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Abstract: Hexagonal distributed embedded energy converters, also known as hexDEECs, are
centimeter-scale energy transducers that leverage variable capacitance to generate electricity when
their hyperelastic structure is dynamically deformed. To better understand, characterize, and opti-
mize hexDEEC designs, a series of numerical methods and techniques were developed to model the
hyperelastic mechanics of hexDEECs, electrostatic properties, and electricity generation characteris-
tics. The numerical methods developed for the hyperelastic structural analysis were corroborated
by empirical results from another study, and the models and equations for capacitance, electrostatic
forces, and electrical potential energy were derived from fundamental electrostatic equations. These
methods and techniques were implemented within the STAR-CCM+ multiphysics software Version
2020.3 (15.06.008) environment. Results from this analysis revealed methodologies and techniques
necessary to model the energy converters, which will enable future exploration and optimization of
more specific designs and corresponding applications.

Keywords: energy transducer; numerical modeling; multiphysics modeling; hexDEEC; hexagonal
distributed embedded energy converter; metamaterials; hyperelasticity; DEEC-Tec; distributed
embedded energy converter technologies; hyperelastic; variable capacitance; variable capacitance
generators; STAR-CCM+; electrostatic; soft-robotics

1. Introduction

Hexagonal distributed embedded energy converters (hexDEECs) are a new type of
energy transducer that leverage variable capacitance to convert the dynamic deformations
of their hyperelastic structure into electricity—as proposed by the National Renewable
Energy Laboratory’s (NREL’s) patent: Electric Machines as Motors and Power Generators [1].
Figure 1 provides an overview of an individual hexDEEC, showing the energy transducer’s
hyperelastic hexagonal housing, electrode placement, and the gap between positively
charged and negatively charged electrodes. The hyperelastic housing is composed of a
silicone elastomer, such as Smooth-Sil 950 silicone rubber. Notable features of the sili-
cone elastomer and the reason for its selection as a hexDEEC housing include: (i) less
pronounced filler-filler and filler-polymer interaction (minimizing the Mullins-effect/stress-
softening); high-dimensional stability (minimal creep deformations) under loading; exhibits
good abrasion resistance; can directly withstand wide ranges of temperatures and UV ra-
diation; highly repeatable cyclic loading characteristics; good dielectric properties; and
readily adaptable manufacturing processes (e.g., able to vary Shore hardness per a specific
hexDEEC application) [2–13]. Additionally, silicone elastomers experience significantly
lower viscous losses than those elastomers made of acrylics; meaning they can withstand
higher frequencies of actuation with lower losses and heat generation than most other
materials used in variable capacitance energy harvesting [3–6,9,14]. Note that this technol-
ogy needs to survive multiple loading cycles since a hexDEEC fundamentally uses those
cycles to harvest and generate energy (as shown in Figure 2). Additionally, compliant
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electrodes will be used for this design, as is the case for other silicone elastomer-based
variable capacitance energy harvesters [9,15–21]. These compliant electrodes are typically
made of various carbon particles in polymer binders, such as carbon grease, or patterned
or corrugated metal coatings such as corrugated silver [9,15,21].

A multitude of these small energy generators can be woven together to form larger
“metamaterial” frameworks, see Figure 3. As a result, hexDEECs are a form of distributed
embedded energy converter technologies (DEEC-Tec), characterized by using many small
energy converters that can be distributed, embedded, and/or interconnected to form overall
larger energy conversion structures. Potential hexDEEC applications could include, but
are not limited to, marine renewable energy conversion, roadway vibrations, building
oscillations, or any other dynamically fluctuating structure. Thus, hexDEECs not only
represent a fundamentally new type of energy transducer, but they also directly facilitate
the advancement of other domains of energy conversion. Indeed, hexDEECs are relatively
low-cost, non-toxic, and composed of easily accessible materials (no rare earth materials)
and could likely have higher energy densities than those of piezoelectric or electromagnetic
energy transducer systems [15,20].

Positive Electrodes

Negative Electrodes

Gap Height ~5mm

Isometric View Side View

Hyperelastic Hexagonal Housing

HexDEEC Arm
Stretched in Tension to Reduce Gap Height

Internal Plate ElectrodesUpper and Lower

Figure 1. Isometric and side view of an individual hexDEEC. The hexDEEC energy transducer
consists of a hyperelastic housing made of silicone rubber with six internal compliant electrodes; the
upper three electrodes are positively charged while the lower three electrodes are negatively charged.
When the arms of the housing are pulled in tension, the shape of the hexagonal housing is deformed.
This alters the overall distance between the upper and lower electrodes and, therefore, the device’s
capacitance changes and electricity is generated.

1
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_ _ _
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Figure 2. Energy conversion cycle of the hexDEEC that enables it to convert mechanical energy
into electrical energy. A hexDEEC energy transducer requires external tension on its arms (step 1)
in addition to energy-harvesting circuitry that applies charge when the device is stretched under
such tension (step 2). It maintains a constant charge, voltage, or electric field as the load is removed
and the hexDEEC relaxes to its initial shape (step 3), and then the resulting charge is removed until
another load is applied (step 4) [15,18,20].
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Figure 3. Example of a metamaterial made from interwoven hexDEECs. Like its constituent parts, a
hexDEEC metamaterial can take external sources of energy that dynamically deform the metamaterial,
and convert that energy into electricity (with such electricity generation being motivated as a possible
source of renewable energy).

The mechanical-to-electrical conversion cycle of the hexDEEC is shown in Figure 2.
First (step 1), the device is pulled in tension, increasing its strain and deforming its internal
arrangement of electrode plates such that the original hexagonal capacitor flattens into
a thin rectangular capacitor [15,18,20]. Once stretched (step 2), an electrical charge is
added to the electrode surfaces via pre-charge circuitry—positive charge is applied to the
top three electrode plates, and negative charge is applied to the bottom three electrode
plates. These charges generate attractive forces and subsequent Maxwell stresses that aim
to keep the hexDEEC in this flattened state [15,18,20]. Once the externally applied tension
is removed (step 3), the elastic forces generated by the hexDEEC’s hyperelastic housing
oppose the coulombic forces generated by the oppositely charged electrodes and bring
the structure back to its original relaxed state [18]. To convert the stored elastic energy in
the structure to electrical energy during this step, the charge, voltage, and/or electric field
can be held constant by the circuit [15,18,20]. The overall energy gain is dependent upon
which of these variables is kept constant, but since the constant voltage cycle requires the
least complex energy-harvesting control circuit, this cycle was chosen for the numerical
techniques developed and analysis of this work’s hexDEEC design [15,18,20]. Finally,
(step 4), the charge is removed from the hexDEEC until it is stretched again and repeats its
energy-harvesting cycle [15,18,20].

The following sections detail the research and development of analytical and numerical
techniques for analyzing a generic hexDEEC. The implementation of these methods occurs
within the multiphysics framework provided by the STAR-CCM+ software environment.
This work not only analyzes the capacitance, electrostatic forces, and energy produced
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by the general hexDEEC design but also outlines methodologies required for modeling
hyperelastic materials in STAR-CCM+—outcomes that were validated using empirical
results from literature (see [22]). Of particular interest is the software’s ability to incorporate
a multitude of physics models with high-performance scalable computation, both in terms
of user-developed models (such as those made to incorporate the electrostatic features of
the transducer) and also STAR-CCM+’s “out-of-the-box” physics models (such as solid
stress, fluid-structure interaction, and electricity-plus-magnetism models). Thus, not only
do STAR-CCM+ features enable analyses of individual hexDEECs undergoing uniaxial
loading, which is central to this work, but STAR-CCM+ could also enable complex models
of multi-axial loadings acting upon woven hexDEEC metamaterials (see Figure 3).

Section 2 describes the derived equations used to determine the capacitance and elec-
trostatic forces on the general hexDEEC design in terms of a constant applied voltage and
the transducer’s instantaneous shape. Section 2 also presents the numerical methods used
to determine a hexDEEC’s deformation under operating conditions. Section 3 details the
analytical and numerical results of the study and verifies the approach used to model a
hexDEEC’s hyperelastic characteristics against research conducted by Viljoen [22]. Like-
wise, Section 3 also describes the findings obtained from the analysis of the hexDEEC’s
potential energy production while under tensile loading. Section 4 discusses the results of
the analysis and details how the work can be used to advance the continued development
of this technology and other potential types of energy transducers based on hexDEECs.
Lastly, Section 5 elaborates on the potential avenues of hexDEEC and hexDEEC metama-
terial advancements, indicating future pathways for ongoing hexDEEC-based research,
development, and corresponding applications.

2. Materials and Methods

To determine the energy that could be generated by a hexDEEC, analytical equations
were first developed to find the capacitance of the unique hexagonal-shaped capacitor as
described in Section 2.1. The equations developed in this section were used to determine the
electrical potential energy and electrostatic forces given the shape of a hexagonal capacitor.
Next, it was necessary to understand how the dimensions of the capacitor change due
to the deformation of the hexDEEC’s hyperelastic housing under tension. This required
identifying a material model for the hyperelastic housing, which was facilitated by an
empirical analysis from the literature [22] and determined material models for the specific
material planned to be used to manufacture hexDEECs, as described in Section 2.2. In
Section 2.3, the models from the literature were recreated in STAR-CCM+ to determine
methodologies specific to this software that can accurately represent the results of the prior
study [22], which did not use this software. Once these methods were determined and
validated, they were then used to model the hexDEECs, as described in Section 2.3. The
deformation of a hexDEEC’s housing was then combined with the analytical electrostatic
equations to determine the potential energy that could be generated by a hexDEEC.

Note that for this study, the electrodes were considered compliant and idealized, so
that they had negligible electrical resistance and mechanical stiffness along with being
perfect conductors, as has been done previously in other modeling studies for silicone
elastomer-based variable capacitance energy harvesters [19]. As a result, the electrodes
were assumed to be perfect conductors and did not affect the mechanics of the hyperelastic
silicone housing. However, this simplification is not fully accurate since the compliant
electrodes used for similar transducers can have high resistance, damage easily, high
stiffness, unevenly distribute charge, impose stress concentrations, and have nonuniform
coverage at high strains which can reduce the performance and potential lifetime of the
device [15–17,21]. The properties of these compliant electrodes vary with the material
chosen, where the more commonly used carbon-based electrodes tend to have a low
impact on stiffness but have high resistance, and the metallic-based electrodes have high
conductivity but high stiffness [21]. Additionally, the integrity of the compliant electrodes
can be negatively impacted by humidity, strong electric fields, and high strains [15]. Though



Energies 2023, 16, 8100 5 of 30

novel materials are being developed that can have both low stiffness and high conductivity,
which more closely represent the properties of the electrodes modeled in this study, they are
still in early development [21]. While an idealization was used for the electrodes modeled
for the hexDEEC, future studies can evaluate the impacts of the electrode material chosen
on the electrostatic and hyperelastic physics assessed in this study.

2.1. Deriving Analytical Electrostatic Equations for HexDEEC

To determine the potential energy of a hexDEEC (or any hexagonal capacitor), a
rigorous process was undertaken, relying on the principles of fundamental electrostatics
theory. These calculations, outlined in Sections 2.1.1 and 2.1.2, involve deriving equations
that encompass the spatial geometry, dielectric properties, and charge distribution, thereby
providing a comprehensive understanding of the energy stored within these types of
energy transducers.

2.1.1. Electric Potential Energy

HexDEECs rely on variable capacitance to produce electricity. The simplest variable
capacitor is generally represented as two parallel conducting plates, where one holds
positive charges while the other holds negative charges. The capacitance between these
plates, C, is defined by the charge stored between them, or the ratio of the magnitude of
charge on each plate, Q, to the voltage applied to the plates, V, which, using Maxwell’s
equations, simplifies to a ratio between, the permittivity of a vacuum, ϵo, dielectric constant,
κ, area of the plates, A, and the distance between the plates, z:

C =
Q
V

=
κε0 A

z
. (1)

The resulting electrical potential energy of this system, U, is dependent on the work
required to keep the charges separated and is influenced by the voltage, charge difference,
and resulting capacitance of the system:

U =
1
2

QV =
Q2

2C
=

1
2

CV2 . (2)

The capacitance and energy of a capacitor can be increased by inserting a dielectric
material that increases the effective permittivity between the plates by multiplying it by
a corresponding dielectric constant, κ. Note that a dielectric with a factor greater than
1 is polarized by the electric field of the capacitor, which attracts more charge to the
electrode plates.

ε = κε0. (3)

Note that, in this work, the dielectric constant will be assumed as 1; this being the
approximate permittivity of air with air being the weakest dielectric between a hexDEEC’s
electrode plates (as opposed to any other dielectric and, thus, corresponding permittivity.

Variable capacitors generate energy after their charge, voltage, or electric field strength
is altered as a result of experiencing an externally inputted alteration—for instance, a
force that pushes the plates closer together and then releases them back to their orig-
inal position—while charge, voltage, or electric field strength is maintained [15,18,20].
Note that the choice between charge, voltage, or electric field strength—to be maintained
throughout the cycle—impacts the overall energy gain and has practical implications such
as increasing the complexity of the power-electronic control systems in the transducer’s
energy-harvesting circuitry [15,18,20]. In this regard, constant voltage cycles have the most
straightforward power-electronic circuit design and is therefore the method assumed for
this work’s initial evaluation [15].

Nonetheless, hexDEECs do not rely solely on parallel plates to generate electricity;
they also contain two pairs of angled plates. The upper three and bottom three plates are
kept at the same voltage so they can be considered as capacitors in parallel, where the first
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and third capacitors contain angled plates while the second capacitor is a classic parallel
plate capacitor. Because these capacitors are in parallel, their capacitances simply add such
that the total capacitance of the hexagonal capacitor is CHex = C1 + C2 + C3.

The capacitance of the angled plates can be determined by breaking them into in-
finitesimally thin parallel plate capacitors in parallel (Figure 4). Each of these capacitors
has a capacitance of

dC = ε
dA
δz

. (4)

Figure 4. The angled plates of the hexDEEC capacitor can be approximated by splitting them into
many thin parallel plate capacitors, whose total capacitance is simply the sum of the discretized
parallel plates.

Since the distance between the plates varies with length rather than width, the width
of each plate, W, is constant. Therefore, the area of each infinitesimal plate is

dA = Wdx . (5)

Note that an individual hexDEEC is assumed to be exceptionally smaller than its
corresponding overall “metamaterial hexDEEC fabric”—where such a metamaterial would
be made from the large aggregation (thousands, millions, etc.) of individual hexDEECs.
To help visualize such a metamaterial fabric, see Figure 3). Emerging from this dispro-
portionate difference in scale—an individual scale vs. a hexDEEC metamaterial scale—is
the assumption that while the much larger metamaterial hexDEEC fabric could directly
experience large three-dimensional deformations (bending, twisting, etc.), the individual
hexDEECs making up that fabric would, in large part, not directly “see/experience” such
three-dimensional deformations. Rather, at the scale of an individual hexDEEC, those larger
three-dimensional metamaterial hexDEEC fabric deformations would be (can be assumed
to be dispersed as) two-dimensional axial loads along any given individual hexDEEC’s
characteristic length. Moreover, note that the hexDEEC’s electrode plates for this study
were split into thin strips rather than small cubes with infinitesimal widths as well as
lengths as a means to facilitate this two-dimensional approximation/assumption. The
approximation used in this work, therefore, effectively assumes that the electrode plate
surfaces remain flat. Nonetheless, in future work, there will be further investigation into the
effects of directly twisting and bending larger individual hexDEECs; where a hexDEEC’s
corresponding electrode surfaces can no longer be assumed to be flat with the analysis,
in that case, discretizing the electrodes into plates with both infinitesimal widths as well
as lengths.

The distance between each infinitesimally thin strip can be determined by bisecting
the angle between the two slanted plates, α, and examining the distance between the two
plates at the edges of their length. At their closest, the plates are separated by zS, and at
their furthest, they are separated by zH . If a right triangle is made connecting these points,
then the height of this triangle will be zH−zS

2 and its length will be x1 (Figure 5).

tan
α

2
=

zH − zS
2x1

(6)
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Figure 5. The capacitance of the hexagonal capacitor inside of the hexDEEC is dependent on the
width of the plates (W), the distance between the central plates (zH), the length of the central plates
(xm), the minimum distance between the slanted plates (zs), and the length of the slanted plates (xs).
As shown on the right and in Equation (6), the angle of the slanted plates ( α

2 ) can be defined in terms
of the other length variables.

Since this relationship is maintained for the progressive capacitors, δz can be deter-
mined as follows:

δz = 2x tan
α

2
+ zS . (7)

The capacitance of the slanted plates can then be determined via the integration below,
using the definition for δz from Equation (7):

C =
∫

dC =
∫

A
ε

dA
δz

=
∫ x1

0

εWdx
2x tan α

2 + zS
=

εW
2 tan α

2
ln
(

2x1 tan α
2 + zS

zS

)
. (8)

The result from Equation (8) can then be further simplified using the relationship
between zH and x1 from Equation (6):

C =
εW

2 tan α
2

ln
zH
zS

. (9)

Since both capacitors 1 and 3 are angled, their capacitance is equivalent to the result of
Equation (9):

C1 = C3 =
εW

2 tan α
2

ln
zH
zS

. (10)

Capacitor 2, with a width equal to the slanted plates and a length of xm, has a capaci-
tance of:

C2 =
εA
zH

=
εWxm

zH
. (11)

Therefore, the total capacitance of the hexDEEC is

CHex = εW
(

xm

zH
+

1
tan α

2
ln

zH
zS

)
= εW

 xm

zH
+

2
√

x2
S − ( zH−zS

2 )2

zH − zS
ln

zH
zS

 (12)

where W is the width of each plate, xm is the length of the middle plates, zH is the distance
between the middle plates, zS is the distance between the side plates at their most distal
edge, and α

2 is half of the angle between the slanted plates (Figure 5). Knowing CHex, the
potential energy in the hexDEEC can be calculated as

UHex =
1
2

CHexV2 . (13)

The potential energy gain and resulting energy that can be harvested by a hexDEEC is
therefore dependent on the geometry and orientation of its plates. Note that there could be
some electrical potential energy in the hyperelastic housing itself; largely due to polarization.
However, this energy is considered negligible when compared to the exceptionally large
(1 kilovolt or higher) pre-charge voltage between a hexDEEC’s electrodes. Thus, electric
potential energy with the hexDEEC silicon elastomer housing, itself, is asserted to have
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negligible effects upon the overall performance characteristics of a hexDEEC—that native
elastomer electric potential energy is approximated to be zero in this study.

2.1.2. Electrostatic Force

Due to the applied voltage difference on the plates and the resulting electric field, there
is an attracting force between the upper and lower plates. For a parallel plate capacitor, the
electric force (Fe) can be determined by equating the work done to separate the plates at a
certain distance (d) to the electric potential energy of the system:

Fed =
1
2

C f latV2 (14)

and

Fe =
C f latV2

2d
. (15)

The force on each of the flat parallel plates in the middle of the hexDEEC, Ff lat, is
equivalent to half of the electric force:

Ff lat =
1
2

Fe =
εWxmV2

4z2
H

. (16)

The force on each of the slanted plates can be determined similarly to finding their
capacitance, where

dFslant =
V2dC

δz
=

εV2Wdx
4(δz)2 , (17)

Fslant =
∫

dFslant =
εWV2

4

∫ x1

0

dx
(2x tan α

2 + zs)2 =
εWV2

8 tan α
2

(
1
zs

− 1
zH

)
, (18)

and

Fslant =
εWV2

√
x2

s − ( zH−zs
2 )2

4(zH − zs)

(
1
zs

− 1
zH

)
. (19)

2.2. Hyperelastic Material Models for HexDEEC Housing

Since a material with hyperelastic properties will be used for the housing of the elec-
trodes, the finite element analysis software STAR-CCM+ was used to understand how the
hexDEEC would deform under biaxial tensile loads. Additionally, this software will be
useful in future studies for analyzing the deformation of a multitude of interconnected
hexDEECs. The material chosen for this analysis was a common silicone rubber referred to
as Smooth-Sil 950, whose material properties were analyzed in detail by Viljoen in their
master’s thesis [22]. Note that while Smooth-Sil 950 and other silicone rubbers have both
hyperelastic and viscoelastic properties, this analysis will focus on modeling the hyperelas-
tic properties of this material as the effects of viscoelasticity (and corresponding viscous
losses) are less significant for silicone elastomers when compared to those other commonly
used materials used for variable capacitance-based energy harvesters, such as acrylic-based
dielectric elastomer generators [2–9,23,24]. Thus, in large part, a hexDEEC’s performance is
not as strongly defined by any viscoelastic effects of this silicone elastomer housing while
its hyperelastic housing does dominate a hexDEEC’s elastic behavior; especially in terms of
the operational theory of both an individual hexDEEC and, especially, within the context of
a hexDEEC-based metamaterial. Nonetheless, future research may delve into the effects
of viscoelasticity hexDEEC silicon elastomer housing—exploring phenomena like elastic
creep and the Mullins effect. Such investigations could leverage existing research, notably
work conducted by Case et al., which gives greater attention to the viscoelastic effects in
similar materials; see [23]).
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Smooth-Sil 950 is a platinum silicone from the company Smooth-On, Inc., which is
used for rapid prototyping, wax casting, architectural restoration, and casting concrete; it is
also suitable for food-related applications since it is non-toxic. It has a Shore A hardness
of 50 and a rated tensile strength at a break of 5 MPa or 320% elongation [25]. As with all
rubber-like materials, Smooth-Sil 950 exhibits nonlinear behavior and large elastic strains,
meaning that linear theory is inappropriate for modeling it. Instead, silicone rubber is
considered to be an isotropic, nearly incompressible, and hyperelastic material.

The nonlinear stress–strain relationship of hyperelastic materials can be expressed in
terms of strain energy density, Ψ, as shown as follows:

Ψ(F) = Ψ(C) = Ψ(E) = Ψ(U) (20)

where F is the deformation gradient, C is the right Cauchy–Green strain, E is the Green-
Lagrange strain, and U is the right stretch tensor [26].

Generally, the stress–strain relationship for hyperelastic materials can be written
as follows:

S = 2
∂Ψ
∂C

(21)

where S is the second Piola–Kirchhoff stress [26]. The second derivative of the strain energy
potential defines the material tangent as a fourth-order tensor [26]:

C = 2
∂S
∂C

= 4
∂2Ψ

∂C∂C
. (22)

For nearly incompressible materials like Smooth-Sil 950, the strain energy potential
can be split into deviatoric and volumetric parts [26]:

Ψ = Ψd(Cd) + Ψv(J) (23)

where the volumetric part is dependent only on the volume ratio [26]:

J = det(F) (24)

and the deviatoric part can be expressed in terms of the invariants (Id
1 , Id

2 ) of Cd or the
principal stretches (λd

k ; k = 1, 2, 3) of the modified right stretch Ud [26].
Note that modeling nearly incompressible materials can be challenging since they

can exhibit volumetric locking meaning that their computed displacements can be orders
of magnitude smaller than anticipated. STAR-CCM+ can overcome this issue using a
two-field approach where the displacement and mean stress or pressure are independent
variables [26]. The stress–strain relationship in this case is derived from a modified strain
energy potential, which is dependent on the displacement field u and pressure p:

Ψ̃(u, p) = Ψ(u) + Q(u, p) (25)

Q(u, p) = − 1
2kb

(p − p)2 (26)

p = −kb(J − 1) (27)

where p is the internal pressure associated with the displacement field and kb is the bulk
modulus [26]. Equation (25) generates a constraint equation relating p and p, where if
p = p then Ψ̃ = Ψ [26].

Therefore, the stress–strain relationship can be written as follows:

S̃ =
∂Ψ̃
∂C

(28)

S̃ = S − (p − p)JC−1 (29)
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where S̃ is the modified second Piola–Kirchhoff stress and C−1 is the right Cauchy–Green
strain tensor [26].

The specific mechanical behavior of Smooth-Sil 950 can be characterized by a strain
energy function with empirically derived constants. Models such as the Mooney–Rivlin
and Ogden models use such an approach to characterize hyperelastic materials [27–30].
Viljoen assessed these models and determined that the three-parameter Mooney–Rivlin
model was the best at generally predicting the material characteristics of Smooth-Sil 950
because it tended to have a better prediction of the stress states when extrapolated, and
it is simpler than the Ogden model, which has six rather than three unknowns [22]. The
Mooney–Rivlin three-parameter model is shown as follows:

Ψ = C10(Id
1 − 3) + C01(Id

2 − 3) + C20(Id
1 − 3)2 +

kb
2
(J − 1)2 (30)

where C10, C01, and C20 are empirically determined material constants [22,26]. To determine
these constants and which model to use, Viljoen conducted experimental tests—uniaxial
tensile, uniaxial compression, and biaxial bubble inflation—and used the hyperelastic
numerical models along with direct and inverse finite element model updating methods to
characterize the experimentally determined material behavior [22].

2.3. Finite Element Analysis

As a first step in characterizing the deformation of the hexDEEC, the finite element
analysis done by Viljoen [22] was recreated in STAR-CCM+ because they did not use this
software in their analysis. Specifically, the uniaxial tensile and biaxial bubble tests were
recreated because they were more representative of the deformations anticipated for the
transducer when it is generating electricity due to external tension. The benefit of this
analysis was to understand which features in STAR-CCM+ were necessary to develop
a reliable model of a hyperelastic material that could then be applied to a model of a
hexDEEC. Note that all of the simulations were of 3D objects and while some of the
analyses could have been approximated in lower dimensions, we were primarily interested
in understanding how to model the hyperelastic material in 3D to create a realistic model
of the hexDEEC in 3D.

The resulting hexDEEC model involved ramping loading on both ends of the device
while recording the changes in the five length parameters that can be used to find the
resulting capacitance and electric attracting force between the plates: the width (W), slanted
length (xs), middle length (xm), middle gap height (zH), and side gap height (zs) (see
Figure 5 and Section 2.1.1). An additional benefit to using STARCCM+ is the ability to
create custom functions, which enable the simulation to track the values of the variables,
apply them to the capacitance, energy, and electric force equations, change the electric force
loading as the simulation was processing, and enable ramped loading. The five length
variables were recorded in STARCCM+ by using two point probes at the ends of each
length with changing x, y, and z positions that were recorded as the hexDEEC underwent
variable loading from 0 to 5 N on both sides, increasing by 0.5 N for each second of loading.
The positions of these probes were then converted into the desired length variables, which
were then applied to the custom equations for capacitance, energy, and electric force.

Generally, the STAR-CCM+ simulations required using the hyperelastic and nearly
incompressible material models are described in Section 2.2. Additionally, since all the
simulations considered the solid mechanics of these hyperelastic objects, it was neces-
sary to include the solid stress and nonlinear geometry models. The solid stress solver,
incorporated into the simulation from the solid stress model, was a sparse direct solver.
Since the geometry was nonlinear the equations for the static and dynamic problems were
also nonlinear and the solution required updating the stiffness matrix. In this case, the
solid stress solver factorized the stiffness matrix every time the matrix was updated based
on the full Newton iteration method [26]. As described in Sections 2.3.2 and 2.3.4 it was
also necessary to include the solid stress load step solver for simulating the mechanics of
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the bubble and the hexDEEC. This solver enabled the external loads to be applied more
gradually and is typically suitable for simulations with large nonlinearities [26]. Since
ramped loading was used in the simulation, STAR-CCM+’s implicit unsteady solver was
required. This solver used first-order discretization, which set the integration method of
the solid stress solver to backward Euler [26].

2.3.1. Validation of Numerical Methods: Uniaxial Tensile Simulations

To verify the accuracy of the numerical analysis for the hexDEEC, STAR-CCM+ was
used to recreate the uniaxial tensile simulations for the “dumbbell” shape and flat strip
shape, in addition to the biaxial tensile bubble inflation simulations done by Viljoen, which
are described further in Section 2.3.2 [22]. For these simulations the dimensions of the
parts were matched to those of Viljoen’s simulations and the experimental work shown
in Figure 6. In Viljoen’s experimental work, Smooth-Sil 950 silicone rubber was molded
into these shapes, which were then uniaxially loaded in a 1 kN load cell at a strain rate of
100 mm/min. The engineering stress σeng−yy and stretch λyy in the y-direction, parameters
often used to describe the mechanics of hyperelastic materials, were calculated via the
following equations:

σeng−yy =
Fyy

w0t0
(31)

and
λyy =

l
l0

(32)

where Fyy is the force measured by a load cell in the y-direction, w0 and t0 are the initial
gauge width and thickness of the sample, respectively, l is the gauge length of the sample
at the instant of data acquisition, and l0 is the initial gauge length of the sample [22].

lo = 30

wo = 6

15

140

2

lo = 45

wo = 38

0.8

Figure 6. Dimensions in mm for the dumbbell shape and a representation of the rectangular flat strip
shape analogous to what was used in Viljoen’s empirical and numerical tensile analysis; including
their respective initial gauge length (l0), gauge width (w0), and gauge thickness (t0) [22]. Note this is
an original image with dimensions adapted from Viljoen; see [22].

For the simulations of these samples, Viljoen used a mesh of 1710 Quad-4 elements
for the rectangular flat strip and 60 Quad-4 elements for the gauge area of the dumbbell,
defined initially as w0l0. A smaller mesh was used to reduce errors at the boundaries in the
experimental data. The rectangular flat strip’s boundary conditions included applying an
edge load on one face, being fully constrained on the face opposite to the face receiving the
tensile load, and being constrained against any movement perpendicular to the direction
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of the applied load, as shown in Figure 7. The dumbbell gauge area’s constraints included
nonzero prescribed displacements in the direction of the applied load for the top and
bottom five nodes and a zero displacement constraint for movements perpendicular to
the direction of the load for the middle node in the top and bottom, as shown in Figure 7.
These nonzero displacements were based on the empirical data recorded by Viljoen [22].

Figure 7. The figure above is a pictorial representation of the finite element modeling efforts done
for a dumbbell and a rectangle. The large red arrows represent the uniaxial loads applied to the 3D
objects and the smaller black arrows represent the prescribed displacement applied to the gauge
rectangle’s top and bottom nodes on the dumbbell. Note that a mesh was applied to just the gauge
area of the dumbbell since this was the only portion of the object modeled in Viljoen’s study [22].
Note that this figure was generated specifically to this work; the figure is an original.

In their analysis, Viljoen used the empirical data to determine the relevant material
constants for the three-parameter Mooney–Rivlin model via direct and indirect identifi-
cation methods such as least-squares fit. The material constants determined via Viljoen’s
direct method with positive constant constraints were used for this analysis (Table 1).

Table 1. Hyperelastic material constants adapted from Viljoen and used for comparing uniaxial
tensile tests [22].

Sample C10 (Pa) C01 (Pa) C20 (Pa)

Rectangular Flat Strip 343,879.29 0.0 48,820.41
Dumbbell Shaped 306,269.50 0.0 62,791.08
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To recreate the results of these uniaxial tensile tests, parts were made in SolidWorks
Version 2020 according to the dimensions specified in Figure 6 and uploaded into STAR-
CCM+ as Parasolid CAD files. The models selected in STAR-CCM+ included implicit
unsteady, nearly incompressible material, nonlinear geometry, solid, solid stress, and three-
dimensional elements. Note that selecting the implicit unsteady and solid stress models
in STAR-CCM+ included the implicit unsteady and solid stress solvers in the simulation.
The material law was specified to include hyperelasticity and Mooney–Rivlin (five-term).
The five-term version was selected to include the C20, C10, and C01 values found by Viljoen
as shown in Table 1. Selecting the material law activated the proper hyperelastic material
model for the simulation. Rubber was selected as the material for these models, and the
density was altered to that of Smooth-Sil 950 (1236.28 kg/m3) [25].

For the rectangular flat strip, two segments were made to represent the applied tensile
force and the fixed edge; it was not necessary to restrict movement in the sides of the part.
The force applied to the distal edge was a ramped load defined as a custom vector field
function. This field function varied the applied force, Fapplied, so that it would be equivalent
to Equation (33) which is a rearrangement of Equation (31) and was used by Viljoen to
determine the engineering stress experienced by the uniaxial specimens:

Fapplied = σengw0t0 . (33)

The ramped vector field function increased the applied force in the loaded direction so
that at the end of the ramp it would be equivalent to the force used to reach the maximum
reported engineering stress from Viljoen, σmax, for discrete time increments, τ, until the
time that the ramp ends, τramp:

Fapplied(τ) =
τ

τramp
σmaxw0t0 . (34)

The stretch was determined with a scalar field function similar to Equation (32):

λ = 1 +
∆l
l0

. (35)

Equation (35) was used in place of Equation (32) because it was unnecessary to
calculate the length of the rectangle, l, in STAR-CCM+ directly since the displacement in the
direction of loading, ∆l, of a point probe at the loaded edge could be easily recorded. The
probe was placed in the center of this face. Reports, monitors, and plots for the engineering
stress and stretch of the loaded edge point probe were generated. Scenes showing the stress
and x-displacement were generated for ease of visualization.

A “directed-mesh” with an automated two-dimensional (2D) mesher was used to
generate the part’s quadrilateral mesh. The base size of this mesh was set to 0.5 mm with a
default and minimum target surface size of 100% and 10%, respectively, of this base size.
Note that the 2D mesher was used to mesh the top surface of the flat strip and the directed
mesh effectively extruded the mesh to cover the volume of the 3D object. Eight layers were
used for the volume distribution.

The time step of the implicit unsteady solver, τ, was set to 1 s, and the stopping
criteria was set so that the maximum physical time, τramp, was 32 s and the maximum inner
iterations was set to five.

The dumbbell-shaped model required more careful consideration for its loading
because Viljoen focused their analysis on the dumbbell’s gauge rectangle, as shown in
Figure 7, and used experimentally derived data to describe its motion and boundary
conditions [22]. The motion of this gauge rectangle’s nodes near the constrained edge can
be modeled by including and fixing the wide edge of the dumbbell on that side. The motion
of the nodes closer to the loaded edge can be modeled by applying an appropriate load,
such as that described in Equation (33), to the gauge rectangle’s face without the wider end
of the dumbbell. As a result, the SolidWorks model made for the dumbbell was designed to
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match the dimensions in Figure 6 but was missing the wider edge after the gauge rectangle
on the loaded side.

The dumbbell shape also had two segments, one for the fixed edge and the other for
the loaded edge, where a ramped force was applied, as described in Equation (34). Unlike
the rectangle model, the dumbbell model’s stretch was not determined by examining
the shape’s overall length; instead, the gauge length was used to describe the stretch
since Viljoen did not model the wide end of the dumbbell [22]. As a result, two point
probes were necessary, one at the near end and one at the far end of the gauge rectangle.
The x-coordinates of these points were recorded under the ramped loading by using a
field function that added their displacement with their original position. The resulting
x-coordinates were then subtracted from each other to determine the new length of this
region, which was applied to Equation (32) to determine the stretch. As with the rectangular
strip simulation, reports for the positions of the point probes were included and converted
into monitors and plots. The mesh used for the dumbbell was made with a directed mesh
with an automated 2D mesher for a quadrilateral mesh with a base size of 0.5 mm, target
and minimum surface size of 10% and 100%, respectively, and 10 layers for its volume
distribution. Note that the 2D mesher was used to mesh the top surface of the dumbbell
and the directed mesh effectively extruded the mesh to cover the volume of the 3D object
and create the 3D mesh. The time step, maximum inner iterations, and maximum physical
time were identical to those of the simulation for the rectangular flat strip.

2.3.2. Validation of Numerical Methods: Biaxial Inflation Simulation

The biaxial tensile analysis involved recreating Viljoen’s bubble inflation tests. These
tests were necessary to further assess the material’s tensile response in 3D space and
to better understand how to model large deformations in all three dimensions, since
the large deformations in the uniaxial tests occurred only in two dimensions. In their
experimental work a 1.6 mm thick sheet of Smooth-Sil 950 was fixed along the periphery
of a 50 mm diameter circle and inflated with controlled pressurized air. This applied
pressure and resulting deformation of the circular membrane could then be translated into
engineering stress and stretch using the axial symmetry of the system and the assumption
of hemispherical deformation during inflation due to the material’s incompressible and
isotropic characteristics [22]. For this test, the engineering stress, σeng, was defined by
Viljoen as follows:

σeng =
PRcλ

2t0
(36)

where P is the applied pressure, Rc is the bubble’s radius of curvature, λ is the stretch,
and t0 is the initial thickness of the membrane. In this case, the stress and stretch in the
x-direction are equivalent to those in the y-direction [22]. The stretch for this case was
calculated using the following equation:

λ =
2Rc arcsin( d

2Rc
)

d0
. (37)

Since the diameter of the flat deflated membrane, D0, is fixed, a virtual circle with a
smaller diameter can be used to assess the stretch of the bubble as it inflates. The virtual
circle’s initial diameter is denoted with d0, and d is its instantaneous diameter.

Finally, the radius of curvature is described in the following equation where H is the
height of the inflated bubble [22]:

Rc =

D2
0

4 + H2

2H
. (38)

Viljoen simulated the inflation tests using a finite element mesh of the flat circular
membrane with 720 Quad 4 thin shell elements [22]. The boundary conditions included
fixed (zero displacement) constraints along the periphery nodes, a frictionless contact body
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boundary condition where the top clamps would contact the inflated membrane, and a
cavity on all bottom faces to represent air pressure [22].

From Viljoen’s analysis of their empirical data and their direct and indirect identifi-
cation methods, they determined the relevant material constants for the three-parameter
Mooney–Rivlin model [22]. The parameters derived from their direct method were used
for this analysis and are shown in Table 2.

Table 2. Hyperelastic material constants adapted from Viljoen and used for comparing biaxial tensile
inflation tests [22].

Sample C10 (Pa) C01 (Pa) C20 (Pa)

Bubble Membrane 391,166.63 −152,451.75 92,171.05

To recreate the bubble inflation tests with the proper boundary conditions in STAR-
CCM+, initially a circular disc was made in SolidWorks using the same dimensions as those
used in Viljoen’s simulations. As with the uniaxial simulations, a Parasolid file was made
from SolidWorks and uploaded into STAR-CCM+. The models selected in STAR-CCM+
included implicit unsteady, nearly incompressible material, nonlinear geometry, solid, solid
stress, solution interpolation, and three-dimensional elements. Note that selecting the
implicit unsteady and solid stress models in STAR-CCM+ included the implicit unsteady
and solid stress solvers in the simulation. The material law was specified to include
hyperelasticity and Mooney–Rivlin (five-term). The five-term version was selected to
include the nonzero C20, C10, and C01 values found by Viljoen as shown in Table 2. Selecting
the material law activated the proper hyperelastic material model for the simulation. Rubber
was selected as the material for these models, and the density was altered to that of Smooth-
Sil 950 (1236.28 kg/m3) [25].

Additionally, due to the more three-dimensional nature of the deformation in this sim-
ulation, a few key changes were made that were unnecessary for the uniaxial simulations.
The solid stress load stepper option from the solid stress load step solver was added to
appropriately model the membrane’s hyperelastic deformation, since simulations without
this solver would not run. The max force and load steps were specified to be 40 N and
20, respectively, and the stopping criterion for each load step was set to a displacement
criterion of 10−14. The solid displacement motion option was selected to account for the
large deformation. As a result, all point probes used on the model needed to have the
following motion option selected to properly record data. To approximate the load and
boundary conditions on the material, two segments were made to represent the applied
pressure on the bottom face and the fixed edge constraint along the peripheral ring edge.
The applied pressure was ramped via a vector field function that increased the applied
pressure in the loaded direction so that at the end of the ramp it would be equivalent to a
constant maximum pressure reported from Viljoen, Pmax, for discrete time increments, τ,
until the time that the ramp ends, τramp:

Papplied(τ) =
τ

τramp
Pmax . (39)

To apply the second constraint of a frictionless contact body boundary condition where
the top clamps would contact the inflated membrane, rigid contact wall constraints were
necessary. However, in STAR-CCM+ these constraints can only be applied as rigid contact
planes for solid stress simulations [26]. As a result, a new SolidWorks file was made of the
membrane, designing it as a 16-sided regular polygon with an inscribed circle diameter
of D0. This new membrane replaced the old circular one for the simulation, and rigid
contact planes were added on each edge of the polygon, each with a penalty parameter of
1012 Pa/m.

Point probes were added to measure the changes in H and d, as the simulation
proceeded. One was placed at the center of the membrane, and a report was made to record
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its z-position at different time steps of the simulation to measure H. Another two were
placed ±10 mm in the x-direction from the origin to represent d for the 20 mm diameter
virtual circle; d was calculated using data from reports of the x-position of both of these
points and subtracting their positions and taking the absolute value. Monitors and plots
were made from these reports. After these variables were calculated, Equations (36)–(38)
were used to determine the stretch, λ, and engineering stress, σeng. A scene showing the
z-displacement was generated for ease of visualization.

A directed mesh with an automated 2D mesher was used to create the part’s quadri-
lateral mesh, where the 2D mesh was used on the top surface of the polygon and extruded
to cover the volume of the 3D object to create the 3D mesh. The base mesh size was 3 mm
with target and minimum surface sizes of 100% and 10% of base size, respectively, with two
layers. Note that prior to the implementation of the load step solver and the displacement
motion, the simulation would not run with a quadrilateral mesh due to floating point errors.
A resolution to this issue was attempted using an automated 3D mesh with a tetrahedral
mesh, surface remesher, and automatic surface repair. The surface repair feature enabled
the simulation to run; however, the results were nonphysical likely due to volumetric
locking. Further investigations of using a tetrahedral mesh for this simulation were not
conducted but could be conducted in future work. The time step of the implicit unsteady
solver, τ, was set to 1 s, and the stopping criteria were set so that the maximum physical
time, τramp, was set to 15 s and the maximum inner iteration was set to five.

2.3.3. Validation of Numerical Methods: Data Collection from Literature Results

To compare the accuracy of the methods used in STAR-CCM+ to the experimentally
validated results from Viljoen, the results for the engineering stress, σeng, and stretch, λ,
for each of the three simulations (flat strip, dumbbell, and bubble) were exported into
Excel, Microsoft 365 Version 2311 (Build 17029.20068), and compared to Viljoen’s work.
Data points from Viljoen’s work were obtained using WebPlotDigitizer, Version 4.6, an
open-source web-based tool used to extract numerical data from images of plots; it has
been used by researchers in more than 600 published articles [31].

2.3.4. HexDEEC STAR-CCM+ Simulations

The generic hexDEEC design was modeled in STAR-CCM+ using the lessons learned
from the validation simulations. The design for the hexDEEC was made in SolidWorks
with dimensions shown in Figure 8 and imported into STAR-CCM+ as a Parasolid file. The
models selected in STAR-CCM+ included implicit unsteady, nearly incompressible mate-
rial, nonlinear geometry, solid, solid stress, solution interpolation, and three-dimensional
elements. Note that selecting the implicit unsteady and solid stress models in STAR-CCM+
included the implicit unsteady and solid stress solvers in the simulation. The material law
selected was hyperelasticity with the Mooney–Rivlin five-parameter model. Selecting the
material law activated the proper hyperelastic material model for the simulation. As with
the other simulations, rubber was used as the material with an altered density to match
that of Smooth-Sil 950 [25]. As with the bubble simulation, this simulation would not run
without the solid stress load stepper option from the solid stress load step solver and the
solid displacement option. The parameters used for the load stepper were the same as
those used for the bubble simulation in Section 2.3.2.

The parameters used for this simulation were identical to those used by the dumbbell
in Table 1, since Viljoen’s analysis of the accuracy of their models for uniaxial testing of a
unique geometry showed that this model had an error of about 2% when compared with
their experimental results [22]. The coefficients for the bubble membrane in Table 2 had a
lower error of about 1%; however, a solution in STAR-CCM+ did not converge when using
these coefficients for the hexDEEC model [22].
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Figure 8. HexDEEC dimensions used for this study; note that all dimensions are in mm.

These simulations modeled the hexDEEC described in Figure 8 undergoing biaxial tensile
loading from 0 to 5 N on each side. Two segments were made to represent the ramped loads
on each end of the device; as a result of this equal loading, no constraints were required. The
field functions used to represent this force were represented by Equation (40) as follows:

Fapplied(τ) = ± τ

τramp
Fmax . (40)

The plus/minus sign represents how this force was positive or negative depending on
the side that it was applied on. The ramp time, τramp, was 10 s of physical time, and the
maximum force applied, Fmax, was 5 N.

To account for the variable capacitance and electrostatic forces generated by the
hexDEEC as a result of its deformation, point probes were added to represent the five
length variables from Figure 5. Two points were added mid-plane of the hexDEEC to
represent each length. Reports and monitors were made of each point’s x, y, and z positions.
The distance formula (Equation (41)) was then used to create reports and monitors of the
five length variables:

d =
√
(x1 − x0)2 + (y1 − y0)2 + (z1 − z0)2 . (41)

The values from the length reports were then used along with equations from
Sections 2.1.1 and 2.1.2 to create reports for the slanted plate capacitance (see Equation (10)), flat
plate capacitance (see Equation (11)), total capacitance of the hexDEEC (see Equation (12)),
electrostatic potential energy (see Equation (13)), and electrostatic force for the flat and
slanted plates (see Equations (16) and (19), respectively). Note that the constant volt-
age used in this case was 1 kV. Monitors and plots were made for these reports. Scenes
showing the mesh and z-displacement were also generated for ease of visualization—see
Figure 9 for a scene of the mesh used in the hexDEEC simulations.
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Figure 9. Scene in STAR-CCM+ showing the mesh for the hexDEEC. This mesh included 4260 cells,
10,456 faces, 17,564 edges, and 6720 vertices.

The electrostatic forces applied vertical attracting loads to the flat and slanted plates
according to Equations (16) and (19), meaning that forces on the bottom plates were in the
positive z-direction and forces on the top plates were in the negative z-direction. These
forces were considered point forces, applied at the center of their relevant plates, and
implemented using six segments and custom field functions, one for each plate. Note that
the electrostatic forces acted on the 6 interior faces of the hexDEEC as it was stretched
and as shown in Equations (16) and (19) the magnitude of these forces changed as the
hexDEEC deformed. Therefore unlike the models created to replicate Viljoen’s work the
hexDEEC simulation was a multiphysics simulation that modelled both the hyperelastic-
ity and the electrostatics of the model simultaneously. However, since the electrostatic
physics could be represented by custom field functions based on the equations derived
in Sections 2.1.1 and 2.1.2, it was unnecessary to use STAR-CCM+’s built-in electrostatic
modeling capabilities. Therefore the governing equations used in the electrostatic simula-
tions were Equations (12), (13), (16) and (19), which defined the capacitance, electrostatic
potential energy, and electrostatic forces for the hexDEEC. Additionally, it was assumed that
the hexDEEC received a constant applied voltage of 1 kV on its top electrodes and the air be-
tween the electrodes had a dielectric constant of 1. Note that the dielectric properties of the
hyperelastic housing were not considered since as mentioned in Section 2.1.1 there is likely
very little charge in the hyperelastic material compared to that in the conductive electrodes.

A directed mesh with an automated “2D mesher” was used to create the part’s quadri-
lateral mesh, where the 2D mesh was applied to the side of the hexDEEC and extruded to
cover the volume of the 3D object to create a 3D mesh. The base size was 0.4 mm with a
target and minimum surface size of 100% and 10%, respectively, and 15 layers. As with
the bubble simulation in Section 2.3.2, the time step of the implicit unsteady solver, τ, was
set to 1 s, and the stopping criteria was set so that the maximum physical time was set to
12 s and the maximum inner iterations was set to five. Note that the maximum time was
greater than that of the ramp time, 10 s, to determine if the results of the analysis changed
under constant loading.

3. Results

This section highlights the results of the numerical models from the validation stud-
ies (Section 3.1), the mechanical deformation of the hexDEEC under biaxial loading
(Section 3.2), the resulting capacitance of the hexDEEC (Section 3.3), the electrostatic forces
acting on the transducer (Section 3.4), and energy produced by the device (Section 3.5).

3.1. Validation of Numerical Methods

When comparing the results from the tensile tests between the experimental and
numerical tests from Viljoen versus the recreations, from this work, as conducted in in
STAR-CCM+, there is generally a strong consistency between the models. For the uniaxial
simulations of the flat strip and dumbbell, the results are nearly identical between the two
models, except for minor deviations that occur for the flat strip when the stretch of the
model approaches an 80% larger length than its initial state (see Figures 10 and 11). Note
that the deformation and x-displacement of the flat strip and dumbbell at the end of their
simulations in STAR-CCM+ are shown in Figures 12 and 13. The residual plots for the
simulations are shown in Figures 14 and 15.
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Figure 10. Results of the recreation of the flat strip simulation from Viljoen between their experimental
and model data vs. the results from STAR-CCM+.

Figure 11. Results of the recreation of the dumbbell simulation from Viljoen between their experi-
mental and model data vs. the results from STAR-CCM+.
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X-Displacement (mm)

0 7.78 15.57 23.35 31.13 38.92
Figure 12. 3D STAR-CCM+ scene showing the x-displacement for the stretched flat strip at the end of
the simulation.

X-Displacement (mm)

0 13.47 26.94 40.40 53.87 67.34
Figure 13. 3D STAR-CCM+ scene showing the x-displacement for the stretched dumbbell at the
end of the simulation. Note the dumbbell is missing the wider edge on its loaded side since in this
simulation the ramped force was applied to the end of the dumbbell’s gauge rectangle, see Figure 6.
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Figure 14. Residuals for the flat strip tensile test simulation in STAR-CCM+.

Figure 15. Residuals for the dumbbell tensile test simulation in STAR-CCM+.

The results from the bubble simulations were less accurate, as shown in Figure 16.
Unlike the uniaxial simulations, the overlap between the results ended around a stretch
of 1.45, or 45% of the sample’s original length with an error of about 12% at a stretch of
1.9, or 90% of the sample’s initial length. This was likely due to the frictionless peripheral
wall boundary condition described in Section 2.3.2. Viljoen did not specify the wall height
for this constraint and whether infinite walls were used in their simulations, as was done
in the STAR-CCM+ simulations. Potentially, the penalty used in STAR-CCM+ was not
high enough, or there were issues with the polygon-shaped walls that did not occur
with the cylindrical walls used in Viljoen’s simulations [22]. Overall, the results from
these validation simulations were promising and justified proceeding to the next step of
modeling the hexDEEC. Note that the deformation and z-displacement of the bubble at
the end of the simulation in STAR-CCM+ are shown in Figure 17. The residual plot for the
simulation is shown in Figure 18.
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Figure 16. Results of the recreation of the bubble simulation from Viljoen between their experimental
and model data vs. the results from STAR-CCM+ for using a directed quadrilateral mesh.

Z-Displacement (mm)

0 5.99 11.99 17.99 23.97 29.96
Figure 17. The 3D STAR-CCM+ scene showing the z-displacement for the stretched bubble at the end
of the simulation.
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Figure 18. Residuals for the bubble biaxial tensile test simulation in STAR-CCM+.

3.2. Mechanics of HexDEEC

The STAR-CCM+ simulations of the hexDEEC showed how the hyperelastic housing
deforms under tensile forces. For clarity, Figure 19 shows the five length variables used to
determine the resulting capacitance, forces, and energy generated in Equations (10)–(13),
(16) and (19).

Figure 19. Length variables of the generic hexDEEC design required to determine the transducer’s
capacitance, electrostatic forces, and potential energy generation.

As shown in Figure 20, most of the lengths, such as xm, xs, W, and zs, change almost
linearly as the simulation proceeds. However, zH decreases dramatically after only 0.5 N of
loading and then proceeds to approach about 1.4 mm as the loading continues. This result
is reasonable, as initial qualitative tests with experimental hexDEECs indicate that the inner
space shrinks prior to any significant stretching of the hyperelastic housing. While these
results will need to be verified by empirical experimental testing, this is a promising sign
that indicates that STAR-CCM+ could properly assist in modeling these unique transducers.
Note that the deformation and z-displacement of the HexDEEC with 5 N of biaxial force
applied in STAR-CCM+ are shown in Figure 21. The residual plot for the simulation is
shown in Figure 22, note that the residuals for the last 10 iterations are low due to the
applied forces being constant at the end of the simulation.
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Figure 20. Changes in the length variables of the generic hexDEEC design due to the tensile forces on
each side determined in STAR-CCM+.

−2.02 −1.21 −0.40 0.40 1.21 2.02

Z-Displacement (mm)

Figure 21. STAR-CCM+ scene showing the z-displacement for the stretched hexDEEC at the end of
the ramped loading.

Figure 22. Residuals for the HexDEEC simulation in STAR-CCM+.



Energies 2023, 16, 8100 25 of 30

3.3. Capacitance of HexDEEC

Using the results from the changes in the length parameters, the capacitances of
the hexDEEC, and its individual flat and slant plate pairs were determined according to
Equations (12), (11) and (10), respectively, and are shown in Figure 23. Note that although
the capacitance is on the order of 0.1 picofarads (pF), this could be later optimized by
altering the dimensions of the generic hexDEEC design. The results show that the rate of
increase in total capacitance decreases as the tensile force increases, which corresponds
to the dramatic decrease in zH shown in Figure 20. As the loading continues, the slanted
plates become more flat, and the flat plates have limited space to move since zs remains
relatively constant, leaving only changes in dimensions due to stretching to increase the
electrode area to increase the capacitance. As indicated by the reduced rate of capacitance
increase, stretching appears to be less effective at increasing the capacitance than reducing
the distance between the plates for this design.

Figure 23. Capacitances of the total hexDEEC (CHex), the flat plates (C f lat), and the slanted plates
(Cslant) as described by Equations (12), (11) and (10), respectively.

3.4. Electrostatic Forces of HexDEEC

The resulting electrostatic forces on the top and bottom electrode plates of the hexDEEC
as described by Equations (16) and (19) are shown in Figure 24. These forces, recorded in
micronewtons, have a similar impact on the top and bottom faces of the device, as would
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the weight of a grain of sand on the entire top or bottom surface, or about 15 µg, for 1 kV of
applied constant voltage. Note that as the voltage increases so do these forces and since
variable capacitors tend to operate at high voltages, it is important to keep these loads in
mind when optimizing a system for energy production [15,20].

Figure 24. Electrostatic forces (in micronewtons) acting on the top and bottom plates of the
total hexDEEC (FHex), the flat plates (Ff lat), and the slanted plates (Fslant), as described by
Equations (16) and (19). Note that, in this case, 1 kV of constant voltage is applied to the system.

3.5. Energy Production of HexDEEC

Using Equation (13), the energy generated by this hexDEEC design was determined
and is shown in Figure 25. Note that the energy produced by the transducer follows the
overall capacitance due to the constant applied voltage. When 1 kV is applied, the energy
generated is on the order of 0.1 µJ and at maximum is about 0.25 µJ, which corresponds to
about 70 picowatt-hours (pWh). However, this energy scales with voltage squared, meaning
that higher pre-charge voltages can assist with increasing the energy generated by every
hexDEEC. While each individual hexDEEC, present in this work, typically generates sub-
microjoules of energy, note that they can later be incorporated into larger energy-producing
metamaterials such as the one shown in Figure 3.

Given that the energy increases with voltage squared and linearly with the number of
hexDEECs used, Figure 26 shows how much energy could be generated with up to 40 kV of
constant pre-charge voltage and 1000 hexDEECs. Note that the maximum energy produced
with 1000 hexDEECs, pre-charged with constant voltage of 40 kV, is about 0.5 J or about
0.15 mWh.
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Figure 25. Energy (in microjoules) produced per loading cycle by one hexDEEC when a constant
voltage of 1 kV is applied.

Figure 26. Energy (in joules) produced per loading cycle by up to 1000 hexDEECs when a constant
voltage of up to 40 kV is applied.
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4. Discussion

The results from Section 3 show that the methods used in Section 2.3 can be used
to model hyperelastic materials in STAR-CCM+. While there was a strong correlation
between the results of the uniaxial tests (see Figures 10 and 11), the results for the biaxial
bubble tests were less accurate, potentially due to the implementation of the peripheral wall
boundary condition as described in Section 3.1. Overall, the results from this validation
assessment demonstrate that the methods used in this paper can be utilized for other
hyperelastic simulations in STAR-CCM+. The following modeling options in STAR-CCM+
are specifically recommended: implicit unsteady, nearly incompressible material, nonlinear
geometry, solid, solid-stress, solution interpolation, and three-dimensional elements. Note
that selecting the implicit unsteady and solid stress models in STAR-CCM+ included the
implicit unsteady and solid stress solvers in the simulation. The material law chosen
should include hyperelasticity, and then the model used to represent the material (in this
case, Mooney–Rivlin) should include the relevant empirically derived constants into the
model’s material properties. This enables the hyperelastic material model in STAR-CCM+.
We also suggest selecting rubber as the model’s material. For the best results with large
deformations, the solid stress load stepper option from the solid stress load stepper solver
and solid displacement motion option were required.

After using the results from Viljoen [22] to validate the methods used in STAR-CCM+,
we modeled a general design for the hexDEEC, and we examined how its different length
dimensions change under loading and the resulting capacitance, electrostatic forces, and
energy produced by the hexDEEC transducer. Though these results still need to be verified
through empirical studies, this work provides a foundation for future efforts that will
optimize the energy production of this hyperelastic hexagonal energy transducer. For
instance, this study indicates that the sharp decrease in zH leads to the largest increase in
capacitance, and therefore increasing the initial length of this parameter could maximize
the change in capacitance. The optimization for this design could involve altering the five
length parameters, the overall size of the device to maximize the change in capacitance,
and the use of stretchable electrodes to increase variable capacitance. Capacitance would
be focused on in this case because, according to Equation (13), it largely determines the
overall energy produced, considering that the voltage applied is constant.

This study aimed to develop a modeling technique focused on the hexDEEC’s energy
harvesting during external actuation—the dynamics of which are primarily described by
hyperelastic effects in silicon elastomers. Building from that, to enhance the model’s accu-
racy in ongoing research, future work will involve comparing the results obtained through
the modeling technique presented here with experimental findings and with additional
finite element solvers such as COMSOL and Abaqus. Moreover, alternative material elas-
tomer models, such as the Ogden three-parameter model or the Ghosh and Lopez-Pamies
model (a model that accounts for hyperelasticity, viscoelasticity, and electrostriction) will be
considered to provide a higher fidelity of numerical representation of a hexDEEC’s elastic
dynamical behavior [22,32].

5. Conclusions

The study involved hexagonal distributed embedded energy converters (hexDEECs),
a novel type of energy transducer proposed by NREL’s patent [1]. These converters use
variable capacitance to convert dynamic deformations into electricity. An individual
hexDEEC has a hyperelastic hexagonal housing with opposing electrodes placed within
that housing. HexDEECs can be woven into larger metamaterial frameworks, which can
form larger energy conversion structures that could be used in various dynamic structures
such as roadways, buildings, marine energy converters, wind energy converters, and
more. Furthermore, hexDEECs could theoretically both convert energy and actively deform
structures that they are a part of, offering advancements in both energy conversion systems
and physical actuation systems—this would be a future pathway of research.
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The primary objectives of this work were twofold: (i) to outline a methodology for
simulating hyperelastic materials, such as those used in the hexDEEC’s housing, and
(ii) to employ the STAR-CCM+ software to facilitate the analyzing a generic hexDEEC’s
capacitance, electrostatic forces, and potential energy generation. The study first recreated
Viljoen’s empirical and numerical analysis results [22] for uniaxial and biaxial simulations in
STAR-CCM+. Once consistency with Viljoen’s work was confirmed, a STAR-CCM+ model
of a generic hexDEEC was developed, incorporating analytically derived equations for
capacitance, electrostatic forces, and potential energy generation. Overall, this work serves
as a preliminary step toward optimizing hexDEEC development. Ongoing and future
work will leverage experimental studies to validate the findings of the work presented
here. Optimizing this technology may involve exploring alternative shapes for variable
capacitance transducers. After experimental analysis and optimization, the next phase
would involve evaluating the performance of a metamaterial, or a structural framework,
comprising multiple interconnected hexDEEC transducers.

6. Patents

• Boren, B., Datskos, P. D., and Weber, J. (2022). Electric Machines as Motors and Power
Generators. US Patent 11,522,469. Washington, DC: U.S. Patent and Trademark Office.
See [1].

• Boren, B. and Weber, J. (2022). Flexible Wave Energy Converter. US Patent 11,401,910.
Washington, DC: U.S. Patent and Trademark Office. See [33].

Author Contributions: Conceptualization, J.S.N. and B.B.; methodology, J.S.N. and B.B.; software,
J.S.N.; validation, J.S.N.; formal analysis, J.S.N.; investigation, J.S.N.; resources, J.S.N. and B.B.;
curated data, J.S.N. and B.B.; writing—original draft preparation, J.S.N.; writing—review and editing,
J.S.N. and B.B.; visualization, J.S.N. and B.B.; supervision, B.B.; project administration, B.B.; funding
acquisition, B.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was authored by the National Renewable Energy Laboratory, operated by
Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under contract no. DE-
AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency
and Renewable Energy Water Power Technologies Office. The views expressed in the article do not
necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains
and the publisher, by accepting the article for publication, acknowledges that the U.S. Government
retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this work, or allow others to do so, for U.S. Government purposes.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors acknowledge and give thanks for the vision, advocacy, and support
from Jochem Weber and Panos Datskos crediting them both for their guidance, insights, and impetus
of this work, without which such research and development would not be possible. We would also
like to thank Nicole Mendoza for her advice on developing the numerical modeling methods used in
this work.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Boren, B.; Datskos, P.; Weber, J. Electric Machines as Motors and Power Generators. U.S. Patent 11,522,469, 6 December 2022.
2. Cho, E.; Chiu, L.L.Y.; Lee, M.; Naila, D.; Sadanand, S.; Waldman, S.D.; Sussman, D. Characterization of Mechanical and Dielectric

Properties of Silicone Rubber. Polymers 2021, 13, 1831. [CrossRef]
3. Bernardi, L.; Hopf, R.; Ferrari, A.; Ehret, A.; Mazza, E. On the large strain deformation behavior of silicone-based elastomers for

biomedical applications. Polym. Test. 2017, 58, 189–198. [CrossRef]
4. Lavazza, J.; Contino, M.; Marano, C. Strain rate, temperature and deformation state effect on Ecoflex 00-50 silicone mechanical

behaviour. Mech. Mater. 2023, 178, 104560. [CrossRef]

http://doi.org/10.3390/polym13111831
http://dx.doi.org/10.1016/j.polymertesting.2016.12.029
http://dx.doi.org/10.1016/j.mechmat.2023.104560


Energies 2023, 16, 8100 30 of 30

5. Machado, G.; Chagnon, G.; Favier, D. Analysis of the isotropic models of the Mullins effect based on filled silicone rubber
experimental results. Mech. Mater. 2010, 42, 841–851. [CrossRef]

6. Zakaria, S.; Yu, L.; Kofod, G.; Skov, A.L. The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers
for dielectric elastomer applications. Mater. Today Commun. 2015, 4, 204–213. [CrossRef]

7. Alarifi, I.M. A comprehensive review on advancements of elastomers for engineering applications. Adv. Ind. Eng. Polym. Res.
2023, 6, 451–464. [CrossRef]

8. Sahu, D.; Sahu, R.K. Review on the role of intrinsic structure on properties of dielectric elastomers for enhanced actuation
performance. Mater. Today Commun. 2023, 34, 105178. [CrossRef]

9. Madsen, F.; Daugaard, A.; Hvilsted, S.; Skov, A. The Current State of Silicone-Based Dielectric Elastomer Transducers. Macromol.
Rapid Commun. 2016, 37, 378–413. [CrossRef]

10. Kornbluh, R.; Pelrine, R.; Pei, Q.; Heydt, R.; Stanford, S.; Oh, S.; Eckerle, J. Electroelastomers: Applications of dielectric elastomer
transducers for actuation, generation, and smart structures. SPIE 2002, 4698, 254.

11. Maffli, L.; Rosset, S.; Ghilardi, M.; Capri, F.; Shea, H. Ultrafast All-Polymer Electrically Tunable Silicone Lenses. Adv. Funct. Mater.
2015, 25, 1656–1665. [CrossRef]

12. Kornbluh, R.; Wong-Foy, A.; Pelrine, R.; Prahlad, H.; McCoy, B. Long-lifetime All-polymer Artificial Muscle Transducers. Mater.
Res. Soc. Symp. Proc. 2010, 1271, 301. [CrossRef]

13. Rosset, S.; Niklaus, M.; Dubois, P.; Shea, H. Large-Stroke Dielectric Elastomer Actuators With Ion-Implanted Electrodes. J.
Microelectromech. Syst. 2009, 18, 1300. [CrossRef]

14. Brochu, P.; Pei, Q. Advances in Dielectric Elastomers for Actuators and Artificial Muscles. Macromol. Rapid Commun. 2009,
31, 10–36. [CrossRef]

15. Kornbluh, R.; Pelrine, R.; Prahlad, H.; Wong-Foy, A.; McCoy, B.; Kim, S.; Eckerle, J.; Low, T. From boots to buoys: Promises and
challenges of dielectric elastomer energy harvesting. SPIE 2011, 7976, 1–19.

16. McKay, T.; O’Brien, B.; Calius, E.; Anderson, I. Self-priming dielectric elastomer generators. Smart Mater. Struct. 2010, 19, 055025.
[CrossRef]

17. Pelrine, R.; Kornbluh, R.; Eckerle, J.; Jeuck, P.; Oh, S.; Pei, Q.; Stanford, S. Dielectric elastomers: Generator mode fundamentals
and applications. Proc. SPIE 2001, 4329, 148–156.

18. Graf, C.; Maas, J.; Schapeler, D. Energy harvesting cycles based on electro active polymers. Proc. SPIE 2010, 7642, 1–12.
19. Foo, C.; Koh, S.; Keplinger, C.; Kaltseis, R.; Bauer, S.; Suo, Z. Performance of dissipative dielectric elastomer generators. J. Appl.

Phys. 2012, 111, 094107.
20. Invernizzi, F.; Dulio, S.; Patrini, M.; Guizzetti, G.; Mustarelli, P. Energy harvesting from human motion: Materials and techniques.

RSC 2016, 45, 5455–5473. [CrossRef] [PubMed]
21. Rosset, S.; Shea, H. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl. Phys. A 2013, 110, 281–307.

[CrossRef]
22. Viljoen, D. Characterising Material Models for Silicone-Rubber using an Inverse Finite Element Model Updating Method.

Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2018.
23. Case, J.; White, E.; Kramer, R. Soft Material Characterization for Robotic Applications. Soft Robot. 2015, 2, 80–87. [CrossRef]
24. Ucar, H.; Basdogan, I. Dynamic characterization and modeling of rubber shock absorbers: A comprehensive case study. J. Low

Freq. Noise Vib. Act. Control. 2018, 37, 509–518. [CrossRef]
25. Smooth-On. Smooth-Sil Series: Addition Cure Silicone Rubber Compounds. Available online: https://www.smooth-on.com/tb/

files/SMOOTH-SIL_SERIES_TB.pdf (accessed on 30 June 2021).
26. Siemens. Simcenter STAR-CCM+ Siemens PLM Software Manual 2020. Available online: https://docs.sw.siemens.com/

documentation/external/PL20200805113346338/en-US/userManual/userguide/html/index.html#page/STARCCMP%
2FGUID-2A67917A-277F-4EF2-B9AC-9F4979ACA553.html%23 (accessed on 4 August 2022).

27. Pagoli, A.; Chapelle, F.; Corrales-Ramon, J.; Mezouar, Y.; Lapusta, Y. Review of soft fluidic actuators: Classification and materials
modeling analysis. Smart Mater. Struct. 2022, 31, 013001. [CrossRef]

28. Yeoh, O. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 1993, 66, 754–771. [CrossRef]
29. Mooney, M. A theory of large elastic deformation. J. Appl. Phys. 1940, 11, 582–592. [CrossRef]
30. Ogden, R. Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids.

Proc. R. Soc. A 1972, 326, 565–584. [CrossRef]
31. GitHub. WebPlotDigitalizer: README. Available online: https://github.com/ankitrohatgi/WebPlotDigitizer (accessed on 5

August 2022).
32. Ghosh, K.; Lopez-Pamies, O. On the two-potential constitutive modeling of dielectric elastomers. Meccanica 2021, 56, 1505–1521.

[CrossRef]
33. Boren, B.; Weber, J. Flexible Wave Energy Converter. U.S. Patent 11,401,910, 2 February 2022.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.mechmat.2010.07.001
http://dx.doi.org/10.1016/j.mtcomm.2015.08.002
http://dx.doi.org/10.1016/j.aiepr.2023.05.001
http://dx.doi.org/10.1016/j.mtcomm.2022.105178
http://dx.doi.org/10.1002/marc.201500576
http://dx.doi.org/10.1002/adfm.201403942
http://dx.doi.org/10.1557/PROC-1271-JJ03-01
http://dx.doi.org/10.1109/JMEMS.2009.2031690
http://dx.doi.org/10.1002/marc.200900425
http://dx.doi.org/10.1088/0964-1726/19/5/055025
http://dx.doi.org/10.1039/C5CS00812C
http://www.ncbi.nlm.nih.gov/pubmed/27398416
http://dx.doi.org/10.1007/s00339-012-7402-8
http://dx.doi.org/10.1089/soro.2015.0002
http://dx.doi.org/10.1177/1461348417725954
https://www.smooth-on.com/tb/files/SMOOTH-SIL_SERIES_TB.pdf
https://www.smooth-on.com/tb/files/SMOOTH-SIL_SERIES_TB.pdf
https://docs.sw.siemens.com/documentation/external/PL20200805113346338/en-US/userManual/userguide/html/index.html#page/STARCCMP%2FGUID-2A67917A-277F-4EF2-B9AC-9F4979ACA553.html%23
https://docs.sw.siemens.com/documentation/external/PL20200805113346338/en-US/userManual/userguide/html/index.html#page/STARCCMP%2FGUID-2A67917A-277F-4EF2-B9AC-9F4979ACA553.html%23
https://docs.sw.siemens.com/documentation/external/PL20200805113346338/en-US/userManual/userguide/html/index.html#page/STARCCMP%2FGUID-2A67917A-277F-4EF2-B9AC-9F4979ACA553.html%23
http://dx.doi.org/10.1088/1361-665X/ac383a
http://dx.doi.org/10.5254/1.3538343
http://dx.doi.org/10.1063/1.1712836
http://dx.doi.org/10.5254/1.3542910
https://github.com/ankitrohatgi/WebPlotDigitizer
http://dx.doi.org/10.1007/s11012-020-01179-1

	Introduction
	Materials and Methods
	Deriving Analytical Electrostatic Equations for HexDEEC
	Electric Potential Energy
	Electrostatic Force

	Hyperelastic Material Models for HexDEEC Housing
	Finite Element Analysis
	Validation of Numerical Methods: Uniaxial Tensile Simulations
	Validation of Numerical Methods: Biaxial Inflation Simulation
	Validation of Numerical Methods: Data Collection from Literature Results
	HexDEEC STAR-CCM+ Simulations


	Results
	Validation of Numerical Methods
	Mechanics of HexDEEC
	Capacitance of HexDEEC
	Electrostatic Forces of HexDEEC
	Energy Production of HexDEEC

	Discussion
	Conclusions
	Patents
	References

