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Abstract: Belt conveyors, owing to their simple construction, high reliability and relatively low energy
consumption, are the basic means of transporting loose and granular materials. Currently, thanks to
continuous development, belt conveyors can reach a length of up to several kilometres, and their belt
width can be more than two meters. Such possibilities are achieved thanks to increasingly better belts
and drives. However, the most common are short belt conveyors with a length of up to 40 m and belt
widths of up to 1 m, frequently referred to as belt feeders. Apart from the mining industry, they are
widely used in power engineering, metallurgy and other industries (chemical plants, trans-shipment
ports, storage yards, etc.). The design of machines, including belt feeders, is based on calculations.
Modern design in technology is based on advanced computational methods and the possibilities of
computer technology. Multi-variant simulation calculations are necessary, especially in the case of
belt feeders, where none of the devices—despite the use of typical elements and subassemblies—are
a repeatable solution. Only this procedure guarantees the selection of rational solutions already at
the early stages of design. Therefore, in this article, an analytical model of a typical belt feeder was
developed and its stability and forces in the supports were determined. This allowed the development
of an application for testing the stability of the belt feeder at the design stage or when introducing
structural changes.

Keywords: transport of loose materials; belt feeder; analytical model; stability; computer application

1. Introduction

Belt conveyors are devices transporting various types of materials with granulation
adapted to width bt. The belt is an element that moves the material at a certain speed [1,2].
The efficiency of the conveyor results from the active cross-sectional area of the material
on the belt Fp (trough) and its speed vt. The characteristic parameters of the belt conveyor
are therefore its length bt and speed vt [3–5]. These parameters, together with the type of
transported material and the inclination of the conveyor αp, determine the size of installed
power Np [6,7]. A typical belt conveyor with an upper conveyor belt consists of a return
pulley, a supporting structure, usually in the form of a grid with idlers, and a drive with an
electric motor or, less frequently, a hydraulic motor and a mechanical transmission. The
movement of the belt, powered by the drive, at a certain speed vt on idlers built on supports
(trestles) from the return pulley to the drive, and causing the material to be transferred
with the required efficiency, is a working movement. In contrast, the movement of the belt
from the drive to the return pulley is a return (idle) movement; in this case, the belt also
moves on idlers, but only single ones. As mentioned before, belt conveyors are devices
that transport various types of materials in a continuous way. Therefore, they are mostly
applied wherever constant feeding of material with a certain efficiency is required [3,4].

The above information applies to all belt conveyors with lengths ranging from several
metres to even several kilometres, and belt widths from several centimetres to more than

Energies 2023, 16, 8111. https://doi.org/10.3390/en16248111 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16248111
https://doi.org/10.3390/en16248111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-3067-1983
https://orcid.org/0000-0002-6021-4823
https://doi.org/10.3390/en16248111
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16248111?type=check_update&version=2


Energies 2023, 16, 8111 2 of 16

two meters [8,9]. This group of conveyors includes short belt conveyors with a length of up
to 40 m and a belt width reaching up to 1 m, often referred to as belt feeders [10,11].

Due to their broad scope of work, belt feeders are eagerly chosen by investors in
various industries. They are commonly used in reloading and transporting works, ware-
houses, landfills, construction sites, plants processing and exploiting materials and mineral
resources (Figure 1), and for transporting excavated material and overlayers in the mining
industry. These devices guarantee the stable and safe transport of materials. The entire
process is convenient and quick, which brings significant benefits (saving time and money).
Users are sure that the investment in high-class feeders will pay off quickly, and the profits
will be felt for years. The use of belt feeders means easy assembly, disassembly, and trans-
port because the structures are modular—assembled from ready-made elements. It allows
the modernisation of production or distribution and adapting it to current standards. A
large selection of parts and accessories allows users to modify the structure as needed.
Additionally, the operation of belt feeders is quite quiet.
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Figure 1. Belt feeder in the technological line of the processing plant of an aggregate mine.

For the mineral resources industry, belt feeders are, among others, used in opencast
rock mining for transporting the crushed mineral. They are usually included in the process
line, moving the mineral from one loading point (feeder, tank, screen, or crusher) to another
discharge point (other means of transport, warehouse, or heap). Typically, the above-
mentioned feeders consist of a drive (Figure 2), a return pulley (Figure 3) and a route
(Figure 4) with idlers and a belt. Such a feeder moves the material lying on the belt at
angle αtp, usually upwards. The maximum value of this angle results from the frictional
coupling between the transported material and the belt µtu (αtp + ∆αtp ≤ arctgµtu). It can
work horizontally (∆αtp = 0◦) and on a downward negative slope (∆αtp < 0◦) or on an
upward positive slope (∆αtp > 0◦) [3]. Additional equipment utilised with such feeders
are a charging hopper (Figure 5) and a discharge hopper, external and internal scrapers,
platforms (Figure 6), as well as various types of protection related mainly to health and
safety regulations and control (Figure 7) [12,13].
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A characteristic feature of these feeders is their installation in the workplace, on
stationary or mobile supports. Straight stationary supports (SSSs) are built on previously
made foundations (Figure 8), and their number is dependent on the length of the feeder. The
V-type stationary supports (VSSs), equipped with slides (skids), hold the feeder structure
at the required angle αtp, resting on the ground (Figure 9). If wheels are installed in place
of skids, V-type mobile supports (VMS) are used (Figure 10). Belt feeders with V-type
stationary supports are the most common [1–3], which poses a big challenge due to the
stability of the structure, both during operation and at standstill. This issue requires the
testing of the feeder’s stability [14] at the design stage and subsequent operational tests.
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The available literature is rich in issues related to various aspects of belt conveyors.
There are a few articles related to belt feeders; among others, Maton [15] and Bates [16]
tested and calculated the load on such feeders. However, as yet, there is no description
of the problem related to the stability of the belt feeder structure and its load. Therefore,
an analytical model of a typical belt feeder with V-type supports was developed, and
its stability and the forces in the supports were determined. It is worth emphasising
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that all the parameter values adopted for the calculations were obtained from belt feeder
manufacturers and users. These are the actual values with which these feeders work. As
a result, an application was developed using computer technology to test the feeder’s
stability at the design stage or while making changes.
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2. Analytical Model of the Belt Feeder

The starting point for developing an analytical model of the VSS and VMS belt feeder
in order to assess its stability is the reduction of masses [17]. This allows the determination
of the coordinates of the centre of mass of the feeder’s supporting structure (Figure 11). The
continuous linear load qjpi,, different for the three parts of the belt feeder (1), was assumed
as rectangles with known coordinates of the centre of mass. The first part of the feeder’s
supporting structure is the section stretching from the hopper (return pulley) to the first
support, the second part is the section between the supports, and the third one stretches
from the second support to the discharge (drive). This model does not take into account the
weights of the feeding hopper Gz (drum, belt tension, hopper, and covers) or the discharge
Gw (drum, counterweight drive, and platform). These will be taken into account when
determining the forces and moments for the entire feeder.
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Gtp = ∑ n
i=1qtpi·ltpi (1)

where:

qtpi—linear continuous load for the i-th section of the feeder;
ltpi—length of the i-th section of the feeder;
n—number of feeder sections under consideration.

Concentrated weights for the three sections of the belt feeder can be determined from
dependencies (2), (3), and (4). The total weight of the supporting structure of the belt feeder
Gtp is the sum of three individual weights Gtp1, Gtp2, and Gtp3 (5). Similarly, the total length
of the belt feeder ltp is the sum of its three sections ltp1, ltp2, and ltp3 (6). For the conditions
of equilibrium relative to the y-axis, it is possible to determine the resultant moment MGtp
as well as single moments for the three masses MGtp1, MGtp2, and MGtp3, which balance
each other (7). The structural dimensions of the feeder’s route and the locations of the
concentrated weights Gtp1, Gtp2, and Gtp3 (8), (9), (10), and the resultant mass (11) allow
the determination of the coordinate of the centre of mass ltps of the resultant mass MGtp for
different (13) or identical continuous linear loads qtpi (14).

Gtp1 = qtp1·ltp1 (2)

Gtp2 = qtp2·ltp2 (3)

Gtp3 = qtp3·ltp3 (4)

Gtp = Gtp1 + Gtp2 + Gtp3 (5)

ltp = ltp1 + ltp2 + ltp3 (6)

MGtp = MGtp1 + MGtp2 + MGtp3 (7)

MGtp1 = Gtp1·0.5·ltp1·cos
(
αtp
)

(8)

MGtp2 = Gtp2·
(
ltp1 + 0.5·ltp2

)
·cos

(
αtp
)

(9)

MGtp3 = Gtp3·
(
ltp1 + ltp2 + 0.5·ltp3

)
·cos

(
αtp
)

(10)

MGtp = Gtp·ltps·cos
(
αtp
)

(11)

On the basis of Formula (7) as well as (8), (9), and (10), the MGtp dependence can be
expressed (12) as follows:

MGtp =
[
Gtp1·0.5·ltp1 + Gtp2·

(
ltp1 + 0.5·ltp2

)
+ Gtp3·

(
ltp1 + ltp2 + 0.5·ltp3

)]
·cos

(
αtp
)

(12)

Based on Formula (11) and Formulas (2)–(5), the coordinate of the centre of mass lps
describes dependence (13) or (14) if (6) is taken into consideration.

ltps =
MGtp

Gtp·cos
(
αtp
) ==

0.5·Gtp1·ltp1 + Gtp2·
(
ltp1 + 0.5·ltp2

)
+ Gtp3·

(
ltp1 + ltp2 + 0.5·ltp3

)
Gtp

(13)

ltps =
0.5·l2

tp1 + ltp2·
(
ltp1 + 0.5·ltp2

)
+ ltp3·

(
ltp1 + ltp2 + 0.5·ltp3

)
ltp1 + ltp2 + ltp3

(14)

The above dependencies allowed the development of an analytical model of the VSS or
VMS belt feeder (Figure 12), located in a horizontal excavation (∆αtp = 0◦), inclined upwards
(∆αtp > 0◦) and inclined downwards (∆αtp < 0◦). The belt feeder, with the load-bearing
structure weight Gtp, the weight of the discharge (drive) Gw, and the feeding hopper
(return pulley) Gz, is supported at points 3 and 4. The feeder’s return pulley (point 4)
exerts pressure on the ground with the force of reaction S4, whereas reaction S3 at point 3
comes from two forces S1 and S2 in the supports having lengths lst1 and lst2. At point 3,
friction force Ts4 will occur. Attaching the supports in points 1 and 2 should ensure the
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stability of the feeder (permanent equilibrium); i.e., in this case, reaction S4 must always
be positive. This is possible when the moment about pole (point) 3 is zero or positive.
By projecting the forces onto the x- and y-axes and determining the moments of these
forces relative to point 3, dependencies describing reaction forces S1, S2, S3, and S4 can
be obtained. However, prior to this, it is necessary to establish the relationships between
the construction parameters of the feeder, especially with αtp, ∆αtp, and ltp. Height Htp,
to which the feeder can transport the material, is described by dependence (15), whereas
heights Htp1 and Htp2 can be determined from dependencies (16) and (17). The angles
of inclination of support 1 αs1 having length ltp1 and of support 2 αs2 with length ltp2 are
described by dependencies (18) and (19). The required support length 1 lts1 results from the
value of angle αs1 and height Htp1 (20). The same is true for support 2, where its length ltp2
also results from the value of angle αs1 and height Htp2 (21).
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Htp = ltp·sin
(
αtp + ∆αtp

)
− ltp4·sin

(
∆αtp

)
(15)

Htp1 = ltp1·sin
(
αtp + ∆αtp

)
− ltp4·sin

(
∆αtp

)
(16)

Htp2 =
(
ltp1 + ltp2

)
·sin

(
αtp + ∆αtp

)
− ltp4·sin

(
∆αtp

)
(17)

αs1 = arctan

(
Htp1

ltp4·cos
(
∆αtp

)
− ltp1·cos

(
αtp + ∆αtp

)) (18)

αs2 = arctan

(
Htp2(

ltp1 + ltp2
)
·cos

(
αtp + ∆αtp

)
− ltp4·cos

(
∆αtp

)) (19)

lst1 =
Htp1

sin(αs1)
(20)
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lst2 =
Htp2

sin(αs2)
(21)

When the above analytical relationships between the design parameters of the belt
feeder are known, it is possible, using the force balance equations (x- and y-axis) and
moments (point 3), to obtain the dependencies describing the searched reaction forces S1,
S2, S3, and S4 and to test the stability of the structure. The sum of the projections of forces
on the x-axis should be zero (22).

∑ iPix = Ts4x − S4x − S1x + S2x = 0 (22)

Ts4x = S4y·µx = µx·S4·cos
(
∆αtp

)
(23)

S4x = S4·sin
(
∆αtp

)
(24)

S1x = S1·cos(αs1) (25)

S2x = S2·cos(αs2) (26)

As4x·S4 − S1·cos(αs1) + S2·cos (αs2) = 0 (27)

As4x = µx·cos
(
∆αtp

)
− sin

(
∆αtp

)
(28)

Similarly, when these forces are projected onto the y-axis, their sum should also be
zero (29).

∑ iPiy−Gz + S4y + Ts4y + S1y−Gtp + S2y−Gw = 0 (29)

S4y = S4·cos
(
∆αtp

)
(30)

S1y = S1·sin(αs1) (31)

S2y = S2·sin(αs2) (32)

Ts4y = S4x·µy = µy·S4·sin
(
∆αtp

)
(33)

Gz + Gtp + Gw = Gzpw (34)

As4y·S4 + S1·sin(αs1) + S2·sin(αs2)− Gzpw = 0 (35)

As4y = µy·sin
(
∆αtp

)
− cos

(
∆αtp

)
(36)

For the structure to remain in equilibrium, the sum of the moments relative to point
3 should also be zero (37). As a result of transforming Equation (37) and introducing
additional notations (38), (39), (40), (41), (42), and (43), the dependence describing force S4
(44) was obtained.

∑
i

Mi03 = Gz·ltp4·cos
(
∆αtp

)
+ Ts4x·ltp4·sin

(
∆αtp

)
− S4x·ltp4·sin

(
∆αtp

)
− Ts4y·ltp4·cos

(
∆αtp

)
− S4y

·ltp4·cos
(
∆αtp

)
+ S1x·Htp1 − S1y

[
ltp4·cos

(
∆αtp

)
− ltp1·cos

(
αtp + ∆αtp

)]
+Gtp

[
ltp4·cos

(
∆αtp

)
− ltps·cos

(
αtp + ∆αtp

)]
+S2y

[(
ltp1 + ltp2

)
·cos

(
αtp + ∆αtp

)
− ltp4·cos

(
∆αtp

)]
− S2x·Htp2

−Gw
[
ltp·cos

(
αtp + ∆αtp

)
− ltp4·cos

(
∆αtp

)]
= 0

(37)

As1y = ltp4·cos
(
∆αtp

)
− ltp1·cos

(
αtp + ∆αtp

)
(38)

As2y =
(
ltp1 + ltp2

)
·cos

(
αtp + ∆αtp

)
− ltp4·cos

(
∆αtp

)
(39)

Azpw = Gz·ltp4·cos
(
∆αtp

)
+ Gtp

[
ltp4·cos

(
∆αtp

)
− ltps·cos

(
αtp + ∆αtp

)]
−Gw

[
ltp·cos

(
αtp + ∆αtp

)
− ltp4·cos

(
∆αtp

)]
(40)

As4 = 0.5
(
µx − µy

)
ltp4·sin

(
2∆αtp

)
− ltp4 (41)

As1 = Htp1·cos(αs1)− As1y·sin(αs1) (42)

As2 = As2y·sin(αs2)− Htp2·cos(αs2) (43)
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S4 = −
As1·S1 + As2·S2 + Azpw

As4
(44)

By transforming Equation (22) and introducing additional notations (45), (46), and
(47), the force S1 dependence (48) was obtained.

− As4x

As4

(
As1·S1 + As2·S2 + Azpw

)
− S1·cos(αs1) + S2·cos(αs2) = 0 (45)

Bs2x = cos(αs2)−
As4x·As2

As4
(46)

Bs1x = cos(αs1) +
As4x·As1

As4
(47)

S1 =
Bs2x·S2·As4 − As4x·Azpw

Bs1x·As4
(48)

By transforming Equation (29) and introducing additional notations (49), (50), and
(51), the force S2 (52) dependence (52) was obtained.

S1

(
sin(αs1)−

As4y·As1

As4

)
+ S2

(
sin(αs2)−

As4y·As2

As4

)
−

As4y·Azpw

As4
− Gzpw = 0 (49)

Bs2y = sin(αs2)−
As4y·As2

As4
(50)

Bs1y = sin(αs1)−
As4y·As1

As4
(51)

S2 =

(
As4y·Azpw + Gzpw·As4

)
Bs1x + As4x·Azpw·Bs1y

As4
(

Bs2y·Bs1x + Bs2x·Bs1y
) (52)

Reaction S3 at point 3 is the geometric sum of forces S1 and S2 (53).

S3 =
√

S2
1 + S2

2 − 2S1·S2·cos(αs1 + αs2) (53)

The obtained analytical dependencies resulting from the adopted model of the belt
feeder make it possible to determine the forces that are important for its structure load
and stability. This is, of course, particularly important at the stage of creating the model,
and designing and preparing documentation, but also when making changes to the feeder
structure (modernising). As mentioned in the introduction, one should also remember
the adhesion of the excavated material to the belt, expressed by the coefficient of friction
µtu, which corresponds to friction angle ρtw. Then, the total angle of feeder inclination
(αtp + ∆αtp) cannot exceed the value of angle ρtw (54). Of course, changing the angle of the
feeder’s inclination also requires checking its stability.

αtp + ∆αtp ≤ arctanµtu (54)

The above-mentioned comments and requirements resulted in the development of an
algorithm and a computer application that enable the load of the feeder structure and its
stability to be calculated, without the need to use CAD programs.

3. Application for Designing and Analysing the Construction of a Belt Feeder

In order to support the design and analysis of the feeder load, an application in the
Matlab environment has been developed. After compilation, it will be an independent
application. Figure 13 shows the main application window.
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Figure 13. Main window of the application for designing and analysing the belt feeder.

In the left part of the application window, one can see the data entered by the user
and the results of calculations based on the relationships presented in the previous section.
The input data are the lengths and weights of the feeder elements (top right corner of
the application), the distance ltp4, the angle of the feeder inclination αtp, the angle of
the feeder’s deviation from the base plane (lowering or elevating the starting point of
the feeder), orthogonal components of the friction coefficients µx and µy, as well as the
forces (of weights) Gz and Gw. All these quantities are entered in the white edit boxes.
Yellow and green edit boxes are reserved for calculation results. Each change in the input
quantity causes recalculation of all the dependencies. The input data entered in the feeder
calculations can be saved in a text file with the “Save” button to enable quick loading of
the data with the “Open” button without re-entering the data manually. An important
element of the application is the ability to change the value of angle ∆αtp, i.e., rotate the
feeder around support point 3.

In the lower right part of the application, there is a three-position switch for selecting
the drawings located on the right side of the application. Initially, a diagram of the
feeder with its marked dimensions (parameters) and the forces acting on it is drawn. This
considerably facilitates entering the input data and interpreting the obtained results, as
they can be quickly located. The second option “Graph” is a visualisation of the feeder
based on the entered and calculated data (Figure 14). In this option, the designed feeder is
drawn in the neutral position (∆αtp = 0◦) with a blue dashed line, and in the position taking
into account the set angle ∆αtp. In the case of the second option, the acting forces (weights)
Gz, Gw, Gzpw (black), as well as forces S1, S2, S3, and S4 with their orthogonal components
are drawn. A change in angle ∆αtp by means of a slider updates the calculations and the
schematic drawing of the feeder. The third drawing option includes graphs of Si forces with
their orthogonal components as a function of the sum of angles αtp and ∆αtp (Figure 15).
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The values of the forces acting on the feeder depend on its positioning. Graphs of
these functions can be helpful in the process of designing the feeder. Twelve “checkboxes”
have been placed under the graphs so that the designer can choose which forces they want
to depict, also taking into account their orthogonal components. Two vertical dashed lines
are also drawn on the graph. The blue line represents the feeder in the neutral position
(∆αtp = 0◦), whereas the red one defines the feeder’s position after taking into account the
rotation of the feeder relative to support point 3. Every change in the feeder parameters is
updated in the calculations and in the diagrams. Figure 16 shows the same graphs as in the
application (Figure 15) with an additional red vertical line marked for ∆αtp = 0.7◦.
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4. Usage of the Application

The results of the calculations (yellow and green edit boxes on Figure 13) together
with Figures 14–16 were obtained with the use of the application in question and the data
of a real feeder with a length of 20 m, inclination αtp = 6◦, and a belt width of 1000, placed
on V-type stationary supports. (Figure 10). This feeder is mainly designed to work on
inclination αtp = 16◦, in which case ∆αtp = 0◦. This is due to the coupling of the transported
material with the belt, where angle ρtu = 16.7◦ (54) for µtu = 0.3, in which case ∆αtp = 0.7◦.
Increasing the upward inclination for this type of feeder (∆αtp > 0◦) is practically impossible
in the case of a smooth belt. In the event that the feeder works downwards (∆αtp < 0◦), its
total inclination can reach −32◦. The value and sense of force S4y lead to the conclusion that
the feeder’s stability can also be maintained (Figure 16, green). It can be easily seen that
the course of force S4y is decreasing in the examined range. Conversely, force S4x increases
in value. For ∆αtp = 0◦, force S4x has a zero value, which is consistent with reality. In the
range of permissible belt inclination angles (−32◦ < αtp < 0.7◦), force S2 has a positive and
increasing value. The opposite is true for force S1, as its value is also positive but decreasing,
whereas the resultant value of these forces, i.e., force S3 for angle αtp = 16◦, reaches its
maximum. It should be noted that force S4y also has a positive value in this range, which
leads to the conclusion that the feeder has the required stability. It may change when
the weight of the discharge Gw increases. In such a case, force S4y has a negative value
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above weight Gw = 25.5768 kN, which indicates the loss of stability of the feeder when it
is working on an upward slope (∆αtp > 0◦), Figure 17a. However, in the case of a feeder
working on a downward slope with weight Gw > 12.2258 kN, force S4y also has a negative
value (∆αtp < 0◦), which causes loss of stability (Figure 17b). Of course, the application
allows other cases related to the design parameters of the feeder to be considered.
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5. Conclusions

The previously described construction of belt feeders as well as their physical and
mathematical models allowed the development of an algorithm and a computer application.
The main goal of this project was to create a tool that would enable the structure of the
designed and constructed feeder to be tested without the need for additional documentation.
This is particularly useful at the stage of starting up a specific feeder in its place of work,
where small changes in its construction and installation are often required. To sum up, it
can be said that:

1. The model of a belt feeder, based on currently produced and used feeders of this type,
enables analytical testing of their stability and structure load.

2. The developed algorithm and computer application enable and expedite computa-
tional processes with the possibility of their visualisation, especially when making
structural and functional changes to existing objects.

3. The discussed application is used in practice by companies producing and installing
this type of feeder. Users of these feeders also employ it, as it responds to their needs.
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