposing the time series into the time-frequency space [38], it is
possible to identify irregular events such as breakpoints, discontinuities in the higher-order
derivatives or temporary peaks, which would otherwise be difficult to identify in the
time domain.

The computational algorithms of wavelet transform are applied to process the signal
data at different scales or resolutions to identify the variations of the signal. The process is
carried out by means of a “window", which is adjusted automatically depending on the
required resolution. The general procedure of analysis using wavelets starts by selecting
a given mother wavelet. Temporal analysis is performed by dilations and translations
of the mother wavelet. Therefore, the choice of the mother wavelet and depends on
the type of functions or data to be analyzed. A suitable choice or the elimination of
coefficients smaller than a given threshold makes wavelets an excellent tool for non-linear
data compression. Therefore, wavelet analysis is a useful tool to analyze signals with small
variations, transitory events, or discontinuities. Wavelet functions have been used in several
areas, such as fault detection, dominant harmonic estimation, damping identification and
vibration-based damage detection, etc. [39–44].

According to the limitations of model-based methods and the limited availability
of traditional methods of fault diagnosis based on voltage signal, our work proposes a
contribution to the early detection of battery failures because it is based on data processing
by spectral analysis of voltage cycles of different LIBs. This method allows the identification
of low frequency components of the voltage signal that are related to failures due to
overcharge, overdischarge, or degradation of the battery. According to state of the art, this
is the first time that a spectral power pattern associated with failures or irregular cycling
voltage of LIBs is identified by wavelet transform. Based on the spectral analysis, we
proposed a model for early fault detection in batteries. This model could be extended
to any kind of battery, as it does not depend on the electrochemistry nor on the battery
configuration, but strictly depends on the spectral analysis of the electrical signals.

3. Battery Test Methodology

We analyzed databases from the cycling tests of LIBs performed by the four research
groups. Each group tested different lithium-ion battery types (see Table 1) under a standard
charge/discharge protocol to protect them from overcharging [45], but with specific charge-
discharge parameters. Cell cycling started by charging at Constant Current (CC) until
the cut-off voltage was reached; then, charging continued at Constant Voltage (CV) until
the loading current decreased to 10%. During the cell discharge, a constant current CC
was applied until the cut-off voltage was reached to complete one charge/discharge cycle,
and this was repeated for multiple cycles. The specific test conditions performed by each
research group are summarized in Table 2.

Half Cells (HC) tested by IF-BUAP had a working electrode made of silicon wires
and a counter electrode of lithium metal. Three half cells were preconditioned at Current
Constant (CC) of 0.17 mA (C/10 rate) in the first three cycles to withstand a current of
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0.86 mA (C/2 rate) during the following cycles, with a cut-off voltage of 0.11 V for lithiation
and 0.7 V for delithiation. Battery tests were performed at room temperature (25 ◦C).
Once the cells reached the cut-off voltage, the cycling test was changed to a potentiostatic
mode, and programed to stop when the cell current decreased 10% or reached the maximal
theoretical capacity (4200 mAh/g). It was observed that when these cells were charged
just to 75% (3150 mAh/g), capacity fade was less than 0.1% after 100 cycles [46]. The first
cell (HC1) of the cycling test, shown in Figure S1a of the Supplementary Information, had
a reduction of 21.5% of the maximum voltage (0.55 V instead of 0.7 V) at the end of the
cycling test, but without any irregular event. The charge/discharge voltage of the second
cell (HC2), shown in Figure S2a, has a uniform trend, but the cycling period rises in the last
10 cycles, associated with the increase in the cell impedance. On the other hand, Figure 3a
shows a graph of the cycling voltage vs. time of the third cell (HC3) analyzed (there is a
pause of 10 min between cycles). The charge voltage decreased after around 600 h, then
it returned to the original value, and exhibits an overcharge in the last cycles. The fourth
cell (HC4) was cycled at 1.33 mA without preconditioning. As a consequence, the voltage
cycling period and shape were irregular (see Figure S3a), and the cycling test was shorter
than in the previous cells.

Table 1. Lithium-ion cell evaluated by the fourth research groups.

Research Group Cell Type Cathode Anode Capacity (mAh)

IF-BUAP Half Swagelok Si Li 4200/g
CALCE Prismatic LiCoO2 Graphite 1350

NASA-PCE 18,650 LiCoO2 Li-C 2000
UCL 18,650 LiNiCoAlO2 (NCA) Graphite- Si 3500

Figure 3. (a) Voltage, (b) wavelet spectral power (b), and (c) Fourier spectrum of the cycling test
performed to HC3 cell by IF-BUAP. The frequencies in green indicate the frequencies preceding the
failure, while those in purple indicate the frequencies late to the failure.
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Table 2. Charge-discharge protocol applied to cycle lithium-ion batteries by IF-BUAP, CALCE,
NASA-PCE and UCL.

Cell
Charge Discharge

Cycles T (◦C)
CC (mA) Cut-Off

Voltage (V)
Cut-Off

Current (mA) CC (mA) Cut-Off
Voltage (V)

IF-BUAP

HC1 0.86 0.7 0.18 0.86 0.11 104 25
HC2 0.86 0.7 0.18 0.86 0.11 72 25
HC3 0.86 0.7 0.18 0.86 0.11 109 25
HC4 1.33 0.7 0.13 1.33 0.11 28 25

CALCE

PC-25C 675 4.2 50 1350 2.7 256 25
PC-35C 675 4.2 50 1350 2.7 315 35
PC-45C 675 4.2 50 1350 2.7 304 45
PC-55C 675 4.2 50 1350 2.7 303 55

NASA-PCE

C-LIC1 1500 4.2 20 2000 2.5 162 24
C-LIC2 1500 4.2 20 4000 2.0 41 24
C-LIC3 1500 4.2 20 4000 2.0 244 24
C-LIC4 1500 4.2 20 (2000, 4000, 2.2 134 4

1000)

UCL

CC3500-1 1500 4.2 100 4000 2.5 1–84 24
CC3500-2 1500 4.2 100 4000 2.5 110–202 24
CC3500-3 1500 4.2 100 4000 2.5 203–285 24
CC3500-4 1500 4.2 100 4000 2.5 286–400 24

CALCE evaluated a prismatic cell (PC) made of a graphite anode and a lithium cobalt
oxide (LiCoO2) cathode at various temperatures. The cell was charged to full capacity
under the constant-current/constant-voltage mode (CC/CV). The nominal capacity of this
battery is 1350 mAh. The cell was charged at a constant current rate of 0.5 C until the
voltage reached 4.2 V; then, this voltage was maintained until the charging current dropped
below 0.05 A. The cell was discharged at a constant current of 1 C to a cutoff voltage of 2.7 V.
The starting ambient temperature was 25 ◦C, and after every 10 charge/discharge cycles, it
was increased by 10 ◦C up to 55 ◦C [47,48]. In Table 2, this prismatic cell was labeled as PC,
with an extension to identify the cell temperature test, that is, PC-25C, PC-35C, etc.

The charge/discharge voltage of the cell tested at different temperature showed, in
general, few irregular events or non-catastrophic failures during most of the cycling test,
but in the test at 25 ◦C, there is evidently an overcharge failure. The graphs corresponding
to the cell tested at 35 ◦C (PC-35C) and 45 ◦C (PC-45C) are shown in Figures S4a and S5a
in the Supplementary Information, respectively. In these two cases, weak irregular events
can be observed. However, in the battery cycled at room temperature (PC-25C), shown
in Figure 4a, the voltage doubled the operating limits after 14 h, probably as result of a
reversible internal failure. Likewise, in the test at 55 ◦C (PC-55C) there is clearly identified
an interruption of the cycling test between 10 and 25 h, and then the cycling test was
resumed (see Figure S6a in the Supplementary Information).

The NASA-PCE reports cycling tests of Commercial Lithium-ion Cells (C-LIC), model
18650, with a nominal capacity of 2000 mAh [49]. These batteries have a lithiated carbon
anode (LiC) and a lithium cobalt oxide cathode (LiCoO2). We analyzed four of their Li-
ion batteries databases; three of those batteries (C-LIC1 to C-LIC3) were tested at room
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temperature (24 ◦C) and one at 4 ◦C (C-LIC4). The charging protocol was the same in the
four batteries, but different discharge mode (see Table 2).

Figure 4. (a) Voltage, (b) wavelet spectral power, and (c) Fourier spectrum of the cycling test
performed by CALCE to the prismatic cell tested a 25 ◦C (PC-25C). The frequencies in green indicate
the frequencies preceding the failure, while those in orange indicate the frequencies late to the failure.

The charging process for the battery was conducted in CC mode at 1500 mA until
the voltage reached 4.2 V. The charge was then continued in CV mode until the current
dropped to 20 mA. Battery C-LIC1 was discharged at a constant current of 2000 mA until
the voltage dropped to 2.5 V. The experiment was terminated when the battery reached
the end-of-life criteria, with a fade of 30%. In battery C-LIC2, discharging was performed
using a 0.05 Hz square wave of 4000 mA amplitude and 50% duty cycle until the voltage
fell to 2.0 V.

For battery C-LIC3, discharge was conducted at 2000 mA until voltage fell to 2.7 V. The
experiment was conducted until the battery capacity drops to 1600 mAh (20% fade). The
fourth battery (C-LIC4) was discharged at multiple fixed discharge current levels (4000 mA
and 1000 mA) and stopped at 2.2 V. The experiment was carried out until battery capacity
was reduced to 1400 mAh (30% capacity fade).

The voltage vs. time graphs of these group of cells show irregularities in the cut-off
voltage limits (see Figures S7a–S9a in the Supplementary Information). As the voltage
limits were fixed according to the test protocol, these irregular signals can be associated
with overcharges and overdischarges of the battery during cycling. As can be observed in
the C-LIC3, these are more severe after 100 h of cycling (see Figure 5a).

UCL has reported the electrochemical cycling data of a commercial cylindrical lithium-
ion battery model INR18650, which is made of a nickel-rich NMC811 cathode (LiNiCoAlO2)
and a graphite-silicon anode, and has a storage capacity of 3500 mAh (CC-3500) [50]. The
battery was charged at a constant current of 1.5 A until the cell voltage reached 4.2 V; then,
that voltage was maintained until the current reached 100 mA. The battery was discharged
at 4000 mA to 2.5 V. This cycling protocol was followed for 400 cycles in an environmental
chamber at 24 ◦C.
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Figure 5. (a) Voltage, (b) wavelet spectral power, and (c) Fourier spectrum of the cycling test
performed by NASA-PCE to commercial lithium-ion cells (C-LIC3). It was not possible to differentiate
the frequencies before and after the failure.

The database of the cylindrical cell test was divided by number of cycles to simplify the
analysis: cycle 1 to 84 (CC3500-1), cycle 110 to 202 (CC3500-2), cycle 203 to 285 (CC3500-3),
and cycle 286 to 400 (CC3500-4). It is important to mention that, even when cycling test was
performed in one battery, each cycle’s range begins at zero hour, according to the original
database (file EIL-MJ1-015), and the full test protocol was followed for 400 cycles [51].
However, the range of cycles was discontinuous, probably due to some breaks during
the test. The battery voltage as a function of time for the cycle set CC3500-2 is shown
in Figure 6a; the graphs of the further cycle sets are shown in Figures S10a–S12a of the
Supplementary Information.

Figure 6. (a) Voltage and cell temperature, (b) wavelet spectral power, and (c) Fourier spectrum of
the cycling test performed by UCL to one commercial cylindrical battery from the 110 to 202 cycles
(CC3500-2).



Energies 2023, 16, 1073 11 of 18

4. Results and Discussion

Battery voltage data of the cycling tests performed by the four research groups were
analyzed both by FFT and CWT. Data analyses were carried out in MATLAB by using
FFT and WT functions, wavelet toolbox, and the signal analyzer application libraries. The
Sampling Frequency (SF) for the FFT was established according to the Nyquist–Shannon
sampling theorem [52], such that the SF double at least the natural frequency of the signal,
in this case, the highest frequency of voltage cycle.

4.1. Frequency Spectra of Cycling Voltage

We applied FFT to the 16 databases; for simplicity, the corresponding graphs show only
the range that contains the main frequency components associated with any irregularity or
failure event in the batteries. The Fourier spectrum for the voltage signal of the HC3 battery
tested by IF-BUAP is shown in Figure 3a. The spectra for HC1, HC2 and HC4 cells are
shown in Figures S1c–S3c of the Supplementary Information. In this case, the frequencies
range shown is from 3.02 × 10−7 to 10 × 10−5 Hz, where the main frequencies are at
1.09 × 10−5 Hz and 4.44 × 10−5 Hz (with periods of 25.48 h and 6.25 h), corresponding to
the precondition cycles (first four cycles) and the regular cycling, respectively. As can be
expected for the complex signal (V vs. t), the strongest intensity is at 3.99 × 10−5 Hz, rather
than at the main frequencies; those frequencies can hardly be identified in the voltage vs.
time graph of Figure 3a. However, below 0.574 × 10−5 Hz, a regular spectrum (green
area) is observed that cannot be clearly related to any evidential or potential failure of the
cell voltage.

Figure 4c shows the Fourier spectrum of the cell PC-25C cycled at 25 ◦C by CALCE.
This cell test shows an evident overcharge failure after 14 h of cycling (see Figure 4a).
The same cell was tested at 35 ◦C, 45 ◦C and 55 ◦C, but it apparently did not show any
severe failure, as can be seen in the corresponding Fourier spectra of Figures S4c–S6c in the
Supplementary Information. As the charge/discharge voltage period (C rate) is constant
during the cycling tests at different temperature, the main frequency is the same, that is,
5.37 × 10−3 Hz (with a period of 0.051 h), and the Fourier spectra are similar in the four
cases. However, only the test at 25 ◦C presents an evident failure after 14 h of cycling, and
the Fourier spectrum is well-shaped below 4.37 × 10−3 Hz (under the green area), like that
shown in Figure 3c, but in a wider frequency range.

The Fourier spectrum of the cell C-LIC3 evaluated by NASA-PCE shown in Figure 5c
exhibits multiple frequencies of high amplitude due to the irregularity of the cycles. This cell
was charged at 0.75 C and discharged at 2 C over the whole cycling test, but was observed
that the voltage period decreased over the time (see Figure 5a). The Fourier spectrum does not
exhibit a regular pattern in the low frequency range, as in the case of HC3 and PC-25C cells
shown in Figures 3a and 4c, respectively, although the C-LIC3 cell has cycles of overdischarge
between hours 109 and 114 of the test. The Fourier spectra for C-LIC1, C-LIC2 and C-LIC4 show
similar trends (see Figures S7c–S9c in the Supplementary Information).

The cell of UCL was evaluated during 400 cycles, separated in four databases, the
Fourier spectrum of the test from 110 to 202 cycle (CC3500-2) is shown in Figure 6c. As result
of the almost uniform cycling over the whole test, the Fourier spectrum is well-shaped,
with the two main frequencies and their harmonics clearly identified. In Figure 6a, it can be
seen that, apparently, there is not a cell fault, but the cycle period slightly increased with the
time. As result, the Fourier spectrum shows two main frequencies instead of one, almost
overlapped, one at 9.16 × 10−5 and 9.25 × 10−5 Hz. At the end of the test, there was a kind
interruption in the cycling. The database of this cell test has also temperature information,
and it is included in Figure 6a. As can be seen, the cell temperature oscillated and slightly
rose over the cycling test; this was probably the reason for the increment in the period of
charge/discharge cycle. The Fourier spectrum also shows a well-shaped pattern in the low
frequency range, in green, which cannot be associated with a failure in the battery, rather to
the interruption in the cycling at the end of the test. The Fourier spectra for the remainder
cycling intervals are shown in Figures S10c–S12c of the Supplementary Information.
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4.2. Time-Frequency Analysis by the Continuous Wavelet Transform

The analysis of the time-dependent voltage of LIBs during the cycling test was ex-
tended to the time-frequency domain using the CWT. For the purpose of analyzing local
power variations within a single non-stationary time series with multiple periodicities
(battery voltage), the Morlet wavelet was selected as the mother wavelet to study local
variations of spectral power at multiple periodicities and for feature extraction [53]. The
Morlet wavelet mother provides high resolution on the period (frequency) scale and is a
complex function, allowing the series to be filtered in bandwidths [54]. The color bar shown
on the right side of Figures 3b–6b indicates the wavelet spectral power scale in arbitrary
units, with deep yellow representing the highest spectral power and light blue representing
the lowest.

Figure 3b shows the wavelet spectrum of cycling voltage of the HC3 evaluated by the
IF-BUAP. As can be observed, in the middle of the wavelet spectrum, the period of the
cycling test is clearly identified within the two bands in deep yellow, corresponding to
the preconditioning period of 25.5 h (from the beginning to approximately 100 h), and the
regular cycling with a period 6.25 h. Moreover, after approximately 450 h just before the
overcharge event, a third period of 3.5 h of lower spectral power is observed. This period
reduction is due to the electrochemical response of the battery. Close to the end of the test,
the wavelet spectral power has a diffuse area in deep yellow that extended over a wide
range of periods, corresponding to an overcharge in the battery, see also Figure 3a. Notice
that, after approximately 350 h of the test, a light-yellow area emerges in a long period
region; its spectral power increases and widens up to overlap with the failure zone.

Clearly, the voltage goes beyond the upper voltage limit during discharge after 700 h
of cycling (see Figure 3a). In regular conditions, a voltage rise can occur during charging,
but not beyond the limits; the battery charger is programmed to automatically stop when
reaching the cut-off voltage. However, during discharge, there is no upper voltage limit
because it regularly decreases; there is just a lower voltage limit. This failure could be due
to an electronic conductive path created by lithium dendrites growing between battery
electrodes, the delithiation of the Si electrode, and the Li plating of the Li anode. It is
observed in wavelet Spectrum as a step the main frequency, at around 650 h of cycling,
with an increase in the period cycling. The period range of this light-yellow area in the
wavelet spectral power corresponds to the frequencies within the green area observed in
the Fourier spectra (see Figure 3c). Similar trends are observed in the wavelet spectral
power of Figures S1b–S3b of the Supplementary Information, but there is not a crucial
electrical failure in those cells.

An unusual overcharge failure in the cycling test is observed (see Figure 4a). Battery
analyzers must be programed with a cut-off voltage for a give battery type, but in this
case, after 690 h of cycling, the battery voltage twice surpassed the offset of 4V, and the
charging current continued. Overcharges is one of the most severe batteries failures in
safety terms, it is frequently due to misfunction of the charger. Probably, in this case, the
cycling process was intentionally allowed to continue despite the overcharge to test the
battery in extreme conditions. After the overcharge, the cycling period increases, and
the battery capacity drops. Moreover, the wavelet spectrum shows tends anticipating the
failure. The wavelet spectrum of the cycling voltage (PC-25C) of the cell evaluated by
CALCE is shown in Figure 4b. As can be observed, in the middle of the spectrum there is
a deep yellow band with the main periodicity (0.051 h). This band is deformed when the
period of cycling changes irregularly, see also Figure 4a. For example, after approximately
2 h, the maximum charging voltage lasted twice, obviously this cycle has different periods
that originates from an irregularity in the main band of the wavelet spectrum. Moreover,
just below the main band surge several cone-like regions of lower spectral intensity (in
light yellow) that extend to the high period range. Some of these cone-like regions can
be clearly distinguished as irregularities in the cycling test, see Figure 4a, but other can
hardly be distinguished. However, all of them are completely resolved by the wavelet
transform. A closer re-examination of the database indicates that during this event, the cell
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capacity dropped, that confirms the cone-like regions correspond to transitory failures of
the battery. After approximately 14.3 h, the wavelet spectral power shows in deep yellow
with a remarkable range of periods longer than the main, that corresponds clearly to the
overcharge failure, and that event lasted approximately 45 min. Again, notice that around
6 h, in the highest period range, an intense spectral area, that widens over the time up to
overlap with the failure zone, appears. The range of high periods corresponds to the low
frequencies of Fourier spectrum marked in green in Figure 4c. A closer re-examination
of the database indicates that after the overcharge failure, the cell capacity drops and as
result the main period decreases. In Figures S4b–S6b of the Supplementary Information,
the wavelet spectra of the cell voltage tested at 35 ◦C, 45 ◦C and 55 ◦C, without any critical
failure detected, are shown.

The wavelet spectral power of the four cells tested by NASA-PCE have a wide dis-
continuous central band (from approximately 0.1 to 5 h) with some short gaps. The wide
range of periods of this band arise from the irregular response of the battery to the extreme
cycling parameter imposed by the test protocols, see Table 2. The main period in all the
cells is around 1 h. Figure 5b shows the wavelet spectrum of the voltage of the C-LIC3 cell,
where the main period is indicated by deep yellow, approximately in the center of this band.
The signal is discontinuous and decreases over the time due to the reduction in the cell
capacity reported in the data base. The central yellow band has a discontinuity after 110 h
of cycling due to a series of overcharge presented during these cycles. This is probably due
to the accelerated discharging of the battery (4000 mA), that is twice than during charging
(1500 mA), in a battery of 2000 mAh. The series of failures detected (small overcharges
and overdischarges) may be the result of the continue degradation of the battery due to
the extreme test condition. A detailed analysis of the battery component after the cycling
(postmortem) could provide insights of the failure mechanism, not available in NASA-PCE
data base. In Figures S7b–S9b of the Supplementary Information, the wavelet spectral
power for cells C-LIC1, C-LIC2 and C-LIC4 are shown, respectively.

The wavelet power spectrum of the cell tested by UCL during 110–202 cycles is shown
in Figure 6b; it has a uniform central band, in deep yellow, due to the steady response of
the battery. No irregular events are detected during the cycles, just the cycling interruption
at the end of the test. However, there is a capacity loss during the last 10 cycles, which is
seen as an increase in the period range in the wavelet spectral power.

In CC3500-2 (cycles 110–202), there is not a real battery failure. After cycling, during the
pause, the voltage was stabilized to 3.3 V (at about 400 h). The spectral analysis recognized
this event as a failure since battery was not cycling, but it could detect unexpectedly
interruptions. Similar trends are shown for the remaining cycles (see Figures S10b–S12b in
the Supplementary Information).

5. A Model for Early Battery Failure Detection

The spectral analysis by wavelet transforms of the battery voltage showed that, long
before a critical failure, a pattern in the high period region emerges. The period of this
pattern decreases with the time and widens up close to the failure region. Notice also
that the spectral power increases close to the failure region, the corresponding frequency
range is identified by FFT. The wavelet transform also shows similar patterns preceding
any irregular event during the voltage cycling, but narrower and with lower spectral
power than in the case of a critical failure. Similar spectral patterns have been found in
diverse phenomena that experiences abrupt changes of state due to any disturbance that
are apparently stochastic, but the spectral analysis showed some periodicity. For example,
spectral analysis has been used to study the variations in free surface during the passage
of a hurricane, to locate hidden tunnels in archeological subsurface strata of pyramids,
to analyze water levels and detect solar particles in the ground, and to understand the
periodicity of these events [55–58]. The pattern of the wavelet spectral power in the
prolonged period range that appears before a critical event can be used to model the battery
failure function. This function was calculated by applying the inverse Fourier transform
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to the frequency spectra range (highlighted in green in Figures 3c, 4c and 6c) related to
the failure, identify by the wavelet spectral power. Figure 7 shows the graphs of the real
battery voltage and the calculated voltage for one cell of each research group. As can be
seen, the calculations give the average voltage signal and the exact time when a failure or
irregularities occurs, without the peak oscillation of the real cycling voltage.

Figure 7. Real vs. calculated voltage by applying the inverse Fourier transform to the high periods
found by wavelet to (a) HC3 half-cell IF-BUAP, (b) PC-25C cell–CALCE, (c) C-LIC3 cell–NASA-PCE
and (d) CC3500 – 2 cell–UCL.

Our battery failure model, which is based on the band/range of periods with high
spectral power identified through wavelet transforms, can be validated by applying the
Parseval’s theorem in the calculation of the power of signals. Figure 8 shows the normalized
power as a function of time for the four cells, one from each research group. In the same
plot, the normalized real voltage, calculated power index PN and standardized power index
of the battery voltage signal (ZPower) emerges. The ZPower index was calculated with the
following expression:

ZPower =
PN − < P >

σ
(8)

where PN is the normalized power calculated for each cycle, < P > is the mean value of
the calculated overall power index and σ is the standard deviation [59].

The ZPower function can be used to standardize the calculated power values for each
charge/ discharge cycle. The sigh of this function changes from negative to positive values
at the beginning of a battery failure, from this stage, it oscillates between negative and
positive values. However, once the ZPower value remains positive, the battery capacity drop
is imminent. In addition, the ZPower function gives information of the degree of dispersion
of the power data, and it is related to calculated standard deviation. This variable could be
used as an input in a control system to generate an early warning of the battery failure.

Figure 8 shows the calculated power index, the normalized battery voltage, and the
standardized power in each cycle as a function of time of the batteries analyzed. As can be
seen for all four cases, the power index PN and standardized power index ZPower allow us
to identify the C rate in each cycle of the battery voltage, at the same time these changes are
identified in the main frequency in the previous continuous wavelet transform analysis,
see Figures 3b–6b. Furthermore, when the power of a cycle is lower than the average
value, we see a change of direction in ZPower (the standard deviation is positive). When this
trend is maintained in the following cycles, a continuous degradation process is observed.
This pattern/behavior has also been observed to occur in the wavelet analysis before an
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overcharge failure of the battery. We can thus conclude that the ZPower function could be
used for early failure detection in the battery.

Figure 8. Calculated power index, (ZPower) function and normalized voltage for (a) HC3, (b) PC-25C,
(c) C-LIC3 and (d) CC3500-2 cells.

6. Conclusions

We performed a spectral analysis of the cycle voltage of charge/discharge test in
lithium-ion batteries, with different configurations and subjected to varied cycling parame-
ters. The traditional Fourier transform allowed the identification of the main frequencies
of voltage cycling, harmonic components in regular cycling test and, in some cases, a
well-defined pattern in the low frequency. The amplitude of the patterns decreases as the
frequency increases, but it is difficult to associate it with a given event in the battery. A
complementary analysis with the CWT revealed interesting patterns of the battery cycling
test; first, before an irregular event or critical failure of the battery from an overcharge,
the loss of electrical contact or an interruption in the cycling of the battery, the voltage is
composed of a band/range of periods with high spectral power; then, the range of this
underlying pattern of period expands and spectral power increases with the time until it
merges with the failure event. In addition, this period range of the wavelet spectral power
corresponds to the frequencies with a well-defined shape and trend found by the Fourier
spectra. Finally, a change of direction in (ZPower) (the standard deviation is positive) and
when this trend is maintained in the following charge cycles, a continuous degradation
process until a total failure occurs. The methodology developed here could be improved
by simultaneously performing the spectral analysis of at least two electric parameters of the
battery cycling, such as voltage together with the current, impedance, or temperature, to
identify the kind of battery failure. Further study based on the simultaneous spectral analy-
sis is in progress to try to establish a practical early detection time of risky battery failure.
Importantly, this identified pattern could be used to establish risk levels associated with
signs of battery overcharge failure, when a high or low standard deviation is detected. This
is the first time that battery failures have been anticipated by spectral analysis. These new
results could be the key for the early detection of battery failure for reducing or minimizing
the risks in LIBs.
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