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Abstract: Significant amounts of data need to be transferred in order to optimize the operation of
power grids. The development of advanced metering and control infrastructure ensures a growth
in the amount of data transferred within smart grids. Data compression is a strategy to reduce
the burden. This paper presents current challenges in the field of time-series data compression.
This paper’s novel contribution is the division of data in smart grids to real-time data used for
control purposes and big data sets used for non-time-critical analysis of the system. Both of these
two applications have different requirements for effective compression. Currently used algorithms
are listed and described with their advantages and drawbacks for both of these applications. Details
needed for the implementation of an algorithm were also provided. Comprehensive analysis and
comparison are intended to facilitate the design of a data compression method tailored for a particular
application. An important contribution is the description of the influence of data compression
methods on cybersecurity, which is one of the major concerns in modern power grids. Future work
includes the development of adaptive compression methods based on artificial intelligence, especially
machine learning and quantum computing. This review will offer a solid foundation for the research
and design of data compression methods.

Keywords: data compression; smart grid; communication in power grids; real-time operating systems;
signal processing; information theory; big data; cybersecurity; Internet of Things

1. Introduction

Efficient management of the power grid requires the operator to possess accurate
information about the state of the system in as many points as possible, in order to have
a precise input to control the system. A way to carry this out is to develop measurement
infrastructure, add new measurement points, increase time and amplitude resolution,
increase communication bandwidth, and use modern computation systems or modern
actuators with faster reaction time and less disturbance introduced to the action of the
system [1]. Implementing any of these actions requires incurring costs. At the same time,
consumers expect energy to have the lowest possible price, especially in modern and
developed markets, which allow energy trade by allowing many entities to trade in it.
According to control theory, the role of a measurement system is to gather data about the
state of a controlled system and supply it to the controller, which analyzes the data, extracts
information from them and commands the actuator to act accordingly. The typical data
acquisition and control system is presented in Figure 1.

One of the main challenges in the development of modern power grids is ensuring
a sufficient supply of measurement data [2]. Given the inherent periodicity exhibited by
signals within power grids, the process of compressing signal data emerges as a favorable
approach to increase the throughput of the communication system and efficiently manage
the required disk space. Data compression methods are very popular in domains such as
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image (JPEG, GIF, PNG, WebP), video (H.264, H.265, VP9) or audio (MP3, AAC, Opus)
processing, as well as general information-to-data ratio optimization (ZIP, Gzip, LZ77,
LZ78). This review article presents popular techniques and methods used to compress
time series in power grids. The goal of this article is to provide information on popular
components of data compression methods, to be a guide for the selection of appropriate
methods and a resource for gathering knowledge about the topic. This article also presents
an overview of recent research on data compression in smart grids. A novel contribution of
this work is defining two areas (Table 1) of application of data compression techniques in
the smart grid:

1. Static—compressing data at rest, or data that can be transferred without crucial time
constraints. An example can be the storage of 24 h of measurements in order to
perform disturbance trend analysis, consumption analysis, etc.

2. Dynamic—compressing data in transit that have to be transferred under exigent
timing constraints. An example of this application can be data that needs to be
registered, transmitted, and processed within a few milliseconds in systems like
short-circuit, over voltage, over current, or islanding protection.

Raw data

Data compressionData
buffer

Communication
medium

Data
decompression

Data
storage

Data processing

Data preprocessing
(rounding to integer,
division into blocks,

BWT, MTF)

Control signal

Actuator
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System
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Figure 1. Architecture of distributed measurement and control systems in power grids. Components
marked with green are typical parts of big data transmission systems. Big data acquisition systems
typically use large data buffers (gigabytes, even terabytes) on the sensor side. Components marked
with blue are typical parts of real-time control systems, which typically use smaller buffers or operate
in pure streaming mode. Dotted line symbolizes optional data flow in the system. Ds—data size,
Cr—compression ratio, RDs—raw data size.

The IEEE Standard for Synchrophasor Measurements for Power Systems (IEEE Std.
C37.118.1-2018) [3] and the IEC/IEEE Communication Networks and Systems for Power Utility
Automation: Precision time protocol profile for utility automation (IEC/IEEE 61850-9-3) [4]
are two normative documents that provide precise timing constraints for real-time commu-
nication in smart grids [5,6].

1. Sub-microsecond level synchronization: According to IEEE Std C37.118.1-2018, the
synchronization protocol should provide clock synchronization on the order of a
microsecond. This means that the communication system should be able to maintain
synchronization to a level of precision that is a few microseconds.
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2. Timeliness: IEEE Std C37.118.1-2018 also specifies that the communication system
should be able to deliver data and control signals within a few milliseconds to ensure
the safety and reliability of the smart grid.

3. Precision time protocol profile for utility automation: IEC/IEEE 61850-9-3 specifies
the precision time protocol (PTP) profile for utility automation. PTP is a network
protocol for clock synchronization, which can be used to synchronize the clocks of
devices in the smart grid to a few microseconds.

Table 1. Data types in distributed measurement systems in smart grids with crucial requirements for
data compression.

Data Type Properties Example of Application Compression Requirements

Non-time critical power
quality data

Large datasets, aggregated
data, data content defined by

norms and legislation

Electrical grid data collected
by power quality meters,
energy consumption data
used for billing purposes,
Wide Area Measurement

System, Large Scale
Phasor Measurement

Maximizing compression
ratio, low data degradation,

preserving data crucial for the
application, scalability for

large data sets

Real time control systems is
Smart Grid

Constant stream of data,
transients reporting,

high resolution

Islanding protection,
overvoltage and overcurrent

protection, transient detection,
short-circuit protection

low-latency, preservation of
data crucial for application,

low computational complexity,
operation on blocks of data

Prioritization of data is a crucial issue in mission-critical systems like power grid con-
trol. Real-time data, which include information on current energy consumption, grid status,
and equipment performance, may need to be prioritized over historical data for immediate
decision-making. Historical data, such as long-term consumption patterns and equipment
maintenance records, can be stored and analyzed separately. Critical data, such as informa-
tion related to system faults, security breaches, or emergency situations, should be given
the highest priority. Noncritical data, like routine monitoring information, can be processed
with lower priority. Data related to load forecasting and prediction models may require
special attention for accurate energy planning. Operational data, such as real-time grid
conditions and equipment status, are essential for efficient management [7]. Segregation of
measurement data is a crucial matter in data-intensive environments. In power grids, data
are segregated using rule-based segregation or time-series analysis. Rule-based systems
define criteria to categorize data into different priority levels. Rules can be based on factors
such as data source, urgency, and criticality. Time-series analysis techniques distinguish
between real-time data and historical trends. Algorithms such as ARIMA (AutoRegressive
Integrated Moving Average) can help in forecasting and segregating data. More recently,
edge computing architecture and machine learning techniques were introduced in order
to improve the quality and efficiency of data segregation. Machine learning algorithms
automatically categorize and prioritize data based on historical patterns and real-time
conditions. Clustering algorithms can group similar data for efficient processing. Edge
computing uses data processing locally at the source, reducing the need to transmit large
volumes of raw data. Edge devices can perform initial data segregation and send only
relevant information to central systems [8].

2. Data in Power Systems

The popularity of data compression methods grew along with the popularization of
distributed computing and data storage systems since it reduced the ratio between the cost
and benefit of such systems. In many fields, data compression is a fundamental part of
their development. Complex and data-demanding information, such as audio or video
files, has been a subject of data compression study for a long time. Real-time applications,
such as bilateral voice transmission, also exist in cellular technology. In the domain of
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power systems, data compression was a niche topic most of the time, but the recent rise in
the complexity of modern power systems, along with the need for detailed measurements,
calls for optimization of data transfer [9]. The types of information that must be known
about the system to be managed precisely are presented in Figure 2.
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months years
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- governance of energy storage systems
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Figure 2. Data measured in power systems in time and frequency domain. Stripe on top presents the
main reasons for measurement of power systems properties in listed time domains.

Using such a large amount of data makes data compression methods an attractive
choice to increase system efficiency.

Data utilized for real-time control usually need to be compressed with methods that
allow low-latency streaming and quick access to the data [10]. However, in most cases, the
aggregated data that describe power quality in the system is not time critical and, therefore,
can be compressed with methods that do not meet demanding time constraints but offer a
higher compression ratio or lower computational efficiency instead [11].

Based on the principle of operation, data compression methods can be divided into
two categories—lossy and lossless.

2.1. Lossless

Lossless compression algorithms are designed to preserve all the information con-
tained in the original data. This means that when the data are compressed using these
methods, they can be later decompressed to obtain an exact replica of the original data
without loss or distortion [12]. Lossless compression methods often rely on the concept
of entropy, which is a measure of the information content in the data. The basic idea is
to identify and exploit patterns, redundancy, and statistical properties within the data
to represent them more efficiently [13]. The most common techniques that are used to
compress data without any losses are based on statistical encoding in order to reduce the
entropy in the signal [14], thus reducing the quantity of the data or on dictionary methods,
which replace repetitive data with shorter codes [15].

2.2. Lossy

Lossy data compression methods are techniques used to reduce the size of digital data
by selectively removing some information that is considered less essential or perceptually
less significant [16]. These methods are commonly employed in applications such as image
and audio compression [17,18]. Due to that fact, most of the methods used in industry
are based on deep analysis of human senses like sight and hearing and designed in a way
to primarily lose the information that is less important to the receiver (like color-related
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information in JPEG, due to the fact that the human eye has more rod cells than cone cells,
which makes information related to shape more crucial than information related to color
to human receivers or frequencies bordering on the audible range in MP3 since they are
less notable by humans) [19,20]. In lossy compression, the primary objective is to achieve
high compression ratios by eliminating redundant or less important details. This involves
quantization, where the data values are rounded or mapped to a smaller set of values. The
discarded information is irretrievable during decompression, making lossy compression
unsuitable for applications where data fidelity is critical, such as undertaking high-impact
decisions about the state of the power grid. The key challenge in lossy compression is to
achieve a balance between achieving significant compression while minimizing perceptual
degradation [21]. While lossy compression offers substantial size reduction, it is crucial
to use it judiciously in scenarios where slight data loss is acceptable. Historically, most
lossy data compression methods were developed for the information received by humans,
like video, audio, or image. In most cases, the information from the power grid does not
need to be directly understood by humans, rather than by other IoT devices [22]. Direct
transfer of methods from different domains should be carried out with caution. Lossy data
compression methods are also specific to their application, which creates a field of data
compression methods that should be tailored to be received and processed by machines,
not by humans. The development of a lossy data compression method requires a deep
knowledge of the system and the information contained in the data, which makes lossy
compression algorithms harder to implement, but may offer a more optimized smart grid
supervision system in the end [23].

3. Algorithms Used in Smart Grid Data Compression

Within the domain of information theory and data compression, two fundamental
concepts, source coding [24] and entropy coding [25,26], play a pivotal role in optimizing
data representation and transmission (Table 2). Source coding, often termed data compres-
sion or signal compression, serves as the foundation for reducing the size of datasets while
preserving their essential information [27]. This process involves eliminating redundant de-
tails and superfluous information. For example, the ubiquitous Huffman coding technique
assigns variable-length codes to characters in a text document based on their frequency
of occurrence [28]. The most frequently used values receive shorter codes, resulting in
efficient compression of text data.

Entropy coding, on the other hand, represents a specialized subset of source coding
that delves into the statistical properties and probabilities inherent in the data source. It
takes advantage of principles from information theory and probability theory to optimize
compression efficiency. For example, arithmetic coding is an entropy coding method that
encodes data based on its cumulative probability distribution [29]. By assigning shorter
codes to more likely symbols, compression ratios are achieved that approach the entropy of
the data source [30]. This is particularly valuable in lossless compression applications, such
as event-related data compression, where exact reconstruction is essential.

Source coding methods such as Run-Length Encoding (RLE) can efficiently reduce the
size of binary images by encoding consecutive runs of identical bytes as a single value [31].
Meanwhile, entropy coding techniques, including Huffman coding or arithmetic coding,
further compress the data by exploiting the statistical properties of sample values. In
essence, source coding and entropy coding represent essential tools in the data compression
toolkit, each offering unique strategies to optimize the representation and transmission
of information, with applications spanning from text and images to audio and video
data [27,32].

3.1. Run-Length Encoding (RLE)

Run-Length Encoding (RLE) is a lossless compression algorithm used in power grid sig-
nals analysis to efficiently represent time-series data from voltage and current sensors [33].
During the encoding phase, consecutive identical values in the signal are compressed into
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a single value and a count, reducing storage and transmission requirements (Algorithm 1).
The compressed data, accompanied by relevant metadata, is stored or transmitted [34]. In
the decoding phase, the original signal is reconstructed for analysis, allowing identification
of voltage variations, transient events, and patterns of interest in the power grid. RLE is a
simple algorithm; thus, it can be implemented at a low resource cost [35].

Algorithm 1 Run-Length Encoding (RLE)

compressed_output← “” ▷ Initialize the compressed output string
current_character ← input[0] ▷ Initialize the current character
count← 1 ▷ Initialize the count to 1
for i← 1 to length(input)− 1 do

if input[i] = current_character then
count← count + 1

else
compressed_output← compressed_output + current_character + count
current_character ← input[i]
count← 1

end if
end for
compressed_output← compressed_output + current_character + count ▷ Append the
character with counter
return compressed_output

Sliding-Window Run-Length Encoding (SW-RLE) is an extended version of the classic
Run-Length Encoding (RLE) algorithm, specifically designed for scenarios where consec-
utive identical values are encountered within a sliding window of data in a time series
sequence, as often occurs in the context of power grids signals analysis (Algorithm 2).
SW-RLE operates in two distinct phases [36].

During the encoding phase, a fixed-size sliding window is used to traverse the time-
series data. Within this window, a count variable is initialized to 1, and a result buffer is used
to accumulate the encoded data. At each position of the sliding window, a comparison is
made between the values within the window. If all values within the window are identical,
the count is incremented to represent the consecutive run of identical values. In cases
where variations exist within the window, the value within the window and its count are
appended to the result buffer. This process continues as the sliding window moves forward,
covering all data in the time series. The result buffer eventually holds the compressed data,
effectively representing consecutive identical values within the sliding window.

The decoding phase, on the other hand, starts at the beginning of the encoded data. An
output buffer is initialized to store the decoded signal. The encoded data are then iterated
through, processing pairs of values (element, count). For each pair, the element is appended
to the output buffer count times, effectively reconstructing the original time-series data.
This decoding process continues until the end of the encoded data is reached, producing
the final output buffer with the uncompressed time-series data.

In the domain of analysis of power grid signals, SW-RLE is particularly valuable when
analyzing sliding windows of continuous signals, where localized patterns and anomalies
are of interest [37]. The adaptability of SW-RLE allows the adjustment of sliding window
sizes to capture patterns of different durations, making it versatile for various analysis
requirements. Importantly, SW-RLE preserves the integrity of the original data within the
sliding windows, ensuring that no localized information is lost during the compression
and decoding processes. This makes it a powerful tool for focused and localized analysis
within the broader context of power grid signals.
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Algorithm 2 Sliding-Window Run-Length Encoding (SWRLE)

compressed_output← “” ▷ Initialize the compressed output string
windowStart← 0 ▷ Initialize the start of the sliding window
while windowStart < length(input) do

windowEnd← min(windowStart + windowSize, length(input)) ▷ Window end
subsequence← input[windowStart : windowEnd] ▷ Get the subsequence
runLength← 1
for i← 1 to length(subsequence)− 1 do

if subsequence[i] = subsequence[i− 1] then
runLength← runLength + 1

else
compressed_output← compressed_output + subsequence[i− 1] + runLength
runLength← 1

end if
end for
compressed_output ← compressed_output + subsequence[length(subsequence)− 1] +

runLength
windowStart← windowStart + length(subsequence) ▷ Move the sliding window

end while
return compressed_output

3.2. Huffman Coding

Huffman coding, a widely used data compression technique, also finds application in
power grid signal compression [38]. It begins by collecting time-series data from power
grid sensors, and then, based on the data’s frequency distribution, constructs a Huffman
tree that assigns shorter binary codes to common signal values and longer codes to less
frequent ones (Figure 3). This tailored encoding significantly reduces data size. The
compressed data, along with information about the Huffman tree structure, are stored
or transmitted efficiently. During decoding, the Huffman tree is utilized to reconstruct
the original signal values, preserving data accuracy for critical power grid applications,
including grid monitoring and fault detection.
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Figure 3. Structure of binary tree created during encoding. Red circles are nodes, arrows are labeled
with consecutive code signs, blue circles with letters contain encoded symbols.



Energies 2023, 16, 8077 8 of 26

Huffman coding can significantly reduce repetitive data size, which is useful in the
domain of power grids [39]. The algorithm works efficiently with large datasets, which
makes it a good choice for compressing large datasets. For streaming time-critical data,
the choice of dictionary (binary tree) is crucial, since frequent changes in the dictionary
increase the load on the communication channel and might result in low or even negative
compression ratio [40].

3.3. Lempel–Ziv–Welch

The LZW algorithm (Algorithm 3) works by reading a sequence of symbols, grouping
them into strings, and converting the strings into codes. The codes take less space than
the strings they replace, achieving compression [41]. The algorithm uses a code table, with
4096 as a common choice for the number of table entries. Codes 0–255 in the code table are
always assigned to represent single bytes of the input file. As the encoding continues, LZW
identifies repeated sequences in the data and adds them to the code table [42].

Algorithm 3 Lempel–Ziv–Welch algorithm steps

P = first input character
while not end of input stream do

C = next input character
if P + C ∈ string table then

P = P + C
else

output the code for P
add P + C to the string table
P = C

end if
end while
output code for P

LZW takes advantage of short patterns. Due to the fact that power grids function in
a periodic mode, this can be a useful way to compress data from a power grid [39]. This
algorithm can also facilitate the observation of the power grid with periodic disturbances,
because a sequence of samples may follow the same model if they register a distortion
caused by the same reason [43].

3.4. Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) is extensively used in power systems data com-
pression. Data from power systems, such as electrical quantities such as voltage, current,
and power, often have a high-frequency component [44]. DCT can be used to compress
these data by transforming them into the frequency domain, where the high-frequency
components can be discarded if they do not contribute significantly to the overall data [45].

Due to its nature, data processed by DCT have more applications than sole compression:

• Data compression: DCT can be used to compress the data of the power system before
storage or transmission. For example, the DCT can be used to compress the voltage
profile data, which is a sequence of voltage values at different points in time. By
discarding the high-frequency components of the DCT, the data can be significantly
compressed without significant loss of information.

• Signal processing: DCT can be used in signal processing in power systems. For
example, it can be used in the analysis of electrical disturbances, where DCT can be
used to transform disturbances into the frequency domain, making it easier to analyze
and diagnose disturbances [46].

• Predictive analytics: DCT can be used in predictive analytics in power systems. For
example, it can be used to predict future power system conditions based on historical
data. By transforming historical data into the frequency domain using DCT, the
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predictive model can focus on the low-frequency components of the data, which are
more likely to be relevant to predict future conditions [47].

• Control systems: DCT can be used in control systems in power systems. For example,
it can be used in the control of power distribution systems, where DCT can be used to
transform control signals into the frequency domain, making it easier to design and
implement the control system.

In all these applications, DCT is used to transform the data into the frequency domain,
where the high-frequency components can be discarded, thereby reducing the size of the
data and improving the efficiency of data compression [48], signal processing, predictive
analytics, and control systems in power systems [49]. The signal is represented as a
weighted sum of subsignals (Figure 4), which is lossless, but initially offers little or no
compression. The data obtained are quantized as a weighted sum of the DCT matrix,
where the weights are lower for higher frequency components. This approach increases
the further compression using techniques such as RLE. DCT can be used to amplify the
compression ratio received from other algorithms such as wavelet transform [50].

Figure 4. Basic components of discrete cosine transform [49].

3.5. Wavelet Transform

Wavelet transform is a powerful tool in data compression, especially in real-time
systems. The process of wavelet transform involves separating the signal into different
frequencies, which can then be compressed independently [51]. This is particularly useful in
power-system-related data, where signals often exhibit low-frequency and high-frequency
components [52].

The fast continuous wavelet transform (fCWT) is an open-source algorithm that sepa-
rates scale-independent and scale-dependent operations, which is beneficial for real-time,
high-quality, noise-resistant time-frequency analysis of nonstationary noisy signals [53].

In power systems, a wavelet-based data compression method can be used to compress
the recorded data of oscillations [54]. This method selects the optimal wavelet function
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and decomposition scale according to the criterion of the minimum compression distortion
composite index (CDCI). The most popular wavelet functions are the Haar, Daubechies,
and Coiflet families (Figure 5). This balances compression performance and reconstruction
accuracy [55].
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Figure 5. Wavelets from Haar, Daubechies and Coiflets families. For each wavelet, the scaling
function phi and the wavelet function psi are presented [56].

The wavelet function and decomposition scale can be selected directly according to the
oscillation frequency, which is the most significant characteristic of oscillations. The amount
of calculation in this method is much lower than that in methods that require compressing
and reconstructing signals with all candidates of wavelets and scales. This makes the
wavelet-based data compression method for oscillations in power systems particularly
efficient [57]. In the wavelet-based data compression method, the window length of data to
be processed at a time deserves careful consideration. The length of a window defines the
compromise between compression ratios and distortion rates [58].

The compression ratio depends on the oscillation frequency and can almost reach the
compression ratio limit of scale i. The distortion rate is on the order of 10−4 in general and
is always no more than 2 × 10−3. The computational burden is not great for compression
in storage.

Wavelet compression in general is a better solution for handling transients [59], which
makes it more effective for unstable grids. It can be used as a component of the hybrid
method, together with other algorithms, that work better for predictable periodic data,
which is a common type of signal in stable power grids [21].

3.6. Differential Encoding

Differential encoding is a data compression technique that works by encoding the differ-
ence between consecutive data points rather than the data points themselves (Algorithm 4).
This technique is particularly useful for time-series data where the values are often similar
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to those of their neighbors [60]. By encoding the differences, we can significantly reduce
the amount of data that need to be stored, leading to more efficient storage and faster data
retrieval [61].

The time complexity of this algorithm is O(n), where n is the number of data points.
This is because we are performing a constant amount of work for each data point: calculat-
ing the difference and appending it to the list.

The space complexity of the algorithm is also O(n), since we are storing a new piece of
data for each data point. However, the space required to store the encoded data is generally
much less than the space required to store the original data, especially for time-series data
with many similar consecutive values [62].

Algorithm 4 Differential encoding algorithm

Require: Time-series data D
Ensure: Encoded data E

E← ∅
E← E ∪ D[1]
for i← 2 to n do

E← E ∪ (D[i]− D[i− 1])
end for

Differential encoding is frequently used in compressing data in stable systems, where
consecutive values do not change much. The compression ratio may deteriorate in systems
with a high disturbance ratio. Differential encoding is perfect for reducing the size of data
in stable periods of operation, but it is unlikely to be an optimal solution to compress
transients [40]. This algorithm, in general, can be used to improve the performance of
real-time systems during stable periods of operation and to significantly improve the
compression of non-time-critical data in the processing of large power-quality datasets.

3.7. Burrows–Wheeler Transform (BWT)

The Burrows–Wheeler transform (BWT) is a block-sorting data transformation algo-
rithm that is used in data compression (Algorithm 5). It is not a standalone data compres-
sion method, however; it is being used as a component with different solutions to increase
the performance of other data compression algorithms [63]. BWT rearranges the input
data in a way that similar data elements are grouped together. This property of BWT is
exploited in the Burrows–Wheeler transform compression (BWT-C) algorithm, which is
a data compression algorithm that is particularly effective for data with long repetitive
sequences [64].

Algorithm 5 Burrows–Wheeler transform (BWT)

Require: string
Ensure: BWT_string, last_column_index

rotations← generate_rotations(string)
sorted_rotations← sort(rotations)
BWT_string← concatenate(sorted_rotations)
last_column_index ← f ind_last_column_index(string, BWT_string)
return BWT_string, last_column_index

In the context of power-system-related data, BWT-C could be particularly useful.
Data from power systems often contain long sequences of similar values, such as multiple
readings of the same power consumption or generation value. Using BWT, these similar
values are grouped together, which can significantly reduce the size of the data. BWT can
also be used for methods that compress and encrypt data sent in power grids [65].

The BWT-C algorithm works in several stages. First, the input data are transformed
using the Burrows–Wheeler transform, which rearranges the data in such a way that
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similar data elements are grouped together [66]. This is carried out by sorting the input
data according to the characters that follow each character in the data.

The transformed data are then compressed using a lossless compression algorithm,
such as Run-Length Encoding (RLE) or move-to-front transform (MTF). These algorithms
take advantage of the fact that similar values are grouped together in the transformed data
to further compress the data [67].

Finally, the compressed data are encoded into a format that can be easily stored or
transmitted [40]. This can be carried out using any suitable encoding method, such as
Huffman coding or arithmetic coding [68].

The use of BWT-C in real-time systems is particularly interesting. In real-time systems,
data are continuously generated, and it is necessary to compress these data in real time to
avoid storage overflow or transmission delay. Using BWT-C, it is possible to compress large
amounts of data from power systems in real time, making it suitable for use in real-time
systems [69].

In conclusion, the Burrows–Wheeler transform can be used to compress data related
to power systems by rearranging the data in such a way that similar values are grouped
together [70]. This can significantly reduce the size of the data, making it suitable for use
in real-time systems. The use of the Burrows–Wheeler transform in data compression
is a complex process that involves several stages, but it can be highly effective when
used correctly.

3.8. Move-to-Front (MTF) Encoding

Move-to-front transform (MTF) is a data encoding technique designed to enhance
the performance of entropy encoding techniques of compression [71]. The MTF transform
works by maintaining an ordered list of legal symbols (for example, a to z in case of English
text) [72]. The process involves searching for the input character in the list, printing the
position at which the character appears in the list, and then moving that character to the
front of the list (Algorithm 6). This process is repeated until indexes for all input characters
are obtained [73].

Algorithm 6 Move-to-front encoding (MTF)

Require: input_text, len_text, list
Ensure: output_arr

for i = 0 to len_text do
output_arr[i]← search(input_text[i], list)
moveToFront(output_arr[i], list)

end for
return output_arr

The MTF transform is particularly effective in reducing the entropy of a message by
exploiting the local correlation of frequencies [74]. This means that letters recently used
stay at the front of the list, resulting in a large number of small numbers such as “0” and “1”
in the output if the use of letters exhibits local correlations [74].

However, not all data exhibit this type of local correlation. For some messages, the
MTF transform may actually increase the entropy. However, an important use of the MTF
transform is in Burrows–Wheeler transform-based compression. The Burrows–Wheeler
transform is very good at producing a sequence that exhibits local frequency correlation
from text and certain other special classes of data [63]. Compression benefits greatly from
following up the Burrows–Wheeler transform with an MTF transform before the final step
of entropy encoding [73].

One problem with the basic MTF transform is that it makes the same changes for any
character, regardless of frequency, which can result in decreased compression, as characters
that occur rarely may push frequent characters to higher values [75]. Due to the fact that
there is a risk of negative compression, especially in grids with high distortion, proper
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algorithm calibration is needed. Various alterations and alternatives have been developed
for this reason. One common change is to make it so that characters above a certain point
can only be moved to a certain threshold [76]. Another is to make an algorithm that runs a
count of each character’s local frequency and uses these values to choose the characters’
order at any point. Many of these transforms still reserve zero for repeat characters since
these are often the most common in data after the Burrows–Wheeler transform. In the
context of real-time systems operating in the domain of power grids, the MTF transform
can be particularly useful in systems where data are frequently updated or where there is a
high degree of local correlation in the data [77].

3.9. Real Time Compression—Prequisities

In general, selecting the right data compression method for a system is based on
balancing compression ratio, data distortion, and computational complexity [78]. However,
in the domain of power systems, data that are being used for non-time-critical purposes
mostly focus on achieving a high compression ratio with low data distortion. Algorithm
complexity is rarely a case for such an application, since long computing times are accept-
able, for the gain of reduced communication medium usage. Real-time systems give much
more constraints on the selected method [10,79].

• Understanding of the application domain: In power grid applications, a thorough
understanding of data types, characteristics, and permissible loss in data fidelity is
crucial for effective data compression [80]. Knowledge of the properties of the power
system and the purpose of compressed data is crucial. The systems used to protect the
grid shall not lose transient data that may lead to false negatives. Metrology devices
that are used to monitor systems with constant distortion should be carefully analyzed
before using methods that result in negative compression.

• Timing constraint analysis: Real-time power grid systems have stringent timing re-
quirements. It is essential to analyze task scheduling, response time, and deadline
constraints to select appropriate compression techniques. This is a complex param-
eter to analyze since it requires deep knowledge of the data being compressed and
computational capabilities of metrological system [81].

• Compression algorithm selection: The choice of compression algorithms must consider
the trade-off between compression ratio and computational overhead. Customized
real-time compression algorithms may be necessary to optimize performance. Stream
algorithms in most cases offer lower latency, but also a lower compression ratio. In
the case of block algorithms, block size should be carefully considered in order not to
violate real-time constraints due to the long time needed to fill the buffer [82].

• Hardware and software considerations: Hardware and software platforms play a vital
role in compression [83]. Understanding their capabilities and limitations is crucial to
selecting and implementing compression techniques. Many modern embedded sys-
tems offer hardware acceleration for selected data compression methods [84], which
significantly improves their performance [83,85]. Some software platforms also im-
plement data compression algorithms on the lower layers of their architecture, which
makes their use easier and more efficient. Field-programmable gate arrays (FPGAs)
are a frequent choice for low-level acceleration of data compression algorithms in
power grids [86–88].

• Error detection and correction: Robust error detection and correction mechanisms are
essential to ensure data integrity, especially in noisy power grid environments prone
to transmission errors [89]. The exact meaning of error varies between applications,
but in general, should be considered a violation of the purpose of the system. For
systems reacting to transients reporting false detection or omitting the actual event,
this can be considered an error from the functional point of view. For monitoring
systems used for power quality analysis, a difference in aggregated samples from real
values is the most critical measure of an error [90].
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• Validation and testing: Rigorous validation and testing procedures, including worst-
case execution time analysis and simulation, are essential to confirm that the compres-
sion scheme meets real-time requirements in power grid applications [91]. Due to the
network nature of power grids, every device used shall be compliant with legislation.
Validation of such systems is a complex, long, and costly process; hence, special effort
should be carried out during the development phase in order to avoid test failure.

• Efficiency and reliability: Meeting these prerequisites forms a strong foundation for
enhancing the efficiency and reliability of data compression in real-time power grid
systems [92]. Many power systems are used in remote locations with limited ability to
monitor their operations. The design of such systems should also take into account
the long period of their usage, and compliance with other systems that can be used in
the future in case of expansion of modernization of adjacent systems [93].

3.10. Error Resilience

In the context of power grids, error resilience in data compression algorithms is crucial
for real-time systems. This is due to the high volume of data generated by power grids,
which can lead to data congestion if not properly managed [94]. The data generated include
information about power generation, transmission, and distribution, as well as information
about potential faults and disturbances in the power grid.

One approach to managing these data is the use of real-time energy data compression
strategies. These strategies aim to reduce data traffic by compressing meter data efficiently.
This is particularly important in smart grid systems, which feature an advanced meter-
ing infrastructure (AMI) that automatically collects meter data from widely distributed
sensors [95].

The proposed algorithm for real-time energy data compression combines several exist-
ing compression algorithms and operates from 2 to 10% more efficiently than previously
published algorithms. This efficiency is crucial in real-time systems, where data must be
processed and transmitted quickly to avoid delays and potential system failures.

In addition to data compression, the resilience of errors in power grid systems also
involves the use of machine learning and artificial intelligence techniques for fault detection
and diagnosis. These techniques can help identify and diagnose faults in the power grid in
real time, allowing quick remediation and minimizing the impact of these faults on power
grid operation [96].

For example, hybrid machine learning models can be used to improve the resilience
of the power grid through real-time fault detection and remediation [97]. These models
combine different machine learning techniques to improve the accuracy and efficiency of
fault detection and diagnosis.

In addition, the resilience of a power grid can be measured using a Dynamic Inop-
erability Input-output Model (DIIM). DIIM reflects the ability of the power grid to deal
with disturbances and changes in the equilibrium state through the restoration ability. This
model can be used to measure the resilience of the power grid and to verify the effectiveness
of the measures taken to improve the resilience of the power grid [98].

Forward error correction (FEC) is a method used in data communication to detect and
correct errors that occur during data transmission. FEC works by adding redundant data
to the original data before it is transmitted [99]. This redundant data are used to detect and
correct errors that occur during transmission. If an error is detected, the redundant data
are used to correct the error. This allows the original data to be reconstructed accurately,
even if some of it was lost or corrupted during transmission [100,101].
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Table 2. Comparison of compression algorithms for time-series databases.

Algorithm Category Real-Time Application
Benefits

Real-Time Application
Drawbacks

Non-Time-Critical
Application Benefits

Non-Time-Critical
Application Drawbacks References

RLE Lossless Low computational
complexity

Less efficient for
block algorithms

Well performing on large
datasets, good
compression of datasets
with multiple subsequent
occurrences of the
same symbol

Low compression ratio [102]

Sliding-window RLE Lossless Block operation, low
latency for streaming Lower compression ratio

More predictable output
data format, block division
may reduce compression
ratio

Block division may reduce
compression ratio [103,104]

Huffman Coding Lossless
Variable length, efficient
for compression of smooth
time-series

Changes to the dictionary
might deteriorate
performance

Well performing on large
datasets, efficient
compression for repetitive
patterns

Efficiency relies on the
fixed dictionary, complex
computation

[40]

LZW Lossless
Efficient for block
operation, availability of
hardware acceleration

Requires proper definition
of dictionary

Adaptation to the input
data, efficient for
frequently occurring
patterns

The size of the dictionary
can grow significantly for
large datasets, adds
computational complexity

[39]

DCT Lossy or Lossless

Ability to lose frequency
components irrelevant for
the application,
preprocessing of data

Improper parameters
selection may result in the
loss of relevant data

Concentration of most of
the signal energy in few
crucial coefficients

Blocking artifacts as a
result of data quantization [105]

Wavelet Transform Lossy or Lossless

Preprocessing of transient
data, lowering
computational effort for
the controller

Inefficient for smooth
signals, complex
computation, possible
block artifacts

Efficient for compressing
data with diverse patterns,
multiresolution analysis,
possibility of 2D
representation of a large
dataset useful for trends
observation

Complex computation for
large datasets,
performance of the
algorithm is very sensitive
to the choice of parameters

[106,107]
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Table 2. Cont.

Algorithm Category Real-Time Application
Benefits

Real-Time Application
Drawbacks

Non-Time-Critical
Application Benefits

Non-Time-Critical
Application Drawbacks References

Differential Encoding Lossless, possible lossy
Low computational
complexity, optimized for
streamed data

Risk of error accumulation,
sensitive to data variation

Low complexity and
simple implementation,
adaptable to trends

Risk of error accumulation,
sensitive to data variation [60,62]

BWT Lossless

Preprocessing data blocks,
enhancement of other
algorithms, simple
decompression

Added complexity,
reduced benefit with
distorted data

Efficient for compressing
data with local patterns
and repetitive sequences

Performance dependent on
input data [77]

MTF Lossless
Preprocessing data blocks,
enhancement of other
algorithms

Variable compression ratio
depending on the input Simple implementation

Compression ratios may
vary depending on the
input data

[108]
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4. Compression and Security

In the past, many data transmission channels in power grids were isolated and thus
physically inaccessible to the attacker. In such systems, the security of the data was not
considered. At present, many measurement systems work in the IoT network, utilizing
mediums and infrastructure available to other entities. This raises concerns about data
security. Compression algorithms are not neutral for security. The application of data
compression influences the security properties of the systems in various ways.

4.1. Data Transmission Efficiency

Data compression is often used to reduce the size of files or data for more efficient
transmission over networks. Smaller data sizes mean faster transmission times and reduced
bandwidth usage. In a cybersecurity context, this efficiency is crucial to maintaining a
secure and responsive network. Faster transmission can contribute to faster response times
in the detection and prevention of security threats.

4.2. Network Security

Compressed data can impact how security devices, such as firewalls and intrusion
detection systems, analyze network traffic. Some security tools may struggle to inspect
compressed data effectively, potentially allowing malicious content to pass undetected.
Attackers may use compression to obfuscate their payloads and make it harder for security
systems to identify and block malicious activities.

4.3. Data Integrity

Compression algorithms, if not implemented or configured properly, can introduce
vulnerabilities that attackers might exploit. Poorly designed compression algorithms may
lead to data corruption or even facilitate certain types of attacks, such as compression-based
attacks like the CRIME (Compression Ratio Info-leak Made Easy) attack, which targets the
compression used in SSL/TLS protocols.

4.4. Storage Security

In storage environments, compressed data are commonly used to optimize storage
space. However, security concerns arise if the compression algorithm is not secure. If
an attacker can manipulate compressed data in a way that exploits vulnerabilities in
the decompression process, it could lead to security breaches. Properly securing com-
pressed data during storage is essential to maintain the confidentiality and integrity of
sensitive information.

4.5. Secure File Transfer

In secure file transfer protocols, compression is often integrated to optimize data
transfer times. However, the security of the compression algorithm and its implementation
becomes paramount in ensuring the confidentiality and integrity of the transferred data.
Encryption techniques are introduced to change the data before transfer in order to preserve
the privacy of parties participating in communication [109] or protect the confidentiality of
the data from adversaries. In many cases, the transmitted measurement data has the form
of a 2D graphic, which is compressed using image codecs [110]. In such cases, it is crucial
to compress data with preservation of the quality suitable for further data processing and
maintain security properties of encryption [111].

4.6. Attack Scenarios Exploiting Compression Methods

Data compression bring benefit in the form of more efficient communication; however,
changing the properties of data may expose the system to exploitation.

• Side-channel security of smart meter data compression techniques. In this scenario,
attackers exploit side-channel information to compromise the security of smart me-
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ters leveraging data compression techniques. By analyzing patterns such as power
consumption, bus load, and temperature of systems processing compressed data,
adversaries can gain insight into power consumption patterns, potentially revealing
sensitive information about occupants’ behavior or activities [112,113]. Unauthorized
access to detailed information on power usage could lead to privacy breaches, en-
abling malicious entities to deduce occupancy patterns and habits or even identify
periods of low security on a premise.

• Joint adversarial example and false data injection attacks for state estimation in
power systems. Adversaries generate adversarial examples in compressed data sent
for state estimation in power systems [114,115]. Additionally, false data injection at-
tacks can involve injecting compressed or manipulated data into the system [116,117].
These attacks can compromise the accuracy of state estimation algorithms, leading to
incorrect assessments of the state of the power system [118]. Misleading state estimates
can result in improper control actions [119], potentially causing disruptions, over-
loads, or cascading failures in the power grid. This could lead to severe operational
challenges, affecting the reliability and stability of the entire power system [120].

• Adversarial attacks and defenses for deep learning-based unmanned aerial vehicles
(UAVs). Smart grids increasingly use UAVs for monitoring and maintenance. Adver-
sarial attacks on the data compression techniques used in UAV communications can
involve manipulating compressed data to deceive or disrupt the operation of these
vehicles [121]. This might include altering sensor data or compromising communi-
cation channels [122]. Adversarial attacks on UAVs can lead to incorrect or delayed
information, affecting decision-making processes in power grid management. This
could potentially disrupt critical tasks such as infrastructure inspection, maintenance,
or emergency response.

• Data integrity attacks on smart grid communication channels. Attackers exploit
vulnerabilities in compression algorithms to manipulate or corrupt compressed data
during transmission [123]. This can involve injecting false information, altering control
signals, or disrupting communication channels between various components of the
smart grid. Compromised data integrity can lead to incorrect decision-making in
power grid control systems.

• Eavesdropping on compressed communication channels. Adversaries may eaves-
drop on compressed communication channels within the smart grid. By intercepting
and analyzing compressed data, attackers can gain insight into sensitive informa-
tion, including control commands, grid configurations, or operational strategies [124].
Unauthorized access to critical information can allow attackers to plan more sophisti-
cated and targeted attacks on the power grid, potentially leading to service disruptions,
financial losses, or even physical damage to the infrastructure.

4.7. Influence on Entropy

Both data compression and cryptography focus on the modification of the message
entropy; however, their point is the opposite. The goal of cryptography is to increase the
entropy of the data, while the goal of compression is to reduce the entropy of the data.
Through encryption, cryptography aims to transform data into a more unpredictable and
seemingly random form, making it difficult for unauthorized parties to decipher without
the appropriate key. Cryptography and compression serve opposite purposes in terms
of data entropy. Cryptography seeks to make data more unpredictable and secure, while
compression seeks to make data more efficient and space-saving by reducing redundancy
and, consequently, lowering entropy. It is important to take security into account during
the development of the data compression strategy.
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5. Future Work

A future trend in the development of data compression techniques in smart grids
could be the integration of machine learning and artificial intelligence (AI) to improve the
efficiency and adaptability of these techniques.

Machine learning algorithms can be used to analyze patterns in data, which can help
in the development of more efficient compression algorithms. Machine learning algorithms
excel at uncovering intricate patterns and relationships within complex datasets. In the
realm of data compression for smart grids, these algorithms can be trained to recognize
the significance of different data segments. For example, in power systems, machine learn-
ing can identify critical aspects of electrical signals that must be preserved for accurate
analysis. Subsequently, this insight aids in the development of more sophisticated compres-
sion algorithms that selectively retain essential information while efficiently compressing
less critical data. This approach helps mitigate computational complexity and storage
requirements [125].

Artificial intelligence can also be used to optimize the parameters of compression
algorithms in real time, based on the characteristics of the data and the requirements of the
system [95,126]. Artificial intelligence, particularly through the use of advanced algorithms,
can optimize compression processes dynamically in real time. This adaptability is crucial
in smart grid scenarios where the nature of the data and system requirements can vary.
AI algorithms can continuously assess factors such as the urgency of data transmission,
the available bandwidth in communication channels, and the specific needs of the system.
By adjusting compression parameters on the fly, AI ensures that the compression process
is aligned with the dynamic demands of the smart grid environment. This adaptability
improves the overall efficiency of the data compression system.

Another potential trend is the use of quantum computing for data compression.
Quantum computing has the potential to significantly speed up the compression and de-
compression processes, which could be particularly beneficial for handling large volumes
of data in smart grids. However, this would require significant advancements in quantum
computing technology [127]. Quantum computing introduces a paradigm shift in data com-
pression by leveraging the principles of quantum mechanics. The inherent parallelism and
superposition capabilities of quantum bits (qubits) can significantly speed up compression
and decompression processes. In the context of smart grids, this translates to faster and
more efficient handling of large volumes of data. Quantum computing has the potential to
revolutionize the processing of complex datasets, which makes it particularly advantageous
for the high-throughput requirements of smart grids. However, it is essential to note that
the practical implementation of quantum computing in this domain necessitates substantial
advancements in quantum technology, including error correction and scalability.

Finally, the development of more advanced data compression techniques that can
handle different types of data and different levels of compression could also be a future
trend. For example, techniques that can handle lossless and lossy compression or that can
adapt the level of compression based on the characteristics of the data [128].

6. Summary

The primary objective of this paper was to draw attention to a major problem for
automation, measurement, and control of power systems in the imminent future. The
focal point of our investigation was the advancements made in the realm of compression
techniques applied to electric signals. We delved into the existing developments in this
area and shed light on the critical need for robust compression methodologies tailored for
smart grid applications.

The most popular algorithms were described with application details. The paper
focused on two different ways of handling data in power grids—large datasets, used for
non-time-critical analysis, like power quality reports or monthly billing of the electricity
consumers, and real-time data transfer, for time-critical purposes like islanding protection
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or circuit breakers. The advantages and drawbacks of selected data compression algorithms
were presented in the application for both of these purposes.

In addition to emphasizing the current state of electric signal compression techniques,
the paper underscored the necessity of introducing powerful compression methods to
address the specific challenges posed by smart grid applications. As our world becomes
increasingly interconnected, the demand for efficient and secure data transmission in smart
grids grows substantially. Here, the synergy between cybersecurity and data compression
becomes particularly noteworthy.

The relationship between cybersecurity and data compression in the context of smart
grids lies at the intersection of efficient data handling and the securing of critical informa-
tion. Although compression contributes to optimizing data transmission and storage, it
introduces considerations for cybersecurity. Ensuring the confidentiality, integrity, and
availability of compressed data becomes paramount, given the potential vulnerabilities
that can be exploited by malicious actors. Therefore, future research efforts in this domain
should focus not only on improving compression techniques but also on fortifying the
cybersecurity measures associated with compressed data.

Addressing these research challenges is crucial to pave the way toward the develop-
ment of novel and cost-effective devices. Reducing the amount of data transferred will
facilitate the development of smart sensing, monitoring, metering, diagnosis, and protec-
tion systems in the next generation of electric power systems: smart grids. By addressing
these challenges at the intersection of compression technologies and cybersecurity, we can
propel the advancement of resilient and secure solutions for the evolving landscape of
power systems.

The article aims to highlight the pressing challenges in the automation, measure-
ment, and control of power systems, focusing on the need for robust compression tech-
niques tailored for smart grid applications. The paper explores existing advancements
in compression methods for electric signals, addressing two main aspects of power grid
data handling: large datasets for non-time-critical analysis and real-time data transfer for
time-sensitive operations.

The popular compression algorithms, including the discrete cosine transform, wavelet
transform, differential encoding, Burrows–Wheeler transform, and move-to-front encoding,
are described with their application details. The advantages and drawbacks of these
algorithms are discussed in the context of handling both large datasets and real-time
applications in power grids.

The article emphasizes the importance of introducing powerful compression meth-
ods to meet the specific challenges posed by smart grid applications. As the world be-
comes more interconnected, the demand for efficient and secure data transmission in
smart grids increases substantially. The article highlights the intersection of cybersecurity
and data compression, underlining the need to ensure the confidentiality, integrity, and
availability of compressed data. Future research efforts are suggested to focus on fortify-
ing cybersecurity measures associated with compressed data, in addition to improving
compression techniques.

Addressing these research challenges is crucial for the development of novel and
cost-effective devices, facilitating advancements in smart sensing, monitoring, metering,
diagnosis, and protection systems in the next generation of electric power systems: smart
grids. The article envisions the advancement of resilient and secure solutions to meet the
evolving landscape of power systems.
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Abbreviations
The following abbreviations are used in this manuscript:

RLE Run-Length Encoding
SW-RLE Sliding-Window Run-Length Encoding
LZW Lempel–Ziv–Welch
DCT Discrete cosine transform
DWT Discrete Wavelet Transform
fCWT Fast Continuous Wavelet Transform
BWT(-C) Burrows–Wheeler Transform (Compression)
MTF(T) Move-to-front (Transform)
DIIM Dynamic Inoperability Input–Output Model
FEC Forward error correction
AMI Advanced Metering Infrastructure
FPGA Field Programmable Gate Array
CDCI Compression Distortion Composite Index
IoT Internet of Things
JPEG Joint Photographic Experts Group
MP3 MPEG Audio Layer III
GIF Graphics Interchange Format
PNG Portable Network Graphics
AAC Advanced Audio Coding
Gzip GNU Zip
CRIME Compression Ratio Info-leak Made Easy
SSL Secure Sockets Layer
TLS Transport Layer Security
AI Artificial Intelligence
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