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Abstract: This paper analyses the disruptions occurring in a production system determining the
operating states of a single machine. A system with a convergent production character, in which
both single flows (streams) and multi-stream flows occur, was considered. In this paper, a two-
level formalisation of the production system (PS) was made according to complex systems theory.
The continuity analysis was performed at the operational level (manufacturing machine level).
The definition of the kth survival value and the quasi-coherence property defined on chains of
synchronous relations were used to determine the impact of interruption of the processed material
flow on uninterrupted machine operation. The developed methodology is presented in terms of
shaping the energy efficiency of technical objects with the highest power demand (the furnace of an
automatic paint shop and the furnace of a glass tempering line were taken into consideration). The
proposed methodology is used to optimise energy consumption in complex production structures.
The model presented is utilitarian in nature—it can be applied to any technical system where there
is randomness of task execution times and randomness of unplanned events. This paper considers
the case in which two mutually independent random variables determining the duration of correct
operation TP and the duration of breakdown TB are determined by a given distribution: Gaussian
and Gamma family distributions (including combinations of exponential and Erlang distributions).
A formalised methodology is also developed to determine the stability of system operation, as well
as to assess the potential risk for arbitrary system evaluation parameters.

Keywords: energy consumption optimisation; reliability modelling; exploitation process modelling;
fault models; maintenance; logistics; lean production; agile manufacturing; industry 4.0; kth survival
value

1. Introduction

In order to maximise adaptation to the changing consumer environment, companies
need to follow environmental and legal changes. A major determinant of success is the
ability to adapt to a changing market environment [1,2]. This characteristic is defined
as flexibility [3]. Flexibility of organisations can be achieved in various aspects of the
business [4–6]. In real manufacturing systems, flexibility at the operational level is achieved
through the use of multi-purpose machines and production control algorithms [7,8]. The
use of lean production and agile manufacturing paradigms supports production processes
in companies by contributing to their flexibility and economic efficiency, as well as reducing
waste [9–12]. Lean production and agile manufacturing can be combined with the use of
Industry 4.0 technologies [13–18]. This facilitates the preservation or implementation of
cost-competitive production or increased efficiency in digitised manufacturing companies
and so-called smart factories of the Industry 4.0 era [15,19–22]. This applies to large global
companies, as well as SMEs (small and medium-sized enterprises) [23,24], at different levels
of the processed material and supply chain [25,26]. In lean manufacturing, companies aim
to increase economic efficiency, improve product quality and minimise lead times [27–30].
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The current trend is to use lean manufacturing tools not only for economic but also for
environmental benefits [31]. Similar to the agile manufacturing concept, the lean production
concept also has identified difficulties in implementing and integrating into Industry
4.0 [9,16,32,33]. These include management difficulties, lack of strategy for implementing
Industry 4.0, risk of lack of proper cyber security, digital skills, and staff resistance [34–37].

In order to achieve a greater ability to react to rapidly changing customer requirements
and preferences, agile manufacturing is defined as a business-wide mindset, characterised
by a significant emphasis on flexible structures and increased access to global competen-
cies [38–41]. Operational-level agile cannot be generalised to individual companies [42].
The challenges and difficulties in implementing agile manufacturing have been identified in
the literature as team motivation, team collaboration, conflict resolution, building an agile
mindset, technological, organisational, and environmental [43]. In agile manufacturing, the
controlled pace of manufacturing can be adapted to current needs [44]. The production
schedule of products depends on the company’s situation [45]. The flexibility of the produc-
tion system should be assessed for sustainable development considering social, economic,
and ecological aspects [46–48]. Modern companies give equal consideration to technical–
technological development and operation in line with zero waste or zero emissions [49–51].
Currently, an important functional and organisational aspect of enterprises is the policy of
maximum carbon dioxide emission reduction [52]. The introduction of regulations related
to the CO2 emissions trading system is the foundation of an effective tool to control and
minimise emissions on a national and international scale [53]. Significant zero-carbon
results are achieved by maximising the use of renewable energy sources, such as solar,
wind, hydro, and/or geothermal energy [46,54]. The implementation of a zero-carbon
programme in manufacturing companies is multi-phase and multi-area [54,55]. In the first
investment phase, the energy demand is determined, taking into account the potential
development on a strategic scale (several years) [50]. Potential cost-saving programmes
are also evaluated at this stage. One such solution is a holistic assessment of the impact
of the machinery failure rates on energy consumption. Complex manufacturing systems
achieve their greatest production efficiency when the machinery is at maximum capac-
ity [56]. Each technical object is characterised by its own lifespan and failure rate [56,57].
Lean production includes methods for the effective management of maintenance systems in
order to maximise efficiency while minimising costs [58]. The accuracy of the performance
improvement tools used is increased by the application of mathematical, statistical, and
stochastic knowledge. The use of extensive algorithms taking into account machine life
functions makes it possible to model a real object and then test its behaviour a priori.
Consequently, this makes it possible to verify the developed model without increasing the
risk of the implementation of ineffective solutions.

In the general design assumptions, the energy demand is determined for the maxi-
mum power needed, with an assumption of ±20% fluctuations potentially occurring [46].
Systems with a higher level of risk have greater safeguards [46], sometimes up to 400% [59].
The unjustified oversizing of the energy demand is associated with unreasonable costs
for the investment phase. The management of energy resources during operation is char-
acterised by a different range of activities. This paper presents a model, whose aim is to
support optimal decision-making regarding the energy consumption of equipment with
the highest power demand. The main assumption of the developed model is to minimise
the idle operation energy losses of the machines: the automatic paint shop furnace and
the glass tempering furnace. In the analyses, failures causing disruptions in material flows
were considered. On the basis of the analyses of the real object, a model was developed
for a production system (PS) with a series-parallel structure. Although this presented
methodology refers to a specific object, it has utilitarian properties. After adjusting the flow
structure, the presented algorithm can be applied to any manufacturing system.

This proposed methodology concerns the assessment of the impact of the downtime of
a single machine on the entire production system. In the scope of this article, the model was
exemplified for separated subsystems where the relation chains supply the machines with
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the highest energy demand with the processed material. These machines are the furnace in
the automatic paint shop and the glass tempering furnace. Technical objects with complex
material flows, where linear and multi-stream flows can be distinguished, were chosen
for the analysis. Moreover, different flow management systems can be distinguished in
each of these cases, either of the pull or push type. The complexity of the analysis is also
influenced by the dichotomy in the processed material flows of the automatic paint shop
furnace. These aspects are taken into account in the developed algorithm.

The essence of the presented model is the Total Productive Maintenance (TPM)
method’s failure assessment indicators—Mean Time To Failure (MTTF) and Mean Time
To Repair (MTTR) [28,60–63]. The model presented in this paper takes into account the
randomness of events occurring in the real system. The purpose of the developed algorithm
is to reduce the energy consumption losses of machines with the highest energy demand.
Hence, for separated material flows, an analysis was made of the impact of failures on
objects belonging to chains of synchronous relations supplying the furnace of the automatic
paint shop and the furnace of the glass tempering line. This presented methodology can
be also applied to determine the stability of the operation of a complex system and assess
potential risks.

2. Materials and Methods

In this article, a complex production system with a convergent manufacturing character
(Figure 1) is analysed. Production system complexity is a property that affects the difficulty
of defining and modelling it, the difficulty of understanding it, and the difficulty of using
it—commonly, the complexity of a production system is the difficulty of understanding,
using, and managing it. According to complex systems theory, a complex system is
considered to be a system with a relatively high degree of structural complexity, where,
after decomposition, subsystems that are extracted can be considered complex systems in
further analyses, and/or in overarching terms, and there is a high degree of complexity in
the interrelationships between the separated subsystems. The model of the object chosen for
analysis takes into account a two-level decomposition of the PS components with defined
chains of relations at each level of decomposition. Hence,

PS = {E, R}, (1)

where: PS—production system; R—relations between the PS elements; and E—the ele-
ments belonging to the PS separated at the first level of decomposition, which are a set of
departments Dd, for d = 1, 2, . . . , D:

E = {D1, D2, . . . , Dd}. (2)

The second level of decomposition of the system consists of machines Mm(d) for
m = 1, 2, . . . , M belonging to a specific department Dd performing a given production
process. Then,

Dd =
{

M1(d), M2(d), . . . , MM(d)

}
, (3)

where Mm(d) determines the machine with the number m in the department with the
number d for m = 1, 2, . . . , M and d = 1, 2, . . . , D.

The technical–technological solutions of the system define the strict sequence of
relations existing in a given production system [64]. The machine park determines the
production technology, on the basis of which the so-called technological route is formalized.
In a series-parallel production structure, a specific production process can be executed
on a single machine or on a number of machines of technological similarity. Hence,
for a given technological route, a scheduling route is defined. A scheduling route is
the strict assignment of specific machines to a defined technological route. A sequence
of production processes performed using machines Mm(d) defines the flow relations of
processed materials in the PS. In the case under consideration, relations at two levels
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of decomposition can be distinguished. The first level is the sets of relations RD ⊂ R
existing between the departments Dd : ∀ d = 1, 2, . . . , D, which are defined on the
basis of the technological route. The second level of relations is defined on the basis
of the scheduling route; these are sets of relations RM ⊂ R existing between machines
Mm(d) : ∀m(d) = 1(d), 2(d), . . . , M(d) ∨ ∀d = 1, 2, . . . , D. Then,

R =
{

RD, RM
}

. (4)

Analyses of RD ⊂ R relations refer to assessments of system performance at the
tactical level of the company. Operational-level performance evaluations refer to the
RM ⊂ R relations existing between machines Mm(d). For the case under consideration, the
set of RD relations is defined as follows:

RD =
{
Rr(d,d̂) : d, d̂ ∈ {1, 2, .., D} ∧ d ̸= d̂

}
. (5)

The set of RM relations is defined as follows:

RM =
{
Rr(mi(d),mj(d)) : i, j = 1, 2, . . . , M(d) ∧ i ̸= j ∧ d = 1, 2, .., D

}
, (6)

where Rr(mi(d),mj(d)) determines the relation numbered r for r = 1, 2, . . . , Ř.
The relations R ⊂ PS are the set of relations Rr(d,d̂) and Rr(mi(d),mj(d)). The set of

relations Rr(d,d̂) exists between departments numbered d and d̂ for d, d̂ = 1, 2, . . . , D.
Meanwhile, the set of relations Rr(mi(d),mj(d)) exists between machines numbered mi and
mj for i, j = 1, 2, . . . , M(d). The sets of relations Rr(d,d̂) and Rr(mi(d),mj(d)) are considered

separately at the appropriate decomposition level. Thus, the numerator r = 1, 2, . . . , Ř
varies depending on the considered sets RD or RM (relations Rr(d,d̂) and Rr(mi(d),mj(d)) are
not considered simultaneously).

For convergent systems, the sequences of relations Rr(mi(d),mj(d)) ⊂ RM illustrate the
actual flow of materials through the various production processes. In a given flow, the
machine Mmi(d) is the origin of the relation Rr(mi(d),mj(d)). In turn, the machine Mmj(d)
is simultaneously the end of the relation Rr(mi(d),mj(d)) and the beginning of the rela-
tion Rr+1(mi(d),mj(d)). The relation chain is composed of a sequence of multiple relations

Rr(mi(d),mj(d)) for r ∈
{

1, . . . , Ř
}

and can form adequately long transition paths that depend
on the length of the processed material chain. If there is no disruption in the processing of
the selected component of the bill of materials (BOM) structure during the time interval ∆t,
a specific sequence of single synchronous interactions defined as a chain of r(Mi(d),Mj(d))R
is created.

In any production system, there are synchronous and asynchronous relations. De-
pending on the type of analysis performed, synchronous and asynchronous relations can
be considered at the tactical level for relations Rr(d,d̂) ⊂ RD and at the operational level

for relations Rr(mi(d),mj(d)) ⊂ RM. In the scope of this article, flows between machines are
considered; hence, the formalisation of synchronous and asynchronous relations is defined
for the set of relations RM ⊂ R.

A synchronous relation is a relation Rl(mi(d),mj(d)) ⊂ RM (l ∈
{

1, 2, . . . , Ř
}

) ex-
isting between machines Mi(d) and Mj(d) for i ̸= j and d = 1, 2, . . . , D, where i ∈
{1(d), 2(d), . . . , M(d)} and j ∈ {1(d), 2(d), . . . , M(d)} if, during the operation of the pro-
duction system, there exists such a timeframe [t1, tT ] or a sequence of times t1 ≤ t2 ≤ . . . ≤
tT−1 ≤ tT in which Rl(mi(d),mj(d)) occurs continuously. A relation Rl is a synchronous rela-
tion existing cyclically when, for an existing sequence of times t1 ≤ t2 ≤ . . . ≤ tT−1 ≤ tT
inflicting a division of the timeframe [t1, tT ] into sections of equal length [tk, tk+1] for
k = 1, 2, . . . , T − 1, a subsequence of timeframes can be distinguished in which this rela-
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tion exists continuously and uninterruptedly. Asynchronous relations exist when it is not
possible to explicitly define a timeframe or a subsequence of times.
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For any given production structure (linear or series-parallel), properly executed pro-
duction processes form a sequence (or sequences) of relations Rr(mi(d),mj(d)). Following the
successive stages of production of an arbitrarily selected component, a specific chain of rela-
tions defined by a scheduling route will be created. Hence, a chain of relations r(Mi(d),Mj(d))R
is called a defined set of relations Rr(mi(d),mj(d)) with a strictly assigned order. The existing
chains of relations at any ∆t may be either synchronous or asynchronous. A synchronous
relation chain is a sequence of single relations that in the time [t1, tT ] or in the time sub-
sequences t1 ≤ t2 ≤ . . . ≤ tT−1 ≤ tT are synchronous (Rr(mi(d),mj(d)) ∈

r(Mi(d),Mj(d))R). If

there is at least one asynchronous relation in a chain of relations r(Mi(d),Mj(d))R at a given
∆t, then the chain is asynchronous. The asynchronicity of a production system is deter-
mined by disruptions in the flow of material being processed. In lean production, these are
disruptions resulting from the occurrence of muri, mura, and/or muda wastage [65].

Muri, mura, and muda disruptions result in the occurrence of system variability and
loss of production system stability. Stability of the production system refers to the ability to
keep the value of the evaluated parameter in equilibrium. In the area of the production
system, all processes are stochastic in nature. Hence, a PS is considered stable if the values
of the evaluated characteristic at a given ∆t are within ±3σ. This variability is referred to
as natural variability. In case of undesirable random events, there are disturbances that
can cause the value of the assessed characteristic to exceed the ±3σ limits. This variability
is referred to as special. A production system is considered stable if it has the ability to
return to equilibrium after a disruption, preserving the functionality of the operation. This
paper considers disruptions that interrupt the flow of processed materials and are caused
by unplanned downtime of machines on the scheduling route.

In this paper, the quasi-coherence property of a set of synchronous relations is used to
determine the effect of disruptions on the operation of a specific object. Quasi-coherence
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is defined as the correct (undisturbed) flow of processed material between any machines
Mi(d), Mj(d) ⊂ Dd for i ̸= j ∧ d = 1, 2, . . . , D. Quasi-coherence analyses can be performed

on single relations Rr(mi(d),mj(d)) or chains of relations r(Mi(d),Mj(d))R. The term quasi-
coherence at the time ∆t = [t1, tT ] is used to describe the undisturbed material flow
resulting from correctly executed production processes. In the case of chains of relations
at a given time sequence t1 ≤ t2 ≤ . . . ≤ tT−1 ≤ tT , the so-called semi-quasi-coherence
may occur. The semi-quasi-coherence is considered when it is possible to extract an
uninterrupted flow of processed material at certain time periods with length [tk, tk+1]
for k = 1, 2, . . . , T − 1 in a subset of single relations Rr(mi(d),mj(d)) belonging to a defined

relation chain r(Mi(d),Mj(d))R. For the semi-quasi-coherence case, there is no uninterrupted
material flow in the entire relations chain but only in its individual parts. In the analysis
of relations chains in linear flows without inter-operational buffers, only two cases are
possible: (1) the system has the quasi-coherence property, or (2) the system does not have the
quasi-coherence property. One of the straightforward solutions to improve the continuity
of the flow of material being processed is the introduction of inter-operational buffers.
Then, three operating states can occur in a linear system, such as in a combined (series-
parallel—Figure 1) structure. In considering series-parallel systems with convergent or
divergent production, three types of system operating states are possible: (1) the system has
the property of quasi-coherence, (2) the system has the property of semi-quasi-coherence,
and (3) the system does not have the property of quasi-coherence.

For the two-level decomposition of the serial-parallel production system (PS) chosen
in this paper, quasi-coherence occurs in two sets—at the tactical level (Figure 1) and at the
operational level (Figure 2). In the case of the series-parallel structure (Figure 1), there are
two types of quasi-coherence at the operational level—stream and multi-stream. Hence,
quasi-coherence for the case under consideration is defined as follows:

1. Formalization of quasi-coherence at the first decomposition level—the level of sep-

arated departments: r(d,d̂)R :=
(
R1(d,d1)

;R2(d1,d2)
;R3(d2,d3)

; . . . ;Rk(dk−1,d̂)

)
, where

d, d1, . . . , dk−1, d̂ ∈ {1, 2, . . . , D}.
2. Formalization of quasi-coherence at the second level of decomposition—the level of

separated machines: r(mi(d),mj(d̂))R ∀ i, j ∈ {1, 2, . . . , M} ∀ d, d̂ ∈ {1, 2, . . . , D}, where
d, d̂ can be equal:

- Multi-stream case: for a given machine numbered m
(

d̂
)

where

m ∈ {1, 2, . . . , M}, d̂ ∈ {1, 2, . . . , D} ∃m1(d1), . . . , mN(dN) :
∃
{

r(m1(d1),m(d̂))R1 , r(m2(d2),m(d̂))R2 , . . . , r(mN(dN),m(d̂))RN

}
, there is quasi-coherence

for m
(

d̂
)

with determined i and j;

- Stream case: for a given machine numbered m
(

d̂
)

, where m ∈ {1, 2, . . . , M}, d̂ ∈

{1, 2, . . . , D} ∃m1(d1) : ∃!
{

r(m1(d1),m(d̂))R1 ,
}

, where m1(d1) is the beginning ma-

chine of the chain r(m1(d1),m(d̂))R1 , there is quasi-coherence for a particular m
(

d̂
)

.

The definition of kth survival value was used to determine the impact of occurring
disruptions on the continuity of the processed material flow. A formalisation of the def-
inition of kth survival value is presented in the paper [66]. The kth survival value is a
term developed by the research team to define a stochastic criterion for the stability of
a production system. Based on the definition of the survival function S of the random
variable T : S(T ) := P(T > τ) = 1 − FT (τ), τ ∈ R, the research team developed the term
kth survival value [66]. By kth survival value, a probability is defined as follows:

k(TP ,TB)
:= P(TP − TB ≥ k) = P(TP ≥ k + TB) = 1 − FTP−TB(k), (7)
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where: k(TP ,TB)
—kth survival value; TP—random variable of the duration of the system

having the quasi-coherence property; TB—random variable of the duration of the system
in the state of semi-quasi-coherence or the state of complete loss of the quasi-coherence
property; k—deterministic value for which the probability k(TP ,TB)

is determined; and
FTP−TB(k)—value of the distribution function of the difference of the TP − TB random
variables at point k.
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System survival is understood as the ability of a complex system to correctly perform
given functions (Φ = {Φ1, . . . , Φn}) under specified operating conditions (κ) and within
a specified time (τ ∈ R). The measures of system survival are the probabilities Si(T ) =
Pi(T > τ), i = 1, . . . , N of performing the tasks specified on the set of N elements of the
complex system.

The density function of the difference of two independent random variables with a
given distribution is determined from the definition of a convolution function, the formula
of which is presented in (8):

fTP−TB(t) =


∫ ∞

t fTP(z)· fTB(z − t) dz , f or t ≥ 0
∞∫
0

fTP(z)· fTB(z − t) dz , f or t < 0
(8)

where fTP−TB is the differential density function of random variables TP − TB.
Formula (8) shows the case in which the considered arguments of the domain of the

random variable TP − TB are grouped into values greater than zero (t ≥ 0) and less than
zero (t < 0). Depending on the types of distributions of the TP and TB random variables,
the grouping of the domain of the function fTP−TB(t) can have more cases. Knowing the
distributions of the density functions of the random variables TP and TB, we perform the
substitution into (8) obtaining the probability distribution function of fTP−TB(t), and then
we use the kth survival value—Formula (7).

On basis of the kth survival value, it is possible to analyse the stability of the operation
of any technical system, considering their stochastic nature of operation at the same time.
In real manufacturing systems, process execution times are variable. This variability is a
result of many factors [63,67]. Systems analyses that take the probabilistic nature of systems
into account are difficult and time-consuming. The level of difficulty of these analyses
increases with the complexity of the system and the number of random variables considered.
This article presents the results of the next stage of research related to maintaining the
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continuity of the flow of processed materials in a convergent manufacturing system. Hence,
the presented algorithm takes into account the factors of variability of production task
execution times, variability of the number of elements in a production batch, and variability
of the planning route.

3. Methodology for the Class of Production Systems Chosen for Consideration

The object chosen for consideration is a series-parallel production structure in which
the material flows are convergent. This presented methodology has utilitarian properties
and can be applied to any class of production systems. A general schematic of the analysed
structure is shown in Figure 1. Detailed analyses of the proposed methodology were made
for the systems illustrated in Figures 2–6, in which both linear flows and series-parallel
flows occur.

3.1. Exemplification of the Method When Using Gaussian Distribution for the Random Variables of
Duration of Proper Operation TP and Duration of Breakdown TB

The Gaussian distribution, also known as the normal distribution, is commonly used
to describe the dependence of many random events. Its popularity is due to the properties
of the distribution and its easy application. In addition, most cases follow a normal
distribution with an assumed acceptable confidence level. Analyses of the performance of
real production systems also make use of the properties of the Gaussian distribution. The
TPM method used in lean production evaluates machine failure rates according to MTTR,
MTTF, and MTBF. These indicators are defined as the arithmetic mean:

- For MTTR, a set of durations of breakdowns or any type of downtime of a line or
individual machine;

- For MTTF, a set of durations of correct operation between elementary stops;
- For MTBF, a set of durations between events of individual downtimes.

In order to make the analyses more precise, a detailed classification of the downtimes
occurring during the specified time interval is performed and their average values are
determined for a separated group. For the accuracy of prevention action planning, it is
advisable to determine the spread of the data in relation to the average value. The most
commonly used measure of the spread is the standard deviation value. With the mean and
standard deviation values, it is possible to make a determination of the percentages of a
given variable within ±1σ, ±2σ, and ±3σ according to a normal distribution. The results
of such analyses have been published, for example, in the literature.

In Section 3.1, an analysis of the stability of manufacturing system operation using
quasi-coherence and the definition of the kth survival value is presented for the case
of assuming that the random variables of failure and proper operation follow a normal
distribution. Then, the variables TP and TB are defined by the mean µP and µB, respectively,
and the standard deviation σP and σB, respectively:

TP ∼ Normal(µP, σP) (9)

TB ∼ Normal(µB, σB). (10)

The use of the Gaussian distribution to approximate and model the duration of correct
operation TP and the duration of breakdown TB is possible if the histogram plots of the
empirical sample are symmetrical and the sample mean is strongly greater than three
standard deviations: µP ≫ 3σP and µB ≫ 3σB. The requirements highlighted in the
previous sentence are fulfilled in the analysed company during the manufacturing of the
standardised BOM (bill of materials) components. These are such components of the BOM
that are included in the majority of final products in one or more pieces each. For this
case, the chain of relations having the quasi-coherence property is defined on two streams,
which are illustrated in Figure 2.
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Utilising the difference property of random variables defined by a normal distribution
with the parameters defined in (9) and (10), a random variable of difference TP − TB is
obtained, which also follows a Gaussian distribution with the following parameters:

TP − TB ∼ Normal
(

µP − µB,
√

σ2
P + σ2

B

)
. (11)

By substituting the parameters in (11) into the formula for the normal distribution
density function, we obtain the formula for the probability function of the difference of the
random variables fTP−TB(t):

fTP−TB(t) =
1√

2π
(
σ2

P + σ2
B
) ·e(−(t−(µP−µB))2

2(σ2
P+σ2

B)
)
, t ∈ (−∞, ∞). (12)

The determination of the probability of the kth survival value for the difference of
the random variables complying with a normal distribution for Parameters (9) and (10) is
performed using a standardized normal distribution. The determination of the kth survival
value defined in (7) is determined as follows:

k(TP ,TB)
:= P(TP − TB ≥ k) = P

 (TP − TB)− µP + µB√
σ2

P + σ2
B

≥ k − µP + µB√
σ2

P + σ2
B

 = 1 − Φ

 k − µP + µB√
σ2

P + σ2
B

, (13)

where Φ
(

k−µP+µB√
σ2

P+σ2
B

)
is the value of the distribution of the standard normal distribution at a

point
(

k − µP + µB/
√

σ2
P + σ2

B

)
; the value of the distribution at a given point is taken from

the tables.
For the analysed exemplary production system, a subsystem was identified in which

Assumptions (9) and (10) are met. Figure 2 shows the separated subsystem, for which the
data for calculating the kth survival value are included in Table 1. The parameters of the
distributions were determined for empirical data from a six-year time period.

Table 1. Summary of TP and TB duration parameters of the normal distribution.

Parameters of the Random
Variable Breakdown

Durations TB

Parameters of the Random
Variable Proper Operation

Durations TP

Value of the Indicator
kth Survival Value

k(TP,TB)

TB(L2) ∼ N(16.5, 6.5)
TP ∼ N(73, 552, 9959)

k(TP ,TB(L2))
= 0.3707

TB(L3) ∼ N(15.9, 5.0) k(TP ,TB(L3))
= 0.2119

TB(L5) ∼ N(16.3, 10.7) k(TP ,TB(L5))
= 0.0119

The kth survival value analysis was performed for a paint shop furnace supply system,
of which MTTF = 73, 552 (min). The mean time of correct operation is defined by a normal
distribution with a standard deviation of σP = 9959, and then TP ∼ N(73, 552, 9959). The
impact of machine failures in the paint shop furnace supply streams was assessed for one
type of failure, which occurred on three different machines during the analysis period
of time. The selected type of failure does not pose a high risk of affecting production
continuity, as it occurs sporadically (eight times on average). In addition, an operator with
several months of experience is competent to repair this type of failure unassisted. The
values in Table 1, correct operation and failure durations, were determined on the basis of
empirical data over a six-year period of time.
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Due to the comparable MTTR ≈ 16 (min) values, for a better illustration of the
kth survival value probability, the calculations were performed for different values of
deterministic time k, where one day is two shifts:

k(TP ,TB(L2))
= P

(
TP − TB(L2) ≥ 76, 800

)
∼= 37% value for 80 days,

k(TP ,TB(L3))
= P

(
TP − TB(L3) ≥ 81, 600

)
∼= 22% value for 85 days,

k(TP ,TB(L5))
= P

(
TP − TB(L5) ≥ 96, 000

)
∼= 1.2 value for 100 days.

3.2. Exemplification of the Method When Using the Family of Gamma Distributions for the
Random Variables of Duration of Proper Operation TP and Duration of Breakdown TB

In many real-world situations, the conditions for using the Gaussian distribution to
interpolate empirical data are not met. These are cases where there is positive or negative
kurtosis and the histograms of the data distribution are right- or left-skewed, i.e., there is
no symmetry with respect to the arithmetic mean. In addition, in the analysis of process
execution times and failure durations, the condition of non-negative values of function
arguments with more than 99% probability should be met. In a normal distribution, when
the mean value of the data set is not strongly greater than three standard deviations, then
a significant probability value is placed on the negative arguments of the function. This
provides a possibility of approximating negative correct operation durations or breakdown
durations, which are impossible to occur in reality. In such cases, it is desirable to use
distributions in which the domain of the function is defined on the set of positive real
numbers (R+). Hence, in Section 3.2, the stability of the operation of the production
system is determined using quasi-coherence and the definition of the kth survival value
for random variables formulated by a probability distribution belonging to the Gamma
family of distributions. The Gamma distribution is used to define the independent variable
of the amount of time since the nth event in a Poisson process. Gamma distributions are a
family of continuous probability distributions with a carrier defined on the range ⟨0, ∞⟩.
These distributions are defined by two parameters: shape—α (k or l designations are also
used, where k, l = α); and scale—β (θ designation is also used, where θ = 1

β ). The Gamma
distribution parameters are α,β ∈ R+. Depending on the value of the shape parameter, it
is possible to distinguish cases of three types of distributions:

• Exponential distribution for α = 1 and λ > 0;
• Erlang distribution for l ∈ N+/{1} and λ > 0;
• Gamma distribution for α ∈ R+/N+ and β > 0.

The exponential distribution and the Erlang distribution are special cases of the
Gamma family of distributions. Sections 3.2.1–3.2.3 consider three variants in determining
the stability of system operation according to the kth survival value.

3.2.1. The Case of Using an Exponential Distribution for the Random Variables of Duration
of Proper Operation TP and Duration of Breakdown TB

The use of an exponential distribution to determine the random variables [68,69] of the
duration of correct operation TP and the duration of any type of breakdown TB is possible
if TP and TB are independent, stationary, and memoryless. These conditions for TP and TB
are fulfilled for the system illustrated in Figure 3. Then,

TP ∼ Exp(λP) (14)

TB ∼ Exp(λB), (15)

where λP, λB are the scale parameters of the random variables, respectively, TP and TB.
Applying the law of total probability for the difference of the random variables TP − TB

consistent with (13) and (14), the density function fTP−TB(t) has the following form:
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fTP−TB(t) = f(TP−TB)|(TP−TB)<0(t)·P(TP − TB < 0) + f(TP−TB)|(TP−TB)≥0(t)·P(TP − TB ≥ 0). (16)

On the basis of the function convolution (8), and after performing transformations,
the following is obtained:

fTP−TB(t) =

{
λPλB

λP+λB
·e−λPt, dla t ≥ 0

λPλB
λP+λB

·eλBt, dla t < 0
. (17)

Stability analyses of production system operation refer to values of t ≥ 0; hence, the
kth survival value of the difference of two random variables following an exponential
distribution is determined according to the formula:

k(TP ,TB)
= P(TP − TB ≥ k) =

∞∫
k

fTP−TB(t)dt =
λP λB

λP + λB

∞∫
k

(
e−λP t

)
dt (18)

where λP, λB are the shape parameters of the random variables TP, TB, respectively, deter-
mined according to the formulas:

λP =
nP

∑n
i=1 xP(i)

(19)

λB =
nB

∑n
i=1 xB(i)

, (20)

where xP(i), xB(i) are the empirical values of random events interpolated by an exponential
distribution for the following sets: durations of correct operation labelled P and durations
of breakdown labelled B; nP, nB are the sample sizes for which the shape parameter of the
exponential distribution is determined.

In order to calculate the kth survival probability value, the subsystem fulfilling con-
ditions (14) and (15) was extracted. Table 2 shows the empirical data of the example
under consideration.
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The analyses of the difference of the correct operation time random variable TP and
the failure duration random variable TB are defined by the exponential distribution—
Formulas (14) and (15), which refer to the determination of the probability value—and
Formula (18), where the correct operation will be longer than the deterministic value of
k. For the variants shown in Table 2, k takes values equal to the MTTF, respectively, for
machines TP(L6) : k = 73, 552 (min) and TP(M6) : k = 2612 (min).

Table 2. Summary of TP and TB time parameters of the exponential distribution.

Parameters of the Random
Variable Breakdown

Durations TB

Parameters of the Random
Variable Proper Operation

Durations TP

Value of the Indicator
kth Survival Value

k(TP,TB)

TB(MW1.1) ∼ Exp(0.08621) TP(L6) ∼ Exp(0.0000136) k(TP(L6) ,TB(MW1.1))
= 0.36771

TB(MW2.2) ∼ Exp(0.03472) k(TP(L6) ,TB(MW2.2))
= 0.36762

TB(M3.1) ∼ Exp(0.06897) TP(M6) ∼ Exp(0.00038291) k(TP(M6) ,TP(M3.1))
= 0.36579

For the variants considered, k(TP ,TB)
= P(TP − TB ≥ k) ≈ 36%. The interpretation

of the results means that at 64%, the operation of machines L6 and M6 will be inter-
rupted due to failures of objects MW1.1, MW2.2, and M3.1. The value of 64% defines
the risk of disruption of the flow of processed material at time tL6 < 73, 552 (min)
and tM6 < 2612 (min). It should be noted that the variant TP ∼ Exp(λP) minus
TB ∼ Exp(λB) refers to the comparison of individual durations of correct operation and
durations of failures. In real cases, a certain number of breakdowns of the same type may
occur in a given ∆t, e.g., equal to the MTTF. In such cases, the multiplicity of occurrence of
the number of breakdowns of the same parameter λB should be taken into account in the
calculations using an Erlang distribution. The following considerations include a longer
time scale in which lP is the number of times of correct operation and lB is the number of
times of failure where the same parameters λP and λB occurred.

3.2.2. The Case of Using an Erlang Distribution for the Random Variables of Duration of
Proper Operation TP and Duration of Breakdown TB

The Erlang distribution belongs to the family of Gamma distributions for which the
shape parameter is a natural number greater than one. It should be noted that for the sum
of two independent random variables following an exponential distribution with the same
value of the parameter λ, the resulting Erlang distribution will have parameters (2, λ). The
general dependence of the exponential distribution Exp(λ) on the Erlang distribution can
be described as follows:

X ∼ Erlang(l, λ) =
l

∑
i=1

Exp(λ) (21)

where l is the shape parameter of the Erlang distribution, which also specifies the number
of the sum of independent random variables following an exponential distribution, and λ
is the scale parameter of the exponential and Erlang distributions.

The determination of the stability of the operation of a production system having the
quasi-coherence property for chains of synchronous relations using the definition of the kth
survival value was made for the parameters λP ̸= λB. Then,

TP ∼ Erlang(lP, λP) (22)

TB ∼ Erlang(lB, λB), (23)

where lP, lB ∈ N+/{1} and λP, λB ∈ R+.
Using the definition of the convolution of functions—Formula (8)—and after transfor-

mations, the following is obtained:
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fTP−TB(t) =


λP

lP ·λB
lB

(lP−1)!·(lB−1)! ·e
λB ·t

∞∫
t

zlP−1(z − t)lB−1·e−(λP+λB)·z dz , f or t ≥ 0

λP
lP ·λB

lB

(lP−1)!·(lB−1)! ·e
−λP ·t

∞∫
−t

zlB−1(z + t)lP−1·e−(λP+λB)·z dz , f or t < 0
(24)

Failure analyses of complex production systems refer to cases where t ≥ 0; hence, the
kth survival value is determined as follows:

k(TP ,TB)
= P(TP − TB ≥ k) =

∞∫
k

λP
lP ·λB

lB

(lP − 1)!·(lB − 1)!
·eλB ·t

 ∞∫
t

zlP−1(z − t)lB−1·e−(λP+λB)·z dz

dt (25)

where lP, lB, λP, λB are the shape (l) and scale (λ) parameters of the random variables TP
and TB, respectively.

The situation defined by Formulas (22) and (23) referring to the case when there is
TP ∼ Erlang(lP, λP) and TB ∼ Erlang(lB, λB), for λP ̸= λB and lP, lB > 1 on a period ∆t,
is illustrated in Figure 4. In the analysed ∆t, the machine L6 executes the processing of
lP components, while at the same time ∆t, there are lB downtimes of the same type, e.g.,
failures originating from the same distribution. This situation can happen when the type
of downtimes under consideration (e.g., failures) occurs on one machine or on several
different machines. These analyses can be performed for the loss of the quasi-coherence
property in one chain of relations or the whole set of chains of relations supplying the
considered machine L6. The empirical data for calculating the described alternative are
summarized in Table 3.
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An exemplification of the quasi-coherence and kth survival value algorithm using
Erlang distributions for TP correct operation durations and TB failure durations was per-
formed for two separate systems: (1) relations supplying the paint shop and (2) relations
supplying the glass tempering line. These two systems are characterised by a different
flow structure, as illustrated in Figure 1. The paint shop supply relations subsystem is a
series-parallel system with multiple independent relations chains with different labour
efficiencies. This variability shows a dynamic variation in the levels of labour intensity of
works-in-progress depending on the timeframe adopted. The glass tempering line system
is serial, in which the value of the level of labour at each station (machine) is stationary, i.e.,
its dynamics of variation for an assumed ∆t is constant. In a series system, the property
of semi-quasi-coherence cannot occur because the failure of any machine belonging to the
chain of relations determines the loss of quasi-coherence. Furthermore, in the production
system chosen for consideration, the glass tempering line is a new production unit, the
actual capacity of which varies between 40% and 60% of the nominal capacity.

The following variants were chosen for the analyses:

1. The supply subsystem of the automatic paint shop line:

- The highest energy demand in the line is for the furnace; hence, the reference to

the correct operation duration of this module is MTTF
(

TP(L6)

)
= 73, 552 (min);

- One type of failure occurring on three different machines belonging to three
different relation chains was assumed, where for each object at a given ∆t the
following was calculated: MTTR

(
TB(L1)

)
= 16.9 (min); MTTR

(
TB(MW1.1)

)
=

11.6 (min); MTTR
(

TB(MW2.2)

)
= 28.8 (min).

2. The subsystem of the glass tempering line:

- The mean time of the correct operation of the glass tempering furnace is

MTTF
(

TP(M6)

)
= 2611.6 (min);

- The mean time of one type of failure of a machine belonging to the chain of

relations supplying the furnace is MTTR
(

TB(M3.1)

)
= 14.5 (min).

The parameters of the Erlang distributions for the objects considered are shown in
Table 3.

Table 3. Summary of the TP and TB duration parameters of the Erlang distribution.

Parameters of the Random Variable
Breakdown Durations TB

Parameters of the Random Variable
Proper Operation Durations TP

Value of the Indicator
kth Survival Value

k(TP ,TB)

TB(L1) ∼ Erlang(28, 0.05920)
TP(L6) ∼ Erlang(20, 0.00001360)

k(TP(L6) ,TB(L1))
= 0.46914

TB(MW1.1) ∼ Erlang(7, 0.08621) k(TP(L6) ,TB(MW1.1))
= 0.46961

TB(MW2.2) ∼ Erlang(6, 0.03472) k(TP(L6) ,TB(MW2.2))
= 0.46950

TB(M3.1) ∼ Erlang(16, 0.06897) TP(M6) ∼ Erlang(17, 0.00038291) k(TP(M6) ,TP(M3.1))
= 0.55690∗

In Table 3, the kth survival value of the glass tempering line system is determined for
60% utilisation of the nominal line capacity—k(TP(M6),TP(M3.1))

= 0.5569∗. Table 4 shows the
kth survival value calculations for 40%, 60%, and 80% nominal capacity utilisation levels.

Table 4. Summary of TP and TB durations of Erlang distribution and different levels of line utilisation.

Parameters of the Random
Variable Breakdown Durations

TB

Parameters of the Random
Variable Proper Operation

Durations TP

Value of the Indicator
kth Survival Value

k(TP ,TB)

TB(M3.1) ∼ Erlang(16, 0.06897)
TP(M6) ∼ Erlang(17, 0.00038291)

k(TP(M6) ,TP(M3.1))
40% = 0.998899

TB(M3.1) ∼ Erlang(16, 0.06897) k(TP(M6) ,TP(M3.1))
60% = 0.556898

TB(M3.1) ∼ Erlang(16, 0.06897) k(TP(M6) ,TP(M3.1))
80% = 0.036338
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For the variant analysed above, there may be a situation in a real production system
where, at a given ∆t, there is only one event of loss of the quasi-coherence property. Then,
TP ∼ Erlang(lP, λP), while for either a single relations chain or a set of relations chains
supplying the machine M6, TB ∼ Erlang(1, λB), i.e., TB ∼ Exp(λB). This variant is shown
in Figure 5. Then, the density function fTP−TB of the difference of the random variables
TP − TB after transformations and substitutions is defined as follows:

fTP−TB(t) =


λB ·λP

lP

(lP−1)! ·e
λB ·t

∞∫
t

zlP−1(z − t)lB−1·e−(λP+λB)·z dz, f or t ≥ 0

λB ·λP
lP

(lP−1)! ·e
−λP ·t

∞∫
−t

(z + t)lP−1·e−(λP+λB)·z dz, f or t < 0
. (26)

As in the previous cases, the analyses of the non-continuity of the flow of processed
materials refer to t ≥ 0; hence,

k(TP ,TB)
= P(TP − TB ≥ k) =

∞∫
k

fTP−TB(t)dt =
∞∫

k

λB·λP
lP

(lP − 1)!
·eλB ·t

 ∞∫
t

zlP−1(z − t)lB−1·e−(λP+λB)·z dz

dt (27)

For the variant formalised by Formula (27), it was assumed that in the specified
timeframe ∆t, one failure could occur with a mean time to repair MTTR

(
TB(MW2.2)

)
=

28.8 (min) or MTTR
(

TB(MW1.1)

)
= 11.6 (min). The analysis was performed for the supply

relations chain subsystem of the automatic paint shop line. Figure 5 illustrates the variants
of the kth survival value analyses shown in Tables 5 and 6.
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Tables 5 and 6 summarise the three cases, which, respectively, refer to different levels
of k(min) values. MTTF

(
TP(L6)

)
= 73, 552(min) and MTTR

(
TB(MW2.2)

)
= 28.8(min)—

Table 5; MTTR
(

TB(MW1.1)

)
= 11.6(min)—Table 6.

- I—k(TP ,TB)
= P(TP − TB ≥ 1, 471, 040);

- I I—k(TP ,TB)
= P(TP − TB ≥ 1, 324, 017);

- I I I—k(TP ,TB)
= P(TP − TB ≥ 1, 176, 913).
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Table 5. Summary of the parameters of the durations TP ∼ Erlang and TB ∼ Exp(0.0347).

Parameters of the Random
Variable Breakdown

Durations TB

Parameters of the Random
Variable Proper Operation

Durations TP

Value of the Indicator
kth Survival Value

k(TP,TB)

TB(MW2.2) ∼ Exp(0.03472)
TP ∼ Erlang(20, 0.0000136)

k(TP ,TB(MW2.2))
I = 0.469677

TB(MW2.2) ∼ Exp(0.03472) k(TP ,TB(MW2.2))
I I = 0.650293

TB(MW2.2) ∼ Exp(0.03472) k(TP ,TB(MW2.2))
I I I = 0.811713

Table 6. Summary of the parameters of the durations TP ∼ Erlang and TB ∼ Exp(0.08621).

Parameters of the Random
Variable Breakdown

Durations TB

Parameters of the Random
Variable Proper Operation

Durations TP

Value of the Indicator
kth Survival Value

k(TP,TB)

TB(MW1.1) ∼ Exp(0.08621)
TP ∼ Erlang(20, 0.0000136)

k(TP ,TB(MW1.1))
I = 0.469610

TB(MW1.1) ∼ Exp(0.08621) k(TP ,TB(MW1.1))
I I = 0.650314

TB(MW1.1) ∼ Exp(0.08621) k(TP ,TB(MW1.1))
I I I = 0.811816

The kth survival values in Tables 5 and 6 refer to different timeframes: kI > kI I > kI I I .
These results should be interpreted as follows. For a decreasing value of k, the probability of
failure after time P(TP − TB ≥ k) increases. Hence, correspondingly, the risk of breakdown
of the line at time ∆t < k decreases.

3.2.3. Gamma Distribution Use Case for TP and TB

The estimation of random variables by the Gamma distribution applies to events
in which the function domain is defined on the set of positive real numbers (R+). The
Gamma distribution formalises the general form of the predefined cases of the exponential
distribution and the Erlang distribution, as it takes into account non-integer values of the
shape parameter (α). If the random variables TP and TB are defined as

TP ∼ Gamma(αP, βP) (28)

TB ∼ Gamma(αB, βB). (29)

Then, using the law of total probability for the difference of the TP − TB random
variables, the probability density function fTP−TB has the form:

fTP−TB(t) =


βP

αP ·βB
αB

Γ(αP)·Γ(αB)
·eβB ·t

∞∫
t

zαP−1(z − t)αB−1·e−(βP+βB)·z dz , f or t ≥ 0

βP
αP ·βB

αB

Γ(αP)·Γ(αB)
·e−βP ·t

∞∫
−t

zαB−1(z + t)αP−1·e−(βP+βB)·z dz , f or t < 0
(30)

where Γ(αP), Γ(αB) is the value of the Gamma function at the points, respectively, αP and
αB.

After the transformations and appropriate substitutions, the kth survival value for
k ≥ 0 is calculated according to the formula:

k(TP ,TB)
=

∞∫
k

fTP−TB(t)dt =
∞∫

k

βP
αP ·βB

αB

Γ(αP)·Γ(αB)
·eβB ·t

 ∞∫
t

zαP−1(z − t)αB−1·e−(βP+βB)·z dz

dt (31)

An example of the use of the Gamma distribution to estimate the duration of correct
operation and breakdowns in a kth survival value model is shown below.
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The Gamma distribution is a generalization of the exponential and Erlang distributions.
The failure analyses of the gathered empirical data include the α∈ N+ cases. Selecting
a different type and kind of failure is still the case of subtracting exponential or Erlang
distributions or a combination thereof will still be considered. In the kth survival value
probability validation step of random variables following the Gamma distribution, the
MTTF and MTTR values were averaged over the timeframe ∆t = 240, 000 (min)—a value
corresponding to 250 days/year in a two-shift operation. The shape parameter of the
Gamma distributions is then assumed to have non-integer values: α ∈ R+/N+. The
analysis performed for the data is shown in Table 7.

Table 7. Summary of the parameters of the TP and TB durations of the Gamma distribution.

Parameters of the Random Variable
Breakdown Durations TB

Parameters of the Random
Variable Proper Operation

Durations TP

Value of the Indicator
kth Survival Value

k(TP ,TB)

TB(MW1.1) ∼ Gamma(2.125, 0.08621)
TP ∼ Gamma

(
3.03, 2.6936 · 10−5) k(TP ,TB(MW1.1))

= 0.688462
TB(L1) ∼ Gamma(4.24, 0.059172) k(TP ,TB(L1))

= 0.688121
TB(MW2.2) ∼ Gamma·(4.24, 0.034722) k(TP ,TB(MW2.2))

= 0.687755

The table summarises the kth survival values for the rescaled data in relation to
operation timeframe ∆t = 240, 000 (min). The data for which prior calculations were made
cover a period more than six times longer. The kth survival value showed an approximately
20% increase in relation to the base period. This is due to the proportional reduction in
the number of events at a given ∆t and is directly influenced by the value of the standard
deviation at that time.

4. Results and Discussion of Future Studies

This paper presents a model for determining the probability of the on-time realisation
of a set of production tasks, taking into account the values of failure indicators of machines.
Chains of convergent material flow relations were the objects of consideration. The main
assumption of the developed model was to reduce (or completely eliminate) the idle
operation of machines with the highest energy demand.

Sections 3.2.1–3.2.3 present a formalisation of the kth survival value model for the
cases of estimation of durations TP and TB using distributions from the Gaussian and
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Gamma family. In this presented model, variants were considered for the probability of
the difference of the set of durations of correct operation on the technical object with the
highest energy demand in relation to the set of durations of failures on the object belonging
to the chain of relation supplying this machine. The calculations were performed for the
case TP − TB, where the respective variables, both TP and TB, originate from the same dis-
tribution. The case TP − TB was not considered where TB = ∑n

i=1 ∑ki
j=1 Gamma

(
αi,ki

, βi,ki

)
.

In the next step of this study, the case will be complemented where, in the set of
synchronous relations supplying the machine with the highest energy demand, several
different downtimes will occur with different distributions belonging to the Gamma family
of distributions, i.e., a variant will be considered where, for a given ∆t on the ith machine,
the jth failure will occur where i = 1, 2, . . . , n and j = 1, 2, . . . , ki. Then, the probability
density function of the occurrence of a downtime on any technical object is defined by the
Formula in [70]:

fTB(t) =
n

∑
i=1

λi
ki ·e−t·λi

ki

∑
j=1

(−1)ki−j

(j − 1)!
·tj−1 ∑

m1+...+mn=ki−j
mi=0

n

∏
l=1
l ̸=i

(
kl + ml − 1

ml

)
λl

kl

(λl − λi)
kl+ml

(32)

If, for a sufficiently long timeframe for the object under consideration, there are
production processes of multiple batches numbered l = 1, 2, . . . , np, and in each batch,
there is a different number of elements to be manufactured (h = 1, 2, . . . , Hl), then the time
TP is determined by the function:

fTP(t) =
np

∑
l=1

λl
kl ·e−t·λl

Hl

∑
h=1

(−1)Hl−j

(j − 1)!
·th−1 ∑

m1+...+mnp=Hl−h
ml=0

np

∏
s=1
s ̸=l

(
ks + ms − 1

ms

)
λs

hs

(λs − λl)
hs+ms

(33)

In order to calculate the kth survival value for the difference of independent random
variables, the functions defined by Formulas (32) and (33) should be convolved. This
variant will take into account all possible cases of flexible production, with the number of
elements to be manufactured varying in time, with different types of failures occurring
with a different frequency on different technical objects.

In the article presented, the kth survival value algorithm takes into account the ran-
domness of the operating and failure times. Gaussian and Gamma distributions were
included in the considerations. The validation showed a high sensitivity of the model to
the values of the distribution parameters. According to the authors, this will result in the
accuracy of the calculations and their possible inaccuracy for the assumed approximations
of the empirical data. During the calculations, it was noted that there was a close relation
between the parameters of the distributions—( lP, λP ⇐⇒ lB, λB ) and ( αP, βP ⇐⇒ αB, αB ).
The cases presented in this paper did not show whether this relation is interactional or
correlational. To determine this, a much larger series of trials should be carried out for
different cases.

In the step of calculating the kth survival values, the possibility of the existence of
a limit to the applicability of the distribution fTP−TB(t), with close interdependence of
the parameters ( lP, λP ⇐⇒ lB, λB ) and ( αP, βP ⇐⇒ αB, αB ), as well as the parameter k, for
which P(TP − TB ≥ k) is determined, was also recognised. In order to confirm this thesis, it
is necessary to develop an application that allows the graphical representation of fTP−TB(t)
for an arbitrary value of k ∈ R+, TP ∼ Gamma(αP, βP), and TB ∼ Gamma(αB, βB). It is
also crucial to confirm the assumptions made with the necessary calculations. Development
work is currently in progress in this area.

5. Conclusions

Modelling the operational reliability of real production systems is a complex task. The
level of difficulty increases as the number of parameter variables considered in the model
increases. This paper presents the author’s model for determining the kth survival value.
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This proposed algorithm is used to determine the probability value of the difference of
random variables of correct operation duration and failure duration with given probability
density functions.

This paper formalises a complex manufacturing system according to the general theory
of complex systems [71,72]. A two-level decomposition of the manufacturing system was
made, separating a subset of elements of the departmental subsystem and a subset of
elements of the operational level (manufacturing machine level). Then, the property of
quasi-coherence and semi-quasi-coherence on sets of synchronous relations was defined.
Furthermore, the cases of relations chains where neither the quasi-coherence nor semi-
quasi-coherence property occurs were defined.

The methodology developed is intended to determine the risk of potential line down-
times in production systems containing machines with the highest energy demand. Hence,
for separated chains of relations containing production processes with the use of an auto-
matic paint shop furnace and a glass tempering furnace, the impact of failures on objects
supplying high-energy demand machines was analysed. The validation of the presented
model was performed for independent random variables defined by distributions:

- TP ∼ Normal(µP, σP) and TB ∼ Normal(µB, σB), and then the random variable of

difference TP − TB ∼ Normal
(

µP − µB,
√

σ2
P + σ2

B

)
;

- TP ∼ Exp(λP) and TB ∼ Exp(λB);
- TP ∼ Erlang(lP, λP) and TB ∼ Erlang(lB, λB);
- TP ∼ Erlang(lP, λP) and TB ∼ Exp(λB);
- TP ∼ Gamma(αP, βP) and TB ∼ Gamma(αB, βB).

For the family of Gamma distributions, the probability density functions fTP−TB(t)
were determined using the definition of a convolution of functions. Various variants of
the calculation of the kth survival value are summarized in Tables 1–7. In real production
systems, an increased confidence interval is accepted at the expense of a reduction in the
time effort resulting from a more accurate estimation of the fit. Hence, simplifications and
generalisations are made to allow the use of Gaussian distributions.
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