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Abstract: The aggravated global warming and energy crisis have greatly challenged the healthy
and sustainable development of society worldwide. Improving energy efficiency is one of the vital
ways to overcome the dilemma. Existing studies explore the impact of environmental regulation on
energy efficiency; however, the potential impact of the environmental protection tax (EPT) on urban
energy efficiency has received little attention. Using the panel dataset of 278 Chinese cities from 2011
to 2019, the unified efficiency index (UEI) based on a total non-radial directional distance function
(TNDDF) is first used to calculate urban energy efficiency. A difference-in-differences (DIDs) model
is conducted to explore the impact of the EPT policy on the urban UEI and its potential mechanisms.
The findings indicate that: (1) The average UEI in cities experienced an uptrend and a downtrend
during 2011–2019. The overall UEI levels were low, especially in Jiaxiaguan, Tianshui, and Huyang
cities. (2) The EPT policy significantly increases energy efficiency for the heavily polluting cities by
approximately 5.21% more than that of the non-heavily polluting cities. (3) Heterogeneity analysis
shows that EPT has a better effect on improving UEI in higher-level economic and non-resource-based
cities. (4) Mechanism analysis implies that EPT boosts the urban UEI by stimulating urban green
technology innovation, upgrading the industrial structure, and introducing foreign direct investment.
This study offers empirical evidence and implications for policymakers using EPT to achieve higher
urban energy efficiency and sustainable targets.

Keywords: environmental protection tax; urban energy efficiency; green technology innovation;
industrial structure; foreign direct investment

1. Introduction

With the highest economic growth rate and remarkable achievements, China’s econ-
omy has grown significantly since the reform and opening up [1]. However, as one of the
largest developing countries, China’s rapid economic expansion depends on considerable
environmental pollution and energy consumption, which has hugely aggravated global
warming and led to poor living conditions and poor social health [2]. The environmental
pollution and energy crisis have already become the main bottlenecks for the green and
health development of China. Accordingly, exploring low-energy consumption produc-
tion methods and improving energy efficiency to curb continued climate change is one of
China’s most urgent concerns [3].

The Environmental Protection Tax (EPT) policy introduced in December 2016 is a
breakthrough in the construction of environmental governance for the Chinese government
to balance environmental conservation and economic growth. As an effective fiscal tool,
it is the first tax in China that aims at environmental protection and contains mandatory
and market-incentive measures [3]. Under the EPT policy, enterprises are subject to taxes
for discharging four significant pollutants: air pollutants, water pollutants, solid waste,
and noise. Due to the short implementation period of EPT policy in China, the literature
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focusing on EPT effects is not extensive [4]. Related studies proposed two main views. First,
EPT policy has an impact on industrial economy performance. For example, Cheng et al. [2]
found that the EPT policy can enhance the green investments of heavily polluting firms.
Long et al. [3] found that the financial performance of heavily polluting companies drops
after implementing EPT in a short time. Second, other studies pointed out that China’s
EPT can directly influence the effects of emissions reduction [5–7]. For example, Han and
Li [5] found that the EPT policy in China can reduce the annual PM2.5 concentrations in 31
provinces. Li et al. [8] demonstrated that the imposition of the EPT dramatically lowered
sulfur dioxide (SO2), nitrogen oxide (NOx), and dust emissions. However, whether EPT
policy can effectively promote cities’ energy efficiency has not been addressed.

The core objective of this study is to explore how EPT policy affects urban energy
efficiency. We chose Chinese cities as a setting to explore this research question for three
reasons. First, urbanization has accelerated significantly in the last few decades [9]. Cities
in China account for more than 70% of the GDP and have contributed to remarkable
achievements in high-speed economic development. However, the price of economic
prosperity is considerable environmental pollution and energy consumption. Therefore,
exploring appropriate environmental policies to boost energy efficiency at the city level
has become imperative. Second, the promulgation of the EPT policy is an exogenous shock
that could provide an experimental scene for testing the “Porter effect” of environmental
regulation and a valuable opportunity to identify how the green tax system affects urban
energy efficiency. Third, our results offer valuable insights into the effectiveness of the
EPT policy in China, which also provides empirical evidence from emerging markets for
expanding the “Porter effect” theory’s scope.

Using the total TNDDF to calculate China’s urban unified efficiency index (UEI) from
2011 to 2019, we conduct the first study that quantifies the impacts of the EPT policy on
urban energy efficiency. In addition, we further explore the mechanisms of influence and
heterogeneous effects. This study advances the existing field of literature in three ways.
First, it is a valuable addition to the literature on the sustainable impacts of EPT policy.
Existing studies have examined the EPT policy’s economic and air pollution effects, but the
impact of the EPT policy on energy efficiency remains unknown [2,5,8]. This study, for the
first time, examines whether EPT policy has affected urban energy efficiency and identifies
a green tax policy as another important measure for boosting energy efficiency. Thus, the
empirical evidence enriches the literature on environmental governance. Second, we chose
the TNDDF method to calculate the energy efficiency of 278 Chinese cities from 2011 to 2019.
Compared with other methods, the TNDDF method is more in line with the production
expectation of maximizing desirable output while minimizing undesirable output [10].
The measurement helps to scientifically reveal the updated trends and problems of energy
efficiency in Chinese cities. Third, we applied a difference-in-differences (DIDs) model
to avoid biased estimation and provide policymakers with a better evaluation of the
EPT policy’s net impact. In addition, we also provide insights into the mechanisms by
which the EPT policy influences the urban UEI and its heterogeneity, which deepens
our understanding of the influence process of EPT policy and offers implications for
policymakers in formulating and implementing EPT policy to better achieve sustainable
development targets.

The following is an arrangement of the article’s content. The literature review is dis-
cussed in Section 2. The institutional background and research hypothesis are introduced in
Section 3. The research design is presented in Section 4. Empirical findings and robustness
tests are presented in Sections 5 and 6. In Section 7, conclusions and policy implications
are discussed.

2. Literature Review

This research is closely linked to two bodies of literature. The first focuses on measur-
ing energy efficiency, while the second primarily considers how environmental policy and
energy efficiency are related.



Energies 2023, 16, 8104 3 of 24

2.1. Measurement of Energy Efficiency

The data envelopment analysis (DEA) method has the advantage of considering mul-
tiple inputs and multiple output elements simultaneously. Meanwhile, the DEA method
does not require the prior specification of functional forms. Considering the advantages,
an increasing number of studies use the DEA method to calculate energy efficiency [11–13].
Traditional DEA techniques generally use the Shepard distance function (SDF), which sets
the same increased number of all output elements [14]. However, the increase in desirable
output accompanied by a decrease in non-desirable output is more in accordance with the
expectation. To solve the limitations of the SDF, the directional distance function (DDF) was
developed by Chambers et al. [15]. The DDF can simultaneously enlarge desirable output
and contract undesirable output, which aligns more with our expectations. Chung et al. [16]
are the first to employ this method to evaluate the productivity efficiency of the pulp and
paper sector in Switzerland. Considering the environmental factor, Färe et al. [17] created
an environmental DDF and used it to evaluate coal-fired plants’ environmental efficiency
in the United States. However, this method has limitations because it assumes that undesir-
able output contraction and desirable output expansion are strictly proportionate [18,19].
Notably, if there is slack, the calculation will be overestimated [19]. Additionally, if there
is only one input factor, such as energy input, DDF is unable to handle the scenario [20].
To tackle these constraints, the non-radial directional distance function (NDDF) is cre-
ated and adds slack considerations [21,22]. The NDDF was first defined and used by
Zhou et al. [23], who evaluated power plants’ energy and CO2 emission performance across
126 countries, changing the assumption that the desirable and undesirable output must
be contracted and expanded proportionately. Afterward, the NDDF method is frequently
employed to evaluate the efficiency of various research objectives, particularly research
on Chinese fossil fuel power plants [24,25]. A meta-frontier NDDF method was created by
Yao et al. [26] and was used to calculate regional energy efficiency. Similarly, Li and Lin [27]
also used the NDDF method to measure energy efficiency from a regional perspective.
Using a micro-level dataset, TNDDF was first used by Zhang et al. [10] to quantify the
energy efficiency of China’s mining enterprises. The measurement of energy efficiency at
the city level has, however, received little research attention.

Overall, extensive studies have measured energy efficiency from regional, provincial,
industry, and enterprise perspectives. Studies on measurement or topics related to city
energy efficiency are limited. Compared to other methods, the TNDDF method for calculat-
ing energy efficiency is consistent with the production expectation of maximizing desirable
output while minimizing unwanted output [10]. However, existing studies have mainly
applied this method to the energy efficiency measurement of power plants and various
industries. To the best of our knowledge, it has not been used in any of the previous studies
to calculate urban energy efficiency. Therefore, this paper calculates 278 prefecture-level
cities by the TNDDF method, which is significant for future studies on energy efficiency at
the city level.

2.2. Environmental Policy and Energy Efficiency

The impact of environmental-related policies on energy efficiency is controversial in
academic circles. The neoclassical economic theory holds that environmental policy, as
regulatory pressure, implies an additional burden on an organization and leads to a shift
in the use of resources from traditional “production” to “pollution control” [28]. The in-
creasing production costs and pollution control costs weaken organizations’ productivity
and competitiveness, hindering energy efficiency. Economists represented by Porter raised
opposing views. The Porter hypothesis, which was formulated by Porter and van der
Linde [29], holds that reasonable environmental regulations can mitigate the negative costs
and lead to enhanced energy efficiency by promoting technological innovation and internal
resource reallocation.

To achieve higher energy efficiency, many types of policies have been implemented
around the world, such as state administrative orders, energy-related laws, environmental-
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related laws, financial subsidies, and awards [6,7,30]. Empirical studies on the links be-
tween various environmental policies and energy efficiency or productivity efficiency have
sparked a lot of discussion, especially the effects of the command-and-control regulation
(CCR) policy and the market-based environmental regulation (MER) policy. For instance,
Metcalf [31] found that a carbon tax policy as a revenue and distributional-neutral approach
can reduce U.S. greenhouse gas emissions. In the Indian cement industry, Mandal [32]
discovered that environmental regulation strengthened energy efficiency. Similar conclu-
sions also hold in European countries. Martin et al. [33] explored the impact of the carbon
tax based on the UK Census of Production dataset. They argued that implementing the
carbon tax reduced energy intensity by 18.1%, while carbon tax electricity consumption
fell by 22.6%. Subsequently, Rivers and Schaufele [34] confirmed that the carbon tax leads
to a decline in short-run gasoline demand in the Canadian province of British Columbia.
Sen and Vollebergh [35] discovered that a one-euro energy tax reduced carbon emissions
from the use of fossil fuels by 0.73% over the long term, using a cross-sectional dataset
of OECD countries. Fu et al. [36] analyzed the emission reduction path of a high-tiered
carbon tax. Chen et al. [37] found that the environmental policy mix can promote carbon
emission reduction based on data from private cars. Thus, carbon or energy-related taxes
are regarded as an effective MER tool for reducing carbon emissions worldwide.

As China’s international economic status becomes more prominent and environmental
issues become more urgent, the influence of environmental policy on carbon emissions,
green production, or energy efficiency in the Chinese setting is a growing study area.
For example, Si et al. [38] found that China’s various energy-related policies have different
impacts on regional energy consumption. Moreover, financial subsidies are more effective
than other types of policies. Li et al. [39] discovered that MER policy increases environ-
mental governance efficiency temporarily but that ongoing increases in this intensity will
reduce efficiency. Energy intensity constraint policy (EICP) was found to be a hindrance to
industry energy efficiency by Shao et al. [40], who used panel data from China’s 36 indus-
trial subsectors from 2001 to 2014. More recently, Han and Li [5] found that EPT policy in
China can reduce the annual PM2.5 concentrations in 31 provinces. Li et al. [8] provided
empirical findings showing that pollution emissions from fossil fuel power plants in China
dramatically decreased after the imposition of the EPT. Gao et al. [41] revealed that the
low-carbon city pilot policy greatly improved urban energy efficiency using city-level data
from 2006 to 2019. Accordingly, existing research has not found a common link between
environmental policy and energy or environmental efficiency, and more empirical evidence
from China is needed. Table 1 summarizes the most related literature.

In summary, existing research has not reached a common link between environmental
policy and energy efficiency with various datasets, scopes, and methods; more empirical
evidence from China is still needed. First, extensive existing research on energy efficiency
is mainly conducted from provincial, regional, or industry perspectives, and there is still
a lack of energy efficiency focus on prefectural-level cities. Provinces or regions cannot
replace Chinese prefectural-level cities’ unique operation mechanisms and characteristics.
Thus, research exploring the measurement and determinant factors of energy efficiency
from a city-level perspective is still needed. Second, existing studies mainly analyze the
CCR or MER environmental policy effects and have not paid sufficient attention to the
comprehensive environmental policy effects on energy efficiency, such as the EPT. EPT pol-
icy is a comprehensive environmental policy that considers both administrative order and
economic incentives. Whether EPT policy can positively affect energy efficiency has not
been holistically discussed before. To fill these gaps, this study initially calculates the urban
UEI of 278 Chinese cities from 2011–2019 based on the NDDF method. Then, we explore
the impact of the EPT policy on the urban UEI and the influencing mechanisms by using
China’s environmental tax reform in 2016 as a quasi-natural experiment. The findings give
Chinese policymakers a theoretical basis for implementing comprehensive environmental
regulation measures to achieve better urban energy efficiency.
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Table 1. Summary of literature.

Author(s) Sample Period Method Result

Cheng et al. [2] heavy-polluting firms 2015–2018 DID model
EPT policy promotes the green
investments of
heavy-polluting firms.

Long et al. [3] heavily polluting industries 2015–2020 DID model
EPT policy significantly reduces
the performance of
heavy-polluting companies.

He et al. [42] Listed companies 2014–2021 DID model
EPT policy significantly promotes
heavy-polluting firms’
ESG performance.

Han and Li [5] 31 provinces in China 2013–2018 Bayesian LASSO regression model EPT policies improve air quality.

Li et al. [8] 30 provinces, 804 plants July 2017 to December 2019 DID model

EPT policy significantly reduces
emissions of pollutants (including
sulfur dioxide (SO2), nitrogen
oxide (NOx), and dust) from fossil
fuel power plants.

Gao et al. [43] 107 cities 2015–2019 DID model
EPT policy accelerates the
synergistic reduction of both
pollution and carbon reduction.

Yang et al. [9] 281 cities 2005–2017

DID-model
(Energy efficiency is measured by
the ratio of the GDP of a city to the
energy consumption of the city.

The construction of innovative
cities boosts urban
energy efficiency.

Li et al. [44] 271 cities 2004 to 2016 dynamic panel threshold model
(undesirable SBM model)

Technical innovation has a
positive effect on urban
energy efficiency.

Liu et al. [45] 1370 observations at city level 2011 to 2018 dynamic panel data models
(undesirable SBM model)

Digital finance can improve urban
energy efficiency.

Gao et al. [41] 277 cities 2006 to 2019 DID model
(undesirable SBM model)

Low-carbon city policies (LCCP)
boost urban energy efficiency.

3. Background and Research Hypotheses
3.1. Institutional Background of EPT Policy in China

Environmental damage and excessive energy and resource consumption have grad-
ually become the main bottlenecks for the healthy development of the economy. In 1982,
China’s State Council introduced the ‘Provisional Measures on the Collection of Pollutant
Discharge Fees.’ [42]. The pollutant discharge fee collection standards experienced four
modifications in 1998, 2003, 2007, and 2015, respectively. However, China’s existing dis-
charge fee approach has not achieved the desired effect. In contrast, a vicious circle of
“pollution-treatment-re-pollution” appears in environmental governance. To this end, at
the 18th and 19th National Congresses, the Chinese government emphasized the green
development strategy, namely “vigorously promoting the construction of ecological civi-
lization” [2]. To improve environmental governance and realize the green development
strategy, a comprehensive policy that uses various means such as administration, econ-
omy, market, the rule of law, science and technology, and other measures is urgent. Thus,
during the Third Plenary Session of the 18th Central Committee, the state endorsed the
reform of transitioning pollutant discharge fees to environmental taxes in November 2013.
Afterward, the Ministry of Finance, the Ministry of Environmental Protection, and the
State Administration of Taxation jointly submitted an EPT policy draft. To this end, in
December 2016, the Environmental Protection Tax Law of the People’s Republic of China
was passed. The EPT policy came into force officially on 1 January 2018 [43]. Table 2 shows
the schedule of EPT formation, which was adopted from Cheng et al. [2].

The EPT policy contains the following main information: First, regions can determine
their pollution collection standards. According to the EPT, the central government is re-
sponsible for building minimum standards for major pollutants, but the local governments
can make the decision on adjusting the standards within ten times the minimum standards.
Moreover, the governments of provinces have the right to choose major pollutants accord-
ing to their local conditions and collection standards. Second, the revenues from the EPT
are calculated as local government revenue. Third, the EPT policy has five chapters and
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28 articles, further standardizing collection management procedures. The EPT is mainly
levied on four primary pollutants: air, water, solid waste, and noise. There are a total
of 117 major pollution factors on the levy scale. The implementation slogan of EPT is
“who pollutes, who pays, who treats” and aims to effectively make up for the pollution
by increasing enterprises’ inner costs. The promulgation of the EPT policy has filled the
pollution emission tax system gap and is a milestone in China’s “greening tax system”
process [2]. The prominent exogenous characteristics of EPT provide the opportunity to
identify the EPT policy’s effectiveness on urban energy efficiency.

Table 2. List of the detailed process of EPT policy in China.

Time Relevant Events

2 May 1982 The State Council enacted the “Provisional Measures for the Collection of Pollutant Discharge Fees” on 1 July 1982.

15 August 1993 The State Planning Commission and the Ministry of Finance issued the “Notice on Collection of Sewage
Discharge Fees.”

2 January 2003 The State Council enacted the “Regulations on the Administration of Collection and Use of Pollutant Discharge
Fees” on 1 July 2003.

1 September 2014 The “Notice on Adjusting the Collection Standards of Pollutant Discharge Fees and Other Relevant Issues” has
been released.

9–12 November 2013 The Third Plenary Session of the 18th Central Committee decided to promote the reform of changing pollutant
discharge fees to taxes.

13 November 2014 The “Environmental Protection Tax Law of the People’s Republic of China” (draft) is submitted to the State Council.

10 June 2015 The Legislative Affairs Office of the State Council issued and published the “Environmental Protection Tax Law of
the People’s Republic of China” (Call for Opinions) and the explanations to the public.

5 August 2015 The Environmental Protection Tax Law was added to the legislative plan of the 12th National People’s Congress
Standing Committee.

29 August–3 September 2016 The 20th meeting of the 12th National People’s Congress Standing Committee reviews the EPT policy draft for the
first time.

25 December 2016 The EPT policy was passed.

1 January 2018 The EPT policy was formally implemented.

3.2. Research Hypothesis
3.2.1. Basic Hypothesis

The EPT policy may positively affect urban energy efficiency in the following three
aspects: First, EPT policy directly increases the cost of enterprises in three ways: environ-
mental tax costs, reducing pollution emissions costs, and penalty costs. The EPT policy set
explicit environmental constraints, internalized the external cost of environmental pollution
through the price mechanism, and imposed taxation on 117 major pollution factors. Under
EPT policy, cities could forcibly shut down, transfer, or improve the energy efficiency of
local polluting enterprises. Concerning the city’s long-term sustainability and the sunk
costs of the past production mode, the best choice for the city is the third one, promoting
energy efficiency [41]. Second, the EPT policy has also incurred greater attention from
central environmental protection and tax departments, particularly in cities with highly
polluting industries. After the imposition of EPT policy, cities face higher political costs than
before. To avoid being punished, cities will naturally transform or optimize their industries.
Low-carbon industrial transformation will boost urban UEI. Third, the implementation of
the EPT policy increased government revenue. In 2018, the Ministry of Finance of China
reported that the country’s EPT revenue was 15.1 billion yuan. However, revenue growth
soared to 22.1 billion yuan in 2019 [2]. Thus, after the EPT policy, local governments have
more monetary funds to improve cities’ energy efficiency. For example, more subsidies can
be used to develop environmental protection and energy-saving technologies, which are in
turn beneficial for urban energy efficiency. Thereby, we propose the first hypothesis,

H1. The implementation of EPT has a positive effect on urban energy efficiency.
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3.2.2. Mechanism Hypothesis

EPT policy may affect urban energy efficiency through three plausible channels: green
technology innovation, industry structure upgrading, and FDI.

The green technology innovation effect. Strict environmental policies would stimulate
companies to increase their green technology innovations to change their production mode,
which can improve production efficiency and mitigate the adverse effects of treatment
costs [29]. To avoid or reduce the taxation and political costs caused by the EPT policy, cities
will significantly improve their green innovation capabilities to cope with environmental
risks and alleviate cost pressures. On the one hand, green technology innovation can pro-
mote urban energy efficiency through directed technological change (DTC). For example,
carbon storage technology, air quality management technology, and water pollution control
technology can significantly reduce a city’s undesirable carbon emissions, thus improv-
ing a city’s energy efficiency [46]. Green innovations in heat-scavenging and end-of-pipe
treatment technologies (such as waste disposal and reuse technology) can significantly
lower energy consumption and reduce pollutant output [47]. On the other hand, green tech-
nology advancements can stimulate and shift production from heavy-polluted industries
to environmentally sound ones, which can greatly boost the city’s energy efficiency [48].
Thereby, we propose the following hypothesis:

H2: EPT improves urban energy efficiency through green technology innovation.

Industry structure upgrading effect. After the imposition of the EPT policy, cities
are expected to reallocate their production resources to reduce pollutants. The input
resources for the low-carbon, green, and clean industries will increase. In contrast, the input
resources for “three high” initiatives, such as high pollution, high energy consumption,
and high emission intensity, will significantly decrease. After a period, EPT will gradually
gather urban resources in technology-intensive emerging industries, while resources will
progressively withdraw from traditional pollution-intensive industries [49]. Thus, the
EPT policy leads to an upgrade of the city’s industrial structure. Moreover, the cities’
industrial spatial structure will also be optimized with the “structural dividend,” which can
further contribute to energy efficiency. Additionally, the economies of scale that industrial
agglomeration brings also reduce energy consumption and carbon emissions [41] and thus
promote energy efficiency. Thus, we hypothesize that,

H3. EPT improves urban energy efficiency by upgrading the industrial structure.

FDI effect. EPT policy may affect urban UEI through the FDI effect. On the one hand,
the polluting FDI that entered the host city market will gradually withdraw due to the
constraints of the EPT. For example, cities’ high-pollution and high-emission FDI face much
higher tax costs than before, largely decreasing the return on total asset profit. As a result,
those kinds of FDI have to be suspended or withdrawn. In contrast, the increase in high-
quality FDI that entered the city will be accompanied by advanced technology knowledge
and some sustainable green concepts for the host cities, which will enhance the technology
innovation capability and green awareness of cities, thus promoting urban energy efficiency.
In addition, foreign capital lowers the financial pressures of cities and generates green
technology spillovers, which further help to improve cities’ energy efficiency [41]. Thereby,
we proposed the following hypothesis:

H4. EPT improves urban energy efficiency through foreign direct investment.

The research framework based on the hypothesis is shown in Figure 1.
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4. Methodology and Data Source
4.1. Measurement of Energy Efficiency

The measurement of urban energy efficiency has, however, received little research
attention. As far as we could find, Yang et al. [9] use the ratio of energy consumption
to GDP to calculate urban energy efficiency. Following Li et al. [45], Liu et al. [8] and
Gao et al. [50] measured China’s urban green energy efficiency by the same undesirable
slacks-based model (SBM), and they adopted pollutants as the undesirable output. Thus,
compared with the single ratio, the TNDDF considers more comprehensive factors and
can reflect the reality of the energy-economic system. Compared with the undesirable
SBM model, the TNDDF model can more reliably measure urban energy efficiency and is
relatively more flexible. Meanwhile, it also considered the substitution effect of energy and
other input elements that can simultaneously maximize expected output and minimize
unexpected emissions [10]. In addition, we consider CO2 rather than SO2, industrial snoot,
and industrial wastewater as undesirable outputs because we are not only focused on
heavily polluted cities or regions. Thus, this study uses the urban unified efficiency index
(UEI) by the TNDDF method. Specifically, each prefectural-level city is supposed to be a
production decision-making unit (DMU). Following Färe et al. [17], each city generates
desirable output Q and undesirable output C using input K, L, and E elements. Then, each
city’s DEA technique is denoted as follows:

T = {(K, L, E, Q, C) : (K, L, E) can produce (Q, C)} (1)

The following production possibility set can also be used to create the multi-output
production technology:

P(K, L, E) = {(Q, C) : (K, L, E, Q, C) ∈ T} (2)

Three assumptions are commonly made based on the set above:

I. Inputs and undesirable outputs are highly disposable. That is, if (Q, C) ∈ P(K, L, E)
and then (Q′, C) ∈ P(K, L, E);

II. A weakly disposable set is satisfied by the joint production set of desirable and
undesirable outputs. Namely if (Q, C) ∈ P(K, L, E) and 0 6 θ 6 1, (θQ, θC) ∈
P(K, L, E);

III. Desirable output has no intersection with undesirable output. Then if (Q, C) ∈
P(K, L, E) and C = 0, Q = 0 ;

To be more specific, it is assumed that there are n = 1, . . . , N decision-making units.
Regarding the fact that returns to scale are unchanged, we formulated the production
technology as follows:
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T =


(K, L, E, Q, C):

N
∑

n=1
znKn 6 K,

N
∑

n=1
znLn 6 L,

N
∑

n=1
znEn 6 E,

N
∑

n=1
znQn > Q,

N
∑

n=1
znCn = C

 (3)

where zn > 0, n = 1,2, 3, . . ., N.
Next, based on Zhou et al. [23], the TNDDF is used for measuring the energy efficiency

of each DMU and can be formulated as follows:

→
D(K, L, E, Q, C; G) = sup

{
WT B :

(
Q + βQgQ, C− βcgC

)
∈ P(K− βKgK, L− βLgL, E− βEgE)

}
(4)

where W = (wK, wL, wE, wQ, wC)
T represents the normalized weight matrix and indicates

the relative weights of each element. The proportion that can be increased or decreased
for each element is reflected by the vector of the scaling factor B = (bK, bL, bE, bQ, bC) > 0.
We use G = (−gK,−gL,−gE, gQ,−gC)

T as the directional vector. The explanations for the
NDDF expressed by Equation (4) indicate: Once the production method is chosen, the
producer anticipates increasing the desirable output based on the direction gQ. Meanwhile,
the producer will reduce capital investment, labor investment, energy consumption, and
undesirable output based on the direction of −gK,−gL,−gE,−gC [10].

Considering the substitution effect between the energy input element and the other
two input elements [51]. The TNDDF can be created as follows:

→
DT(K, L, E, Q, C; G) = max.wKβK + wLβL + wEβE + wQβQ + wCβC

s.t.


N
∑

n=1
znKn 6 K,

N
∑

n=1
znLn 6 L,

N
∑

n=1
znEn 6 E− βEgE,

N
∑

n=1
znQn > Q + βQgQ,

N
∑

n=1
znCn = C− βCgC

zn > 0, n = 1, 2, 3, · · · , N and βK, βL, βE, βQ, βC > 0

(5)

When
→
DT(K, L, E, Q, C; G) = 0, the DMU of each city operates at the frontier of best

practice in the direction G = (−gK,−gL,−gE, gQ,−gC). Using the most commonly used
weighting approach by Liu et al. [51] and Zhang et al. [10], equal importance is given to
inputs, desirable output, and undesirable output in the TNDDF. Thus, WT = ( 1

9 , 1
9 , 1

9 , 1
3 , 1

3 )
is chosen as the weight matrix. The aforementioned weight matrix is entered into Equa-
tion (5). Assuming that B∗ = (b∗K, b∗L, b∗E, b∗Q, b∗C) is the optimal solution, the following
Equation (6) can be used to estimate each city’s UEI under the TNDDF:

UEIn = 1
4


Qn/Kn(

Qn+β∗nQQn

)
/(Kn−β∗nKKn)

+ Qn/Ln(
Qn+β∗nQQn

)
/(Ln−β∗nL Ln)

+ Qn/En(
Qn+β∗nQQn

)
/(En−β∗nEEn)

+ Qn/Cn(
Qn+β∗nQQn

)
/(Cn−β∗nCCn)


= 1

4

[
(1−β∗nK)+(1−β∗nL)+(1−β∗nE)+(1−β∗nC)

1+β∗nQ

]
=

1− 1
4 (β∗nK+β∗nL+β∗nB+β∗nC)

1+β∗nQ
, n = 1, 2, 3, · · ·, N.

(6)

The UEI in Equation (6) ranges from 0 to 1, and the greater the value, the higher the
efficiency level the city has. If the UEI equals the maximum value of 1, the city is at the
production frontier.
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4.2. DID Model for Exploring the Effects of the EPT

The DID model is popular for evaluating the effectiveness of environmental poli-
cies [40,41,52]. The DID approach treats the policy as an exogenous shock and can sci-
entifically identify the net impact of a policy by effectively alleviating the endogeneity
problem. Thus, following Shao et al. [40], this study uses the DID research design proposed
by Bertrand and Mullainathan [53] to examine whether EPT policy impacts urban energy
efficiency. Meanwhile, given that the data on urban energy efficiency is truncated and the
value ranges from 0 to 1, we apply a Tobit regression model as follows:

UEIit = β0 + β1treat + β2time + β3time× treat + λX + γt + µi + εit (7)

where i appointed as the city, t stands for the year. UEIit is the explained variable, urban
energy efficiency. time is used as a time dummy variable that equals 1 after the EPT is
introduced (after 2016) and 0 before the EPT is introduced. treat represents the treatment
variable. The heavily polluting cities that are strongly affected by the imposition of EPT
are set as the treatment group (value = 1), and the remaining sample cities are set as the
control group (value = 0). (The EPT policy in China aims to internalize the social cost of
environmental pollution by imposing taxes on enterprises’ air, water, solid waste, and
noise pollutants. Thus, implementing the EPT policy strongly influences pollution controls
and constraints for producers with heavy pollution. Accordingly, we divide the sample
cities into heavily polluting and low-polluting groups. Heavily polluting cities are defined
as those whose industrial wastewater discharge, industrial SO2 emissions, and industrial
smoke and dust are all higher than the average values before the EPT was promulgated.
Notably, highly polluting cities are significantly influenced by EPT. Thus, we treat heavily
polluting cities as a treatment group. The remaining cities are low-polluting cities, which
are set as the control group. As a result, 1909 observations belong to the control group,
whereas 593 observations belong to the treatment group). The effect of the EPT on the city’s
energy efficiency is measured by the coefficient β3 in Equation (7). X are control variables.
γt controls the time-fixed effect, which includes any unquantified year-specific factors
such as business cycles and macroeconomic influences. µi controls the city fixed effect,
which considers any enduring variations between cities, such as geographic features. εit
represents a random error term. Based on previous studies on the determinants of energy
efficiency, the following control variables are included:

(1) Environmental regulation (lnregulation). Existing evidence certifies that environmen-
tal regulations have an impact on energy efficiency [50,54]. Thus, environmental
regulation is expected to affect urban energy efficiency. Following the method of
Zhou et al. [55], the environmental regulation index of a city is used to measure en-
vironmental regulation. Meanwhile, the improved entropy method is used to put
different weights on different indicators to construct the comprehensive index. The in-
dicators included in the comprehensive index contain industrial wastewater emissions,
industrial smoke (dust) emissions, and industrial sulfur dioxide emissions. Consider-
ing emission intensity and environmental regulation intensity usually have a negative
correlation, we take the inverse of the weighted index to represent lnregulation.

(2) Economic development level (lnGDP). Existing evidence has demonstrated that the
level of regional economic development can influence the mode of production and
energy consumption in regions [55,56]. Thus, the per capita GDP is expected to affect
a city’s energy efficiency. The logarithm of 1 plus the per capita GDP of each city is
used in this paper.

(3) Foreign direct investment (lnFDI). There is an ongoing debate on whether FDI has envi-
ronmental effects on the host countries, on which there are mainly two views. The “pol-
lution haven hypothesis” holds that FDI can amplify carbon emissions and energy
consumption burdens directly in the host country, which leads to a decrease in energy
efficiency [46,57]. However, based on the “pollution halo effect”, Antweiler et al. [58]
found that the introduction of FDI can increase the inflow of technological innovation
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knowledge and increase the technological spillover effect. Therefore, the FDI of a
city is expected to have an influence on the city’s energy efficiency. In this study,
we measure the variable by using the logarithm of 1 plus the total foreign direct
investment of each city.

(4) Export (Inexport). Export behavior is often closely related to city business activi-
ties [59]. Through the export trade, a city can gain advanced technology and business
experience to promote its energy efficiency, which may have a significant influence on
the city’s energy efficiency. Lnexport is calculated by the logarithm of 1 plus the total
exports in a city.

(5) Industrial structure (lntertind). Existing literature has shown that rationalizing and
upgrading industrial structures can boost energy efficiency [46]. Thus, it is expected
that a city’s industrial structure may affect urban energy efficiency. To measure the
industrial structure of a city, we used the ratio of the tertiary industry to the city’s GDP.

(6) Freight (lnfreight). The production intensity of a city can be represented by its road
freight, which could have an impact on the consumption of energy and pollutant
emissions of cities, thereby influencing energy efficiency. We use the logarithm of
1 plus the road freight to measure the variable.

4.3. Data Description

Our study includes a sample of 278 Chinese prefecture-level cities from 2011–2019.
The data used in the models are from the National Bureau of Statistics of China (NBSC),
China Statistical Yearbook (CSY), China City Statistical Yearbook (CCSY), China Statistical
Yearbook for Regional Economic (CSYRE), China Energy Statistical Yearbook (CESY), China
Statistical Yearbook on Environment (CSYE), China Urban Construction Statistical Yearbook
(CUCSY), and the State Intellectual Property Office of the People’s Republic of China (SIPO).
Given the absence of data for Taiwan, Hong Kong, Macao, and Tibet, cities in those areas
are excluded from the sample. Moreover, we delete cities that lacked essential data either
before or after implementing the environmental protection tax policy. Ultimately, the data
cover 278 prefectural-level cities and 2502 observations in total from 2011 to 2019, after a
series of filter matches.

4.3.1. Data for Urban Energy Efficiency Measurement

The unified efficiency index (UEI) measures urban energy efficiency. The calculation
of UEI by the TNDDF method introduced in Section 4.1. In this study, capital (K), labor
(L), and energy (E) are the three input indicators. We set GDP (Q) as a desirable output
indicator, while CO2 (C) is chosen as an undesirable output indicator. The five elements
in TNDDF reflect energy efficiency that maximizes economic output while minimizing
environmental impact. Data resources are processed as follows:

(1) Capital (K). To calculate the capital input indicator, we use the city’s actual capital
stock, which is calculated by the “perpetual inventory approach”. The data are from
the CCSY and the NBSC.

(2) Labor (L). The total labor of each city is used to measure the labor input indicator.
The total number of employees in the unit plus all private and independent employees
is used to calculate labor input. Data are collected from the CCSY.

(3) Energy (E). The total energy consumption of a city is used to measure the energy input
indicator. The energy consumption unit is expressed in tons of coal equivalent (tcc).
We compensated for the missing energy data in some cities following Yu et al. [56].
The data resources are from CSY, CCSY, and CESY.

(4) Desirable output (Q). We convert the desirable output to constant 2011 prices using
each city’s GDP as the desirable output indicator. The data on the GDP of each city
are from CCSY.

(5) Undesirable output (C). We use each city’s total CO2 emissions to measure undesirable
output indicators. The primary sources of city CO2 emissions are direct energy use,
for instance, coal gas and liquefied petroleum gas. Secondary sources of city CO2
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emissions are indirect energy use of electricity and thermal. To calculate the CO2
emissions from direct energy use, we use the conversion coefficients provided by the
IPCC [10,60]. The following is the calculation formula:

C = ∑
ij

Cij = Eij × CALj × CCj ×Oj ×
44
12

(8)

In Equation (8), i stands for city, j represents energy type. CAL is the net calorific
value. CC means the carbon content. O refers to the rate of carbon oxidation. The rate
at which carbon is converted to carbon dioxide is 44/12. In addition, following Glaeser
and Kahn [61], we also consider the indirect CO2 from electricity and thermal energy
consumption in this study. Table 3 shows the descriptive statistics of the five input and
output indicators used to calculate the urban UEI. As we could see in Table 3, the standard
deviation values of the input indicators K, L, and E and the output factors Q and C are
large, indicating that input and output factors between different cities are quite different,
especially the capital investment, the GDP, and the total CO2 emissions indicators.

Table 3. Descriptive statistics for input–output indicators.

Ch Sample Size Mean Standard
Deviation Minimum Maximum

K (108 RMB) 2502 1853.783 1942.934 35.62 24,844.25
L (104 persons) 2502 122.986 173.345 8.508 1729.071
E (104 tce) 2502 184.868 338.482 3.63 4067.33
Q (108 RMB) 2502 2518.183 3626.195 222.42 65,858.27
C (104 tons) 2502 1132.108 1632.306 15.58 14,812.43

4.3.2. Data for the DID Model

Control variables and mechanism variables are obtained from the CSY, CCSY, CUCSY,
SIPO, and CSYE databases. Table 4 describes the measurement units, data source, and
sample size of all variables in the DID model. The mean of UEI is 0.305, showing that
the overall urban energy efficiency in China is relatively low. Furthermore, the mean of
treatment is 0.237, showing that 23.7% of the samples are heavily polluted cities, while the
mean of time is 0.333, indicating that the sample after the EPT policy represents 33.3% of
the total samples. Additionally, the standard deviation value of Inregulation, InFDI, Inexport,
Infreight, and Inpatent is high, indicating there is a large gap in environmental regulation,
FDI, export, and freight between different cities.

Table 4. Descriptive statistics of econometric model variables.

Variable Sample Size Unit Data Source Mean Standard
Deviation Minimum Maximum

UEI 2502 — CCSY; CSY
NBSC; CESY 0.305 0.134 0.108 1

treat 2502 — — 0.237 0.426 0 1
time 2502 — — 0.333 0.471 0 1
lnregulation 2502 — CCSY; CSYE 3.216 1.018 0.851 8.204

lnGDPper 2502 RMB/person CCSY
NBSC 10.697 0.57 9.091 12.503

lnFDI 2502 104 dollars CCSY 9.974 1.695 4.511 14.212
lnexport 2502 104 RMB CCSY; CSYRE 6.78 1.101 0.693 7.816

lntertind 2502 — CCSY
NBSC 0.348 0.089 0.052 1.644

lnfreight 2476 104 tons
CCSY
CUCSY 9.015 1.063 0 13.225

lnpatent 2502 — SIPO 4.343 1.723 0 10.182
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5. Results and Discussion
5.1. Overall Analysis of the Energy Efficiency in Chinese Cities

To track the dynamic changes in UEI levels in 278 prefectural-level cities from 2011–2019,
we use a topographic map to display the distribution of urban UEI values. The K-Means
clustering method is the most common clustering technique that aims to reduce the av-
erage squared distance between points in the same cluster. Following Shi et al. [62], we
use K-Means clustering method and SPSS software 26.0 to classify the energy efficiency
of 278 cities. As shown in Figure 2, the sample cities are grouped into low, medium-low,
medium-high, and high levels. Cities that were not included in the research sample on the
map are shown by the white area. The greater the value of the urban UEI, the darker the
green of the marked cities will be. Here, we only list the results for 2011, 2015, 2017, and
2019 due to space limitations.
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As shown by Figure 2, an increase in the number of green cities from 2011 to 2015 is
presented. However, the overall urban UEI of 2017 has decreased compared to 2015, and
the color is even lighter than that of 2011. The map of 2019 is slightly greener than the map
of 2017. The average UEI in cities experienced an upward and downward trend from 2011
to 2019. The average urban UEI is 0.305, which is much lower than the theoretically ideal
value of 1. Thus, the overall urban UEI values are generally low, and urban UEI has a lot of
room for improvement. This is probably because, in the last decade, China has been in the
process of transferring from an expansive economic growth model to one that emphasizes
sustainable growth [40].
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When it comes to the state-quo of UEI in cities, up to the year 2019, 173 cities had a low
UEI, 71 cities had a medium-low UEI, and only 26 cities and 8 cities had a medium-high
UEI and a high UEI, respectively. In the UEI map of 2019, it can be seen that the darkest
area appears in the city of Shanghai, in the cities of Anshan, Dalian, Shenyang, Fushun,
and Tieling from Liaoning Province, in the city of Daqing from Heilongjiang Province, and
in the city of Chaoshan from Guangdong Province. This is probably due to the fact that
the cities with high UEI levels are located in China’s northern and eastern areas, where
technology and economics are more developed [63]. Cities in these areas have a large
number of state-owned and high-tech industries, and they are more actively responding
to environmental policies; thus, energy efficiency has improved rapidly. The UEI in cities
with low values is mainly from the central and western regions, located in Fujian Province,
Anhui Province, Hubei Province, Hunan Province, Henan Province, Sichuan Province, and
Chongqing. The extremely low UEI values are in the cities of Jiaxiaguan, Tianshui, Lanzhou,
and Baiyin from Gansu Province; city of Sanya from Hainan Province; the city of Huyang
from Anhui Province; the cities of Jingzhou and Huangshi from Hubei province; and the
city of Kunming from Yunnan Province. Although those cities have resource conditions,
their economic level is relatively low, and the environmental policy thereby may not help.
Thereby, economic development and industrial structure upgrading should be emphasized
first in cities with low levels of energy efficiency.

5.2. Analysis of the Effect of the EPT Policy on Urban Energy Efficiency

The DID study design needs to meet the preconditions. Before the EPT policy shock,
the UEI of the treatment and control groups selected for this study was required to show
the same trend of change. As shown in Figure 3, before the year 2017, the UEI of the
control group selected in this study did show exactly the same change trends compared to
the treatment group. Thus, it is assumed that the treatment and control groups meet the
preconditions of natural experiments. Moreover, it can also be seen that the overall average
urban UEI of the control group has always been higher than that of the treatment group
before 2017. However, after the EPT was introduced in 2017, the treatment group’s average
UEI dramatically increased and even surpassed the control group’s average UEI. This is
preliminary evidence that the EPT policy can probably boost heavily polluting cities’ UEI.
To further confirm the findings, a more rigorous test is required.
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Figure 3. Trends in the UEI of the treatment and control groups.

The estimation results of Equation (7). are presented in Table 5. Column (1) reports
the regression results after controlling city-fixed and year-fixed effects; the influencing
coefficient of time× treat is 0.0519 and significant at the 1% level. Column (2) displays the
results after controlling for the variables included. The influencing coefficient of time× treat
is significant at the 1% level with a value of 0.0521. The regression results are basically
unchanged. This implies that the EPT policy introduced in 2016 did significantly improve
urban energy efficiency. In general, the introduction of the EPT policy led to an increase in
energy efficiency for the heavily polluting cities by approximately 5.21% more than that
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of the cities in the control group. Thus, Hypothesis 1 is supported. Our results are similar
to those of Li, and Masui, and Niu et al. [64]. They provide evidence that environmental
tax shocks can influence China’s energy structure and reduce carbon emissions. However,
our results differ from those of Pan et al. [64], who found that strict environmental laws
trigger US firms’ transfer of carbon emissions and energy use rather than improve energy
efficiency. The inconsistent conclusions are probably caused by different legal environments
and global value chains within different countries. Therefore, the EPT policy could provide
management implications for Chinese cities for boosting energy efficiency.

Table 5. Results of the benchmark regression.

Variable
Tobit

(1) (2)

time× treat 0.0519 *** 0.0521 ***
(0.00871) (0.00876)

treat 0.182 *** 0.0375
(0.0413) (0.0601)

time −0.0454 *** −0.139 ***
(0.00769) (0.0214)

lnRegulation 0.00319
(0.00517)

lnGDPper 0.160 ***
(0.0382)

ln FDI −0.00273
(0.0191)

ln export −0.00429 *
(0.00239)

Intertind 0.0792 **
(0.0329)

Infreight −0.0100 ***
(0.00264)

Constant 0.237 *** −1.268 ***
(0.0296) (0.361)

Year fixed effect yes yes
City fixed effect yes yes
Observations 2502 2476

The asterisk ***, ** and * represent level of significance at 1%, 5% and 10% respectively, and similarly hereafter.

Column (2) of Table 5 also reports the estimated results of the control variables. In the
regression model, the estimated coefficient of InGDP is significantly positive, demonstrating
that an increase in GDP per capita can raise urban UEI. Our finding is consistent with
previous studies [65,66]. It is further certified that economic development has a spillover
technology effect of reducing emissions and saving energy consumption for cities, thereby
improving urban energy efficiency. When it comes to the Inexport variable, the coefficient
is negative and significant at the 10% level, suggesting that exports hinder the growth of
the urban UEI. This phenomenon is directly related to global production relocation and
the carbon transfer effect. As a large exporting powerhouse, China exports large numbers
of products that need to consume substantial energy resources and emit CO2 [67]. Thus,
export trade in Chinese cities has aggravated local enterprises’ pollution-intensive and
energy-consuming production activities. The coefficients of the industrial structure and
road freight variables are both significantly positive, indicating that optimized industrial
and city road freight also play important roles in promoting the city’s UEI.

5.3. Dynamic Effect of the EPT

The baseline model results report the average impact of EPT policy on urban energy
efficiency; however, they do not account for variations in the effects over time. Exploring a
policy’s dynamic effects is necessary, which is vital for proposing a sustainable development
policy. Thus, we develop the following Equation (9) in the manner of Jacobson et al. [68] to
capture the dynamic impact of EPT on urban energy efficiency:
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UEIit = α0 +
2019

∑
t=2011

αttime× treat× yeart + α1treat + α2time + λX + γt + µi + εit (9)

where yeart stands for a dummy variable. yeart equals to 1 in year t, otherwise 0. The co-
efficient αt represents the EPT’s dynamic impact on urban energy efficiency from 2011 to
2019. Other variables in Equation (9) have the same definitions as in Equation (7).

Table 6 reports the estimated results of Equation (9). The estimated coefficient αt for
the 2011 to 2016 period are all statistically insignificant. It illustrates that UEI in cities
in the treatment group had no difference from cities in the control group before the EPT
policy was implemented. Additionally, we notice that the estimated influence coefficients
were significantly positive in 2018 and remained significant in 2019. The EPT policy was
proposed at the end of 2016 and has been formally enforced since 2018. Thus, our findings
imply that the EPT’s positive effects on urban energy efficiency occurred as soon as the
policy was formally set in place.

Table 6. Dynamic effect of the ETs on the UEI of prefecture city.

Variables Coefficient Variables Coefficient

time× treat× year2011 0.0572 lnregulation 0.00470
(0.0608) (0.00515)

time× treat× year2012 0.0527 lnGDPper 0.150 ***
(0.0606) (0.0381)

time× treat× year2013 0.0533 lnFDI −0.00917
(0.0605) (0.0189)

time× treat× year2014 0.0497 lnexport −0.00402 *
(0.0604) (0.00238)

time× treat× year2015 0.0440 lntertind 0.0669 **
(0.0601) (0.0328)

time× treat× year2016 0.0409 Constant −1.197 ***
(0.0603) (0.354)

time× treat× year2017 0.0896 Year-fixed effect yes
(0.0600) City-fixed effect yes

time× treat× year2018 0.117 * Observations 2502
(0.0602)

time× treat× year2019 0.103 *
(0.0600)

*** p < 0.01, ** p < 0.05, * p < 0.1.

6. Robustness Test

Figure 3 shows that after the promulgation of the EPT policy, the treatment group’s
increase in urban energy efficiency is more obvious. However, the parallel trend assumption
of the DID method still has to be confirmed. It is an assumption that if there is no EPT policy,
the UEI in the treatment group is expected to change in the same way as in the control group
before or after the implementation of the EPT policy. However, the EPT has already been
introduced, and there are also other factors during the research sample period that may
affect the results. Hence, robustness tests are necessary to verify our results further.

6.1. Placebo Test

A placebo test was conducted by assigning policy time dummy variables at random
due to our concern that our results would be influenced by the omitted factors rather than
by the implementation of the EPT. First of all, 180 cities were chosen at random as the
treatment group. Then, the remaining cities served as the control group. By using random
sampling, it is possible to ensure that the independent variable time× treat in the model
does not affect the dependent variable UEI. Instead, any significant findings will imply
that the regression results shown above are biased. Then, the above random assignment
is repeated 500 times. The estimated coefficients and p-values for the above 500 random
samples are shown in the distribution in Figure 4. It is clear that all of the distributions are
roughly centered at 0, and the majority of p values are higher than 0.1. Consistent with
expectations, the above-estimated p values of the coefficient are shown by the right side of
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the vertical dotted red line. The values are outliers. Thus, our findings are not caused by
other omitted factors within a city or a time.
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6.2. Excluding the Influence of Other Policies

The Notice on the Pilot Work of Low-carbon Provinces and Cities (LCCs), as a green
program to address both energy poverty and climate change, was released by the National
Development and Reform Commission (NDRC) in 2010. Since the implementation time of
LCC policy partially overlaps with the research sample period of 2011–2019, it is possible
that the effect of EPT on the energy efficiency of cities may be due to the LCC policy.
To accurately and effectively quantify the impact of the EPT policy on the improvement in
urban energy efficiency, we further control for the interference of the LCC policy on the
results. Thus, in this section, we exclude all the low-carbon pilot cities between 2011 and
2019 from the original sample and conduct the regression model without the influence of
the LCC policy on the results. Table 7 presents the regression results. As shown by the
positive and significant coefficients in Columns (1) and (2) at the 1% level, our baseline
findings are unaffected by the LCC policy. Therefore, the results are reliable.

Table 7. Results, excluding the effects of other policies.

Variable (1) (2)

time× treat 0.0404 *** 0.0422 ***
(0.00920) (0.00928)

treat 0.186 *** 0.0320
(0.0413) (0.0607)

time −0.0374 *** −0.141 ***
(0.00827) (0.0224)

LnRegulation 0.00346
(0.00552)

LnGDPper 0.158 ***
(0.0383)

In FDI −0.00323
(0.0191)

In export −0.00551 **
(0.00249)

Intertind 0.169 ***
(0.0545)

Infreight −0.00833 ***
(0.00268)

Constant 0.232 *** −1.274 ***
(0.0296) (0.362)

Year-fixed effect yes yes
City-fixed effect yes yes
Observations 2178 2153

*** p < 0.01, ** p < 0.05.
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6.3. Heterogeneity Analysis

Due to China’s vast territory and unbalanced spatial development, we further explore
the potential heterogeneity effects of city resource dependence and level of economic
development on the results.

Cities differ greatly in their reliance on resources, which may lead to heterogeneous
effects from EPT. We divided the sample into two groups: resource-based cities and non-
resource-based cities, respectively. The estimated results of subsamples are shown in
Columns (1) and (2) of Table 8. In Column (1), the coefficient of time× treat is 0.0821 and
is significant. Comparatively, in Column (2), the coefficient of time× treat is insignificant.
In other words, only in non-resource-based cities does the EPT policy considerably increase
energy efficiency. This is probably because the dominant industries in resource-based cities
are related to natural resources, such as mineral exploitation and fossil fuel processing.
The prosperity of the natural resource industry directs cities’ capital and labor flow from
manufacturing to mining [40]. Thus, heavy resource dependence leads to a monolithic
industrial structure and resource-intensive economic growth patterns in resource-based
cities. Meanwhile, the introduction of FDI into resource-based cities is also more likely
to flow into resource-intensive industries, further contributing to a vast quantity of CO2
emissions. In such situations, the EPT policy cannot play the role of promoting urban
energy efficiency through reasonable industrial upgrading and FDI mechanisms. Thus, the
findings indicate non-resource cities in China exhibit the resource gospel effect.

Table 8. Heterogeneity analysis results.

Variables (1) (2) (3) (4)

Non-resource-based cities Resource-based cities High economic level Low economic level
time× treat 0.0821 *** 0.00170 0.0401 *** −0.000101

(0.0104) (0.0150) (0.0128) (0.0152)
treat −0.104 0.272 ** −0.254 −0.262 *

(0.135) (0.129) (0.322) (0.138)
time −0.209 *** 0.100 ** 0.0329 −0.0894 ***

(0.0226) (0.0500) (0.106) (0.0316)
LnRegulation −0.00362 0.00953 −0.00654 0.0106 *

(0.00594) (0.00936) (0.00989) (0.00616)
lnGDPper 0.276 *** −0.277 *** −0.0753 −0.0343

(0.0395) (0.0922) (0.213) (0.0588)
lnFDI −0.0295 0.110** 0.135 0.0347 *

(0.0192) (0.0527) (0.107) (0.0202)
lnexport −0.000291 −0.00620 * −0.00372 −0.00210

(0.00329) (0.00347) (0.00459) (0.00261)
lntertind 0.0377 0.135 * 0.143 * 0.0731 **

(0.0354) (0.0698) (0.0790) (0.0335)
lnfreight −0.0145 *** −0.00434 −0.00929 ** −0.0115 ***

(0.00423) (0.00354) (0.00451) (0.00316)
Constant −2.037 *** 1.981 ** 0.000858 0.437

(0.351) (0.941) (2.069) (0.522)
Year-fixed effect yes yes yes yes
City-fixed effect yes yes yes yes
Observations 1514 962 910 1566

*** p < 0.01, ** p < 0.05, * p < 0.1.

Moreover, the impact of EPT on urban energy efficiency may vary depending on
the economic level of the city. We divided the cities into two subsamples: high-income
cities (the value of urban per capita GDP is higher than the average) and low-income cities
(the value of urban per capita GDP is lower than the average). In Column (3) of Table 8,
the estimated coefficient of time× treat is 0.0401 in the high economic level subsample,
which is positive at the 1% significant level. Comparatively, the estimated results of the
subsample of low economic development are shown in Column (4), and the coefficient
of time× treat is insignificant. This indicates that EPT positively impacts urban energy
efficiency only in high-income cities. This is because lower-income cities face greater
financial constraints than higher-income cities. As a result, investment in green technology
innovation is reduced, which prevents cities from benefiting from the spillover effect to
increase energy efficiency.
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6.4. Mechanism Analysis

In this section, we further explore how EPT boosts urban energy efficiency by test-
ing three potential influencing mechanisms: the green innovation technology channel,
the industry structure channel, and the FDI channel. To test the possible mechanisms,
Equation (10) was used for estimation.

UEIit = β0 + β1treat + β2time + β3time× treat + β4time× treat×M + λX + γt + µi + εit (10)

where time × treat × M denotes mechanism variables, which contain variables time ×
treat× Inpatent, time× treat× Intertind and time× treat× InFDI, respectively. We took
the logarithm of 1 plus the number of green patent applications as a measurement of the
city’s green technology innovation (We first collected the total number of green patent
applications from the State Intellectual Property Office of China (SIPO) website. We re-
search the applications according to the IPC classification numbers provided by the World
Intellectual Property Organization (WIPO). Then match enterprises in each prefecture-level
city with the number of green patents). Other variables in the Equation (10) have the same
definitions in the Equation (7).

Table 9 reports the mechanism results. In Column (1), we could see that the coefficient
of the interaction terms time× treat× Inpatent is 0.0236 and is positive at the 1% signifi-
cance level, indicating that EPT policy has a “Porter effect” in Chinese cities. EPT policy
boosts urban UEI through low-carbon green technology, thereby significantly increasing
the city’s energy efficiency. Thus, research Hypothesis 2 is supported. In Column (2), we
could see that the coefficient of the interaction terms time× treat× Intertind is significant
at the 1% level with a value of 0.817, suggesting that EPT significantly helps promote
optimization of industrial structures in the city. Under the EPT policy, high-pollution and
energy-consumption industries are curbed by high tax charges and penalties on pollutants.
Meanwhile, high-tech and green service industries are encouraged by the EPT policy, which
further helps to optimize industrial structure and thus promotes UEI in a city. Thereby,
Hypothesis 3 is verified. Column (3) presents the FDI effect. The estimated coefficient
of the interaction terms time× treat× InFDI is significantly positive and equal to 0.0296.
The evidence suggests that the EPT policy can encourage green foreign investment, through
which advanced technology and green concepts are brought to cities, thus promoting the
city’s energy efficiency. In summary, the mechanism hypotheses are all confirmed, sug-
gesting that EPT policy mainly enhances cities’ energy efficiency through three channels:
stimulating green technological innovation, upgrading industrial structure, and FDI.

Table 9. Mechanism analysis results.

Variable (1) (2) (3)

time× treat× Inpatent 0.0236 ***
(0.00472)

time× treat× Intertind 0.817 ***
(0.126)

time× treat× InFDI 0.0296 ***
(0.00458)

time× treat −0.0975 *** −0.281 *** −0.282 ***
(0.0306) (0.0520) (0.0524)

treat 0.0744 0.0371 0.0348
(0.0593) (0.0596) (0.0596)

time −0.0968 *** −0.139 *** −0.141 ***
(0.0219) (0.0212) (0.0212)

lnpatent −0.0319 ***
(0.00427)

lnregulation 0.00279 0.00321 0.00391
(0.00509) (0.00513) (0.00513)

lnGDPper 0.183 *** 0.159 *** 0.160 ***
(0.0377) (0.0379) (0.0379)

lnFDI −0.00847 −0.00254 −0.00269
(0.0188) (0.0189) (0.0189)
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Table 9. Cont.

Variable (1) (2) (3)

lnexport −0.00413 * −0.00380 −0.00400 *
(0.00235) (0.00237) (0.00237)

lntertind 0.0711 ** 0.0720 ** 0.0883 ***
(0.0325) (0.0326) (0.0327)

lnfreight −0.00944 *** −0.00993 *** −0.0109 ***
(0.00260) (0.00261) (0.00262)

Constant −1.364 *** −1.269 *** −1.273 ***
(0.355) (0.358) (0.358)

Year-fixed effect yes yes yes
City-fixed effect yes yes yes
Observations 2476 2476 2476

*** p < 0.01, ** p < 0.05, * p < 0.1.

7. Conclusions and Policy Implications

Based on a sample of 278 prefectural-level cities in China from 2011 to 2019, the
effectiveness of EPT policy on urban energy efficiency has been explored in this study.
Our important conclusions are as follows:

Firstly, the average UEI in cities experienced an upward and downward trend during
2011–2019. However, the overall levels were still low. There is a great deal of room for
improvement in the urban UEI, especially in the cities of Jiaxiaguan, Tianshui, Lanzhou,
Baiyin, Sanya, Huyang, Jingzhou, Huangshi, and Kunming. (2) The implementation of
the EPT policy significantly promotes heavily polluting cities’ urban UEI. Overall, the
cities in the heavily polluting cities increased their energy efficiency by approximately
5.21% more than the cities in the control group. (3) Moreover, EPT policy mainly enhances
cities’ energy efficiency through three channels: stimulating green technological innovation,
upgrading industrial structures, and FDI. (4) The positive effects of EPT policy exist mainly
in non-resource-based cities and high-income cities. Our results remain consistent after
robustness tests. The findings of this study have the following implications and action
plans for the development of EPT policy in China and other emerging countries that face
the double pressure of the coexistence of environmental protection and energy slackness.

Firstly, our empirical evidence shows that the EPT policy is an effective measure for
improving urban energy efficiency, especially in heavily polluting cities; thus, the local
governments, environmental protection departments, and taxation departments should
join together to support and insist on enforcing the EPT policy in the long run. Although
environmental protection tax is more mandatory than sewage charges, to ensure a smooth
transition from tax to charge, the current EPT is relatively conservative in terms of both
taxable objects and tax rates, which may result in a relatively limited effect and barriers
to the promotion of energy efficiency in cities. Therefore, it is necessary to improve the
implementation of EPT further. The specific action plan could be: (1) the tax rate of EPT
should be set scientifically according to the damage cost of pollution; (2) the tax incentives
of environmental protection tax for technological innovation and green production should
be expanded to realize the economic effect of technological innovation; and (3) the effective
cooperation between local government, environmental protection departments, and tax
departments should be strengthened. The collection and management of EPT should be
enhanced to ensure that the EPT can effectively restrain sewage disposal behaviour and
eliminate the highly polluting and energy-consuming production model so as to promote
urban energy efficiency. (4) The tax revenue from the EPT should be used effectively for the
purpose of protecting the environment rather than obtaining fiscal revenue. Therefore, the
revenue from EPT should be used to combat pollution and energy savings or compensate
for damages caused by pollution, especially the environmental inequity caused by pollution
discharge between regions, which can be considered to be coordinated and solved by EPT.

Secondly, our results indicate that the EPT policy mainly enhances cities’ energy
efficiency through three channels; thereby, the local government could go beyond its policy
and focus on relevant supporting measures, including emphasizing cities’ innovation
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capabilities, speeding industrial structure upgrading, and attracting green FDI. For example,
the detailed action plans in the future process of promoting urban energy efficiency could
be: (1) the establishment of a special technology transformation fund by the Ministry of
Ecology and Environment in conjunction with the Ministry of Industry and Information
Technology can support and guide industrial enterprises lacking innovative capacity in
upgrading their processes and carrying out green technological transformation to accelerate
the realization of cleaner production-type technological progress by traditional industrial
enterprises. (2) Preferential environmental protection taxation and government green
innovation subsidies can be given to local enterprises and high-end technical personnel to
boost green technology innovation in cities. (3) Market mechanisms such as taxation and
trading to combat pollution should be further explored. Specifically, the scope of EPT policy
can be further expanded, for example, by exploring the imposition of a carbon tax; the
incentives provided by market-oriented policies to enterprises for technological innovation
can be strengthened, which could adjust the industrial structure and FDI to meet the needs
of the cities or regions in terms of economic and social development to promote urban
energy efficiency.

Lastly, our findings also indicate that the effect of EPT policy on energy efficiency
enhancement is better in developed and non-resource-based cities; the policy arrangement
could work better if it is tailored to the characteristics of the city. For example, local
governments in developed and non-resource-based cities can appropriately raise the tax
rate and improve the taxation collection methods based on the actual local cities’ conditions.
For resource-based and lower economic-level cities, local governments should strengthen
the coordination between EPT and other policies and take multiple measures to encourage
the restructuring of the urban energy consumption pattern.

Considering some limitations of our work, future research directions could proceed
with the following approaches: First, this study only considers EPT at the level of whether
the policy is introduced or not and has not considered the specific content of the tax. In light
of this, it will be interesting to further research whether the environmental tax price or rate
has an impact on cities’ UEI. For example, Shanxi Province in China is a typical coal-energy
region, ranked first in China. However, the environmental tax rate in Shanxi Province is
very low. Thus, whether the tax rate influences its energy efficiency is quite interesting.
Second, China’s double-carbon targets have become a hot topic globally; future research
can be carried out on how the green tax reform relates to the targets. For example, it would
be possible to consider reforming the environmental protection tax targets for individual
consumption to achieve carbon peaking and carbon neutrality more quickly.
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