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Abstract: This review paper provides a summary of methods in which artificial intelligence (AI)
techniques have been applied in the management of variable renewable energy (VRE) systems, and
an outlook to future directions of research in the field. The VRE types included are namely solar, wind
and marine varieties. AI techniques, and particularly machine learning (ML), have gained traction as
a result of data explosion, and offer a method for integration of multimodal data for more accurate
forecasting in energy applications. The VRE management aspects in which AI techniques have been
applied include optimized power generation forecasting and integration of VRE into power grids,
including the aspects of demand forecasting, energy storage, system optimization, performance
monitoring, and cost management. Future directions of research in the applications of AI for VRE
management are proposed and discussed, including the issue of data availability, types and quality,
in addition to explainable artificial intelligence (XAI), quantum artificial intelligence (QAI), coupling
AI with the emerging digital twins technology, and natural language processing.
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1. Introduction

With increasing global concerns over climate change, the energy sector is one of the
major greenhouse gas (GHG) emitters that are being looked at in the push to increase
sustainability efforts. Increased GHG levels have led to warmer temperatures globally,
with anthropogenic warming reaching 1.25 ◦C above the 1850–1900 baseline as of June
2022 [1,2] and projections for the future predicting a rise ranging from 1 to 3.7 ◦C at the end
of the century. Such a rise will have drastic impacts on human health, weather patterns,
and crop production in addition to numerous other aspects of life on Earth [3].

As a result, renewable energy resources have seen an increase in popularity in recent
decades [4]. Energy demand is addressed in traditional electricity grids through conven-
tional resources, primarily fossil fuels. The location of power plants is typically constrained
by proximity to these resources, which increases their complexity, ultimately adding to the
disadvantages of conventional grids [5]. The increased penetration of renewable resources
leads to an increase in the complexity of conventional power systems and makes them
more susceptible to reliability concerns with the use of conventional electrical transmission
and distribution networks [6,7].

Variable renewable energy (VRE) resources, specifically those governed by weather,
are expected to be critical players in the global decarbonization efforts and push towards
renewable energy. Renewable energy contributed to 81% of the net capacity energy expan-
sion in 2021, with VRE installed capacity in the forms of solar and wind accounting for
88% of the new renewable capacity and continuing to dominate the renewable capacity
expansion [8].
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A power system generally includes three kinds of generation: baseload units (which
produce the most economical power for the longest period and are only turned off for
maintenance), mid-merit units (which operate 30–70% of the time to supply daily peak
periods), and peaking units (the most expensive ones which are only operated during
peak load periods) [9]. The main source of complexity in the integration of solar and
wind energy is due to their power generation being of a stochastic nature, along with
seasonal fluctuations, variations over time and space, and the availability of data [10]. One
important issue with the rapid spread and penetration of VRE is oversupply, where an
excess of power is generated but the consumer demand is not enough to match it. This
requires an independent system operator to curtail VRE power to maintain the stability
and security of the grid and prevent damage to power production units. Such curtailments
result in significant green energy losses [11]. Another issue is low VRE production that can
occur from the curtailment on production in addition to weather or hydrometeorological
configurations with low resources. Operational flexibility is needed to ensure that supply
can match demand requirements, despite both being of uncertain and variable nature.
An important consideration is the utilization of large back-up energy sources or energy
storage options [12]. The intermittent nature of VRE sources leads to variable patterns
in energy generation, which can impact the system performance and reliability, making
energy storage solutions necessary to alleviate the imbalance in supply and demand [13].
Therefore, the adoption of hybrid renewable energy systems (incorporating one or more
renewable resources), along with energy storage and sometimes diesel generators, has been
applied in the integration schemes of VRE [14].

When working with VRE systems, it becomes fundamental to use forecast tools
to minimize uncertainty in the energy generation process, as this impacts all phases of
decision-making, planning, and funding. Forecasting at varying time scales is important
in planning for energy storage schedules and provisions of alternative energy sources in
addition to VRE resource installation locations [15]. Such problems have presented a level of
complexity that requires advanced solutions, leading to digital technologies now emerging
as part of the future for the energy sector [16]. Artificial intelligence (AI) utilizes computer
capabilities to simulate the behavior of human intelligence. It is an interdisciplinary
science that incorporates logic, thinking, cognition, information, systems, and biology [17].
Implementation of AI techniques has three key advantages: the automation of repetitive
and time-consuming processes, the ease of finding insights that would otherwise be lost
in unstructured data, and the integration of numerous resources for tackling complex
problems [18]. Figure 1 illustrates how AI and data science methodology can be applied
to energy forecasting for a data-driven decision-making process. AI has found uses in
the conventional energy sector, with applications in accelerating and reducing risk in
numerous business processes related to the utilization of hydrocarbon resources [19]. AI
has additionally played a role in reservoir modeling and simulation, production and drilling
optimization, drilling automation, and process control [20]. It has also been studied as a
method of monitoring energy consumption in buildings and track anomalies [21].

Despite the promising strides in VRE integration, challenges persist in optimizing their
utilization within the existing power systems. The stochastic nature, seasonal fluctuations,
and inherent variability of solar, wind, and marine power generation present obstacles in
seamlessly incorporating these renewable sources into conventional grids. Furthermore,
the management of VRE systems demands advanced solutions for addressing issues related
to oversupply, curtailment, and the intermittent nature of energy production. To address
these challenges, this paper aims to achieve the following research objectives:

• Background on AI techniques relevant to the paper topics
• Background on the influences of weather elements on VRE generation and planning
• Comprehensive review of AI applications in VRE management
• Exploration of future directions for advancement of AI applications in VRE
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Figure 1. Steps involved in the development of modeling and optimization tools for energy forecasting.

The development directions of AI for VRE are of paramount importance in navigating
the challenges and optimizing the utilization of renewable energy sources. As the global
energy landscape undergoes a transformative shift towards increased reliance on VRE,
AI offers strategic avenues to enhance the efficiency, dependability, and eco-sustainability
of these systems. The integration of AI methodologies in VRE management addresses
complexities related to data quality, model transparency, and system optimization. The
burgeoning digitalization of energy supplies, coupled with the dynamic nature of VRE,
necessitates innovative solutions to harness the full potential of renewable sources. AI has
the potential to contribute significantly to overcoming inherent challenges, not only paving
the way for improved energy forecasting, distribution, and system control but also through
fostering a more sustainable and resilient energy paradigm in line with the demands of a
rapidly evolving global climate and energy landscape.

Despite the significant role AI currently plays and is projected to play in the manage-
ment of VRE systems, there is a gap in the literature providing a comprehensive review for
this field. The novelty of this review is in its dual contribution. Firstly, it systematically re-
views the existing landscape of AI methodologies employed in the context of VRE systems
and offers a comprehensive understanding of their current state. Secondly, the manuscript
takes the step of outlining distinct future research trajectories. The incorporation of quan-
tum artificial intelligence, Digital twins, explainable AI, natural language processing, and
refined data practices collectively enriches the review’s novelty. In essence, this work not
only consolidates the prevailing knowledge on AI applications in VRE forecasting but also
introduces innovative avenues for advancing the optimization and sustainability of VRE
systems. This combined contribution positions the manuscript as a timely resource in the
intersection of AI and VRE research.

This paper is organized into a number of sections, starting with an overview of AI
techniques of interest to VRE applications, explaining their classifications and differences.
A review of VRE types and the role and impact of weather variables is then provided.
This is followed by the applications of AI in existing literature for the management of
VRE systems, namely in the forecasting of power generation and demand, energy storage,
integration costs, and system optimization. Future directions of research related to applying
AI for VREs are then covered, and the conclusions of the review are then provided. Table 1
provides a list of existing review papers and the topics they cover, highlighting the gaps
which this comprehensive review tackles.
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Table 1. Comparison between the topics addressed in this study and other studies.

No. Background on Artificial Intelligence
Techniques

Weather and Variable
Renewable Energy Types

Artificial Intelligence Applied to Variable Renewable
Energy Systems Future Research Directions Reference

1

• Traditional machine learning
• Metaheuristic optimization

algorithms for machine learning
• Deep learning
• Natural language processing
• Fuzzy logic

• Solar energy
• Wind energy
• Marine energy

• Optimization of power generation forecasting
(solar power forecasting; wind power forecasting;
marine power forecasting)

• Integration of variable renewable energy into
power grid (power demand forecasting; energy
storage; system design, monitoring, performance
and security; cost management)

• Data availability, types, and quality
• Explainable artificial intelligence
• Quantum artificial intelligence
• Digital twins coupled with artificial

intelligence
• Natural language processing

This study

2 Not reported
• Solar energy
• Wind energy
• Marine energy

• AI in solar energy
• AI in wind energy
• AI in marine energy

Not reported [22]

3

• Artificial neural networks
• Fuzzy logic control
• Particle swarm optimization
• Ant colony optimization

Not reported Not reported

• Operation methods of renewable
energy generation

• Mitigating intermittency issues
• Combined energy storage devices

[23]

4 Not reported Not reported

• Mitigating balancing costs (generation forecasting;
demand forecasting; more efficient market design)

• Mitigating profile cost (demand response;
storage solutions)

• Mitigating grid-related costs (power quality
disturbance; predictive maintenance)

Not reported [24]

5

• Classical ML techniques
• Fuzzy logic
• Hidden Markov models
• Neural networks

• Solar energy
• Wind energy
• Marine energy

Not reported

• Trade-off between performance
and explainability

• Cloud computing/deployment
• Adversarially robust models
• Scarcity of data
• Novelty detection
• State-of-the-art sensor technologies
• Real-time prognostic models

[25]

6 Not reported Not reported

• Energy generation (power generation;
renewable energy)

• Power delivery (transmission and delivery; system
automation and control)

• Electrical distribution networks (energy
conversion and distribution; integrated
energy systems)

• Energy storage (battery energy storage; energy
storage technologies and devices);
energy applications

Not reported [26]
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2. Artificial Intelligence Techniques

AI encompasses a variety of techniques and domains for solving problems, with
the most utilized methods falling under the domain of machine learning (ML). ML has
advanced at a significant pace in recent years, allowing intelligent functions for applications
using computing and data analysis. ML enables systems to learn and improve through
experience without targeted programming and is commonly touted as the most prevalent
of modern technologies in the Fourth Industrial Revolution. The efficiency and reliability of
ML solutions rely on the data being utilized, and the performance of the learning algorithm.
It is important to select the appropriate learning algorithm for the needed application,
which can be a challenge. To navigate this, it is critical to comprehend the underlying
principles of different ML algorithms and how to apply them for various practical uses [27].

2.1. Traditional Machine Learning

ML is categorized into four main groups: supervised, semi-supervised, unsupervised,
and reinforcement learning. These methods handle data that comes in various forms,
including structured, semi-structured, and unstructured [28].

Supervised machine learning is the process of fitting a model to data that has been
labeled, comprising of classification and regression tasks. Unsupervised learning recognizes
patterns in unlabeled data without the need for the provision of predetermined labels, with
clustering, dimensionality reduction, and association mining as the primary techniques for
this branch of ML [29,30].

Within supervised ML, classification tasks represent the problem of mapping nu-
merous input variables to discrete output variables represented as categories and can be
either binary or multiclass classifications [29]. This can essentially be viewed as an opti-
mal separation problem, represented in Figure 2a. Regression tasks, however, map input
variables to continuous outputs, representing a data-fitting problem (Figure 2b). Logistic
regression and linear regression are the simplest algorithms for classification and regression,
respectively [31].
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The main challenge faced in ML is overfitting, in which the model tends to memorize
patterns, including noise, from the data it is trained on, consequentially performing poorly
when deployed on unseen data. Limited training data and overly complex models are the
primary causes of overfitting, hindering the generalizability of the models. Mitigation of
overfitting can be achieved by acquiring more training data through various augmentation
methods, reducing the learnable parameters of the model in question, limiting the number
of input features via feature selection methods, or reducing their influence by adding
penalty terms known as regularization [32].
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Decision trees (DT) fall within the supervised learning approaches. They are used
to solve classification and regression problems. A DT classifies data through a sequential
group of questions regarding features, which form a hierarchy and are encoded as a tree.
DTs can offer advantages over other methods in their manner of utilizing simple questions
about data in a comprehendible way [33].

K-nearest neighbor (KNN) is another example of a supervised learning technique for
both regression and classification tasks. KNN follows the principle of lazy learning, or
instance-based learning in which the model is not trained until a query is provided in the
form of the test data. Instead of generalizing to the data during training, the training set
is simply stored for future predictions. Subsequently, predictions for unlabeled test data
are made based on the closest neighbors to the data point, which are determined based on
proximity in terms of Euclidean distance. The number of neighbors to take into account, or
K, is a hyperparameter which requires tuning according to the specific application [34,35].

Support vector machines (SVM) is a kernel-based ML technique for classification
and regression tasks and has been recognized as a powerful supervised learning method.
It has become one of the most utilized methods for classification tasks due its strong
theoretical foundations and good generalization capabilities, which are achieved through
the separation of several classes in the training data with a surface maximizing the margin
between them [36] (Figure 3a).
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through majority voting/averaging of individual trees.

Ensemble learning is a ML technique that utilizes various baseline models and ag-
gregates them to form a more powerful model that is more diverse, thereby enhancing its
generalizability. Random forests (RF) are an ensemble of a predetermined number of DTs.
RF algorithms have become more common in recent years because of their interpretability
and ability to avert over-fitting. They have three main hyperparameters, which should be
determined before training: node size, number of trees, and number of features sampled.
Random forest classifiers are then utilized to solve regression or classification problems [37]
(Figure 3b).

2.2. Metaheuristic Optimization Algorithms for Machine Learning

When training a ML model, the goal is to find the set of hyperparameters representing
the optimal solution to the problem at hand, known as optimization. In the case of simple
linear, convex, differentiable and low-dimensional problems, deterministic optimization
techniques can be deployed. However, stochastic approaches are necessary when handling
high dimensional, non-convex, non-linear, or non-differentiable problems, which rely on
random search and empirical testing of the search space. Metaheuristic algorithms (MA)
are a class of stochastic optimization utilized in ML [38].

Genetic algorithms (GA) are a form of MA which have been employed to solve complex
problems in a variety of scientific fields. GA is inspired by the Darwinian “survival of
the fittest” concept. It consists of chromosome representation (which typically takes the
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binary format), fitness selection, and operators inspired from biology. The chromosomes
are considered points in the solution space, with the fitness function assigning values to all
chromosomes in the population. The operators are selection, mutation, and crossover. The
chromosomes are selected for further processing based on the fitness result [39].

Particle swarm optimization (PSO), another MA, is an optimization algorithm that
was inspired by the behavior of bird flocks and fish schools. Optimization problems are
solved through the swarm of particles searching the space in specified dimensions and
determining the solution that optimizes the problem. The exploration phase is where the
space is explored extensively, and the exploitation phase is narrowed down to the most
promising subspaces [40].

2.3. Deep Learning

Artificial neural networks (ANNs) are comprised of a group of nodes, or neurons,
which incorporate weight parameters and activation functions. ANNs are commonly
divided into input, hidden and output layers. The connections between neurons are
each a signal that is processed and transmitted to the following layer until an output
response is achieved [41]. ANN models do not make assumptions on the distribution
of the input variables, or the underlying physical dynamics between input and output
variables. The robustness of ANNs therefore is reliant to a large extent on the form of the
input and variables, and the method in which they are fed into the model. The quantity
of data fed into the models is an important factor, with longer-term datasets being highly
recommended in order to capture necessary information and obtain better predictions [42]
(Figure 4).
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Multilayer perceptron (MLP) is the most popular ANN model using back-propagation
training. It contains one or more hidden layers, with neurons in the same layer not
connected and only connecting in the direction of lower to upper layers. Optimization of
the number of connections is of great importance to the accuracy of MLP results [43].

One of the most widely utilized DL models is the convolutional neural network
(CNN), developed for computer vision tasks. It permits the bypassing of manual feature
extraction through mathematical operations known as convolutions, which are specialized
for handling grid-type data, such as images. Ultimately, it allows for automated feature
extraction and is advantageous, as it is translation-invariant [44] (Figure 5).

In the case of sequence data, such as text or time-series data, recurrent neural networks
(RNN) were developed to handle the extraction of temporal features. The basic concept of
RNNs is the integration of past state and current state information for network updates.
Traditional RNNs, however, suffered in the case of large input data when long-term
dependencies were required for accurate predictions [45]. This in turn led to the evolution
of RNNs into two new architectures, long short-term memory (LSTM) and gated recurrent
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units (GRU), which allow the processing of large input data and handling of long-term
information integration [46].
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The transformer is the most novel and ubiquitous DL model, consisting of encoder
and decoder blocks, which in turn contain self-attention modules that can handle various
input sizes and effectively capture long-range dependencies. It currently dominates natural
language processing (NLP) but is also utilized in various domains, such as computer vision,
audio processing, and generative AI [47–49].

2.4. Other AI Techniques

Other AI techniques with applications in the energy sector include natural language
processing (NLP) [50]. The roots of NLP date back to the 1950’s as the nexus of AI and
linguistics. NLP is the computer science field that deals with the utilization of computa-
tional techniques to learn, understand, and generate human language content. Modern
day research in this field focuses on the utilization of this tool in real-world applications,
where systems can speak, speech can be translated, and information can be mined from
social media challenges [51].

Fuzzy logic (FL) is an established tool which develops algorithms integrating struc-
tured human knowledge. It enables the representation of a model designed for human
interpretation modes that are not precise, but inexact. The process of applying FL includes
fuzzification, where the classical data in converted into membership functions; the fuzzy
inference process, in which the membership functions are combined with the fuzzy control
rules to generate the fuzzy output; and the defuzzification step in which the fuzzy output
is converted into crisp results with the accompanying rules [52].

3. Weather and Variable Renewable Energy Types

VRE systems are primarily powered through solar, wind, and marine resources, which
tend to be variable and non-dispatchable in nature, unlike renewable energy systems
that utilize hydropower from dams, geothermal, and biomass. Solar energy has seen
a significant scale-up in use over the past decades. Solar power is generated from two
types of plants: solar photovoltaic (PV) and solar thermal systems. PV plants have
advanced further due to their conversion being more direct and economically viable, as
they enable the direct conversion of global horizontal irradiance (GHI) into electricity
using semiconductors. This has resulted in PV being a mature technology from both
technical and economical perspectives and has allowed its market to be one of the most
quickly expanding in renewable energy alternatives [53]. The amount of energy generated
from a solar PV system is dependent on a number of factors, which include the PV type,
the setup of the system, and the climate and geographic variables [15]. Concentrated
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solar power (CSP) is the second mainstream approach to generating solar power. It is
based on the concept of redirecting, focusing, and collecting direct normal irradiance
(DNI) as heat, utilizing mirrors. This heat is then used to power a thermodynamic cycle
that produces electricity [54]. There are numerous options for the solar collector types,
materials, structures, and systems for heat transport, storage, and electricity conversion
systems [55].

Wind energy has become a competitively priced option in numerous global markets
and provides over half the growth in renewables worldwide due to it being cost-effective
and sustainable in comparison to other energy sources. Turbines are utilized to convert the
kinetic energy of wind movement into rotational energy through the turbine rotor blades.
This rotational energy is then used to turn a generator through a drive shaft, producing
electricity [56]. The intermittency in wind power generation has been a major obstacle in
its adoption as a primary energy source and causes challenges in generation, storage, and
transport [57]. Other challenges related to the use of wind turbines are noise pollution,
aesthetic impacts, and avian life issues [58].

Marine energy can be generated from ocean tides, waves, and currents, in addition to
free-flowing water in rivers, lakes, and streams. It can also be generated from changes in
salinity, pressure, and temperature. Marine energy, in all its various forms, has the potential
to contribute to the supply of renewable energy and reduction in carbon emissions. With
oceans covering more than 70% of the Earth’s surface, their utilization for generating
energy provides substantial potential. The conversion of energy from the ocean is primarily
classified as thermal and electrical conversions. The thermal process integrates a direct
sea-source heat exchanger and heat pumps, while the electrical process integrates current
turbine/wave energy converters, tidal stream generators, ocean thermoelectric generators,
floating PV panels, and off-shore wind turbines [59]. Tidal energy is generated using the
periodic horizontal movement of seawater that results from the celestial gravitational force.
The kinetic energy from the water flow is converted using tidal turbines into electrical
energy [60].

Weather elements are critical controlling factors for VRE resources as is power demand.
Studies in Greece [61] and South Africa [62] have shown that the use of climate data could
help with increased accuracy of energy demand forecasting models. Studies on the influ-
ence of weather regimes on energy demand for Europe show the importance of integrating
weather regimes into energy sector analyses and that further advances are required to
better understand their link [63]. Variables of interest for VRE applications include solar
irradiance (GHI and DNI), aerosols, dust storms, temperature, relative humidity, wind
speed and direction, atmospheric pressure, surface albedo, and cloud cover. For example,
with regards to PV power generation, environmental and weather elements including
cloud cover, ambient temperature, humidity, precipitation, wind speed and direction, and
dust influence the output. Dust accumulation is a primary factor in energy losses, as
it results in lower power generation and decreased lifespan of PV modules. Humidity,
temperature, and wind play an important role in the deposition and removal of dust from
modules [64,65]. Clouds play an important role in the energy balance of the planet and
are a key player in both directly and indirectly influencing the amount of power output
from VRE resources. Cloud cover, and its movement, has a significant effect on sunlight
intensity. Geographic location plays a role in the study of cloud cover—for example, desert
clouds are sporadic in nature, which enhances the importance of better methods to fore-
cast their movement and integration into modeling efforts [66,67]. Wind patterns impact
energy generation from both wind and marine resources. With regards to marine energy,
weather elements, primarily wind speed and direction, directly influence the intensity and
characteristics of waves and the amount of electricity generated. Tidal energy, in addition
to mainly being governed by celestial forces, is impacted by atmospheric pressure systems
and wind patterns [68].
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Sustainability of energy and climate change are two problems with complex links
that are critical to addressed through integrated solutions. Climate change has a signifi-
cant impact on utilized energy through its impacts on energy demand, generation, and
infrastructure [69]. Extreme events, hot or cold, are likely to increase the demand for
power [70]. Additionally, climate change projections are important for planning long-term
VRE resource allocations, and the need for advanced climate modeling is adamant for
planning for uncertainties in VRE systems [71].

The role of local weather conditions is significant on the variability of solar radiation as
it passes through the atmosphere, which has a direct impact on the amount of solar energy
generated. Variables such as cloud cover movement can lead to upward and downward
shifts in generation within a time scale of seconds. Solar resources are unavailable at night,
while wind is less intermittent but also less easy to predict, with low wind conditions
causing disruptions [72]. Forecasting is therefore of great importance at varying time
scales to plan for energy storage schedules and provisions of alternative energy sources in
addition to VRE resource installation locations [15]. Accurate weather forecasts give VRE
generators the ability to forecast their power generation. Weather forecasting techniques
have ranged over the years to include physical models, statistical models, and—in recent
decades—artificial-intelligence-based models.

Numerical weather prediction (NWP) data is the most recognized form of weather
modeling output. NWP is based on solving a set of partial differential equations that
govern movement and developments in the atmosphere. These equations represent basic
laws of conservation, including those for momentum, mass, energy, and water vapor. The
current (initial) atmospheric conditions are used with the equations to obtain predictions of
future atmospheric conditions [73]. NWP is generally employed for day-ahead forecasts
as opposed to short or medium-term forecasting, since future meteorological trends im-
prove model forecast accuracy with larger time horizons [74]. NWP forecasting is used
as a tool in assisting for planning of short-term future power scenarios. Errors in these
forecasts cause direct errors in the power prediction, making studies on current NWP
challenges, shortcomings and model enhancements necessary to maintain the stability of
power supplies [75].

Advanced weather forecasting is one of the primary applications for AI in the chal-
lenges of integrating VRE [76]. Machine learning has found applications in weather data
preprocessing, observation operators, and the processing of satellite data. ML methods
have been shown to produce reasonable weather forecasts despite no integration of at-
mospheric physics in their setup, through the utilization of historical observation data
for algorithm training [77]. AI forecasting can be used as a standalone approach separate
from NWP models and their affiliated physics, with comparable results. The challenge
to using this approach is the availability of adequate data for the training phase. For this
reason, the current best approach to utilizing DL methods is to combine them with NWP
methods. This can be done using available training data in a residual learning approach.
ML methods can also be utilized to enhance the parametrization of physical processes that
are not explicitly resolved in models [78].

4. Artificial Intelligence Applied to Variable Renewable Energy Systems

The deployment of VRE systems requires optimization methodologies in order to
achieve the highest possible efficiency in their use. AI techniques are commonly used
in VRE performance forecasting applications to model and control systems and for
decision-making applications. A summary of notable studies utilizing AI for VRE is
provided in Table 2, with the following sections elaborating on the subfields in which AI
is being applied.
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Table 2. Selection of studies utilizing AI for power generation forecasting and integration of VRE
into power grids.

Application Model Configuration Outcome Measure Performance Reference

Power generation
forecasting

Solar-power
forecasting

Multi-objective PSO
(MOPSO) paired

with ANNs
PIs of point forecasts

MOPSO paired with
measures of solar power

output significantly reduces
the uncertainty of PIs for
short forecasting horizon

Aler et al. [79]

Wind power
forecasting GRU

Regression task for
prediction of
wind speed

RMSE of 0.3757 when
combined with wavelet soft

threshold denoising
(WSTD)

Peng et al. [80]

Marine power
forecasting

Transformer encoders
Classification of
significant wave
heights (SWHs)

Accuracies ranging
between 0.900 to 0.991 over
a prediction period of 24 h

Chen at al. [81]

LSTM
Regression task for
prediction of wave

energy power output

RMSE values between 0.42
and 0.56 for different input

variables
Mousavi et al. [82]

Integration of VRE
into power grids

Power demand
forecasting Hybrid ANN Energy demand

forecasting

RMSE of 3.85% for 6-h and
4.37% for daily energy

demand prediction
Al-Musaylh et al. [83]

Energy storage

Many objective
evolutionary

algorithms with fuzzy
decision making

Hybrid microgrid
systems (HMS) sizing

optimization

Reduction in costs of 7–21%
in comparison to existing

optimization models
Cao et al. [84]

4.1. Optimization of Power Generation Forecasting

VRE resource forecasts are critical for minimizing the uncertainty of their generation,
as this impacts all phases of decision-making, planning and funding. In the short-term, it
helps with system stability through enhancing unit commitment and reducing reliability
issues, in addition to being utilized in spot market electricity trading, and reducing the risk
of incurring penalties for imbalances. In the long term it plays a role in preparations for
extreme weather events through allocation of adequate balancing reserves, planning future
expansions and the placement of VRE plants [76].

Forecast horizon is defined as the time period between actual and effective time of
prediction. Four categories have emerged in recent literature, namely very-short-term
(seconds to 30 min), short-term (30 to 360 min), medium-term (6 to 24 h), and long-term
more than 24 h). Nowcasting refers to the process of producing short-range forecasts in the
range of 4–6 h in the future. Nowcasting is projected to undergo significant improvements
through the use of varied data sources, such as ground-based observations, radar data,
remotely sensed observations, etc. These will result in challenges, including the handling
of big data, quality control, and assigning weights to the various data sources [78].

Power forecasting is primarily done with three methods: physical, statistical, and
hybrid. Physical methods rely on the systems design parameters to simulate the output
power. Statistical methods encompass both traditional statistical modeling techniques and
ML algorithms. Hybrid approaches are used to refer to the combination of two different
methods [85].

Power forecasting generally includes two kinds of approaches: deterministic, which
provides a unique value for the variable being forecasted at each future time-step, and
probabilistic, which provides the full potential range of events using quantiles, prediction
intervals (PIs), or distributions. Deterministic approaches have been explored for several
decades, while probabilistic approaches have gained momentum in the past decade [86].
Probabilistic models provide a more comprehensive outlook on the possible scenarios
resulting from forecasting processes, in the form of an interval where the point forecasts
are expected to be found [87].
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Reviews and studies on VRE power forecasting have found that classical ML models,
such as linear regression, can be a decent choice for simplicity, but they may fail to capture
non-linear relationships, making RF and SVM possible better choices. Hybrid models
combining traditional time series forecasting with ML have also been used for VRE power
forecasting [71]. The following subsections elaborate on studies conducted for power
forecasting within each VRE domain.

4.1.1. Solar Power Forecasting

Numerous reviews on the use of AI for solar power forecasting have been con-
ducted [88–90]. The accurate forecasting of solar irradiance is of utmost importance for
the power system designers and grid operators for efficient management of solar energy
systems. An interesting observation from literature searches on solar power forecasting
with AI is that most studies have been conducted for PV systems. This seems to primarily
result from how forecasting methods have been developed largely for GHI, with few stud-
ies dedicated to DNI forecasting [54]. Reviews of solar power forecasting from PV systems
provide insights into the current methodologies and future directions. The quantity of
GHI is a primary influencing factor on the efficiency, in addition to the temperature, of the
PV module. The efficient design of a PV forecasting system is also dependent on factors
including the incorporation of forecast horizons, the selection of inputs with correlation
analysis, pre- and post-processing of data, weather classification, network optimization,
and uncertainty quantification [74].

GHI forecasting is performed primarily through two methodologies: the first utilizes
cloud imagery with physical models, and the second utilizes ML techniques for statistical
models [91]. Physical models utilize atmospheric variables that are directly related to solar
power generation, making its process complex due to being affected by the uncertainty of
the meteorological variables being used as input. Alternatively, statistical models utilize
historical data to determine the relationship between meteorological variables and PV
power generation, which is then utilized to build the power forecasting model [92].

Among the physical, statistical, AI, ensemble and hybrid models, extensive literature
reviews have found that ANNs, and specifically convolutional neural networks (CNNs),
are the most promising for short-term forecast accuracy and are covered most extensively
in the literature [88]. A study on ML techniques for solar radiation forecasting envisioned
the use of SVM, regression trees, and RF in the coming years due to their promising results,
competing with ANN. A recommendation was for the use of ensemble predictors rather
than simple ones [91]. Figure 6 shows the process of utilizing AI for solar power forecasting.
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The estimation of PIs for point forecasts of solar power and their improvement is a
topic that has gained interest in recent literature. The use of optimization techniques paired
with ANNs can be used to customize PIs to different times of the day rather than have
intervals, e.g., the power output during night hours is zero—thus, the interval of PIs during
those hours can be narrower than during the day [93]. A study conducted on solar stations
in Australia estimated prediction intervals using multi-objective PSO paired with ANNs.
The prediction intervals were found to be improved when measured solar output was
utilized as input alongside meteorological forecasts for short forecast horizons of 1–2 h,
thus reducing uncertainty [79].

An interesting point discussed by Garus et al. [88] was on the models in the existing
literature mainly being trained for the conditions of specific locations. The authors suggest
that AI tools should be utilized to generalize models over a wider set of conditions with
better prediction accuracy through integrating the existing AI approaches with optimization
techniques such as GA, PSO, and analysis of variance (ANOVA). A complication to the
generalization proposal lies in the impacts of different meteorological conditions in different
locations. Climate conditions have been shown to influence the performance of different
ML techniques for solar irradiance prediction. One example of this is a study conducted for
solar power prediction at the Shagaya Renewable Energy Park in Kuwait, an arid desert
region with predominantly sunny and clear sky conditions. The use of a regime-dependent
approach, in which k-means clustering was used to independently classify regimes before
applying an ANN, led to a degraded performance. The dominance of clear sky conditions in
the meteorological conditions of Kuwait makes regime-identification approaches perform
worse, due to minimal cases of cloudy sky conditions, and such approaches could be better
suited to climate regimes with more diverse cloud conditions [94]. Another example is
provided for the Nordic climate, which is characterized by daylight hours that are long in
the summer and short in the winter, heavy snow, and highly variable weather conditions
due to fast-moving clouds. These cloud movements can cause significant issues for PV
plants integrated with low-voltage grids. Additionally, the snow-caused soiling effect
during the winter is an important factor to consider. The estimation of the reduction in
power generation due to soiling is difficult due to the complex optical characteristics of
snow. A review of ML approaches to forecasting concluded that the choice of ML algorithm
depended on the weather conditions of the study area. The deterministic component is
more dominant than the stochastic component during stable weather conditions, making
conventional ML algorithms such as SVM and RF viable choices. In conditions of unstable
weather, in which the stochastic component is as important as the deterministic, the
conventional algorithms mostly perform poorly, and DL methods are found to better
capture the complex nature of the processes [95].

The estimation of behind-the-meter (or what is known as invisible) solar power has
drawn attention in recent published literature. Invisible solar power refers primarily to
small-scale rooftop solar resources for a single building, which is invisible to system opera-
tors due to privacy concerns or the lack of measurement infrastructure. Invisible power
can lead to the underestimation of power demand during extreme weather conditions, in
addition to impacting the stability of the power system. A review of methods conducted
utilizing historical data discusses studies using fuzzy models, ANNs, SVR [96]. The authors
note the importance of employing simplified approaches that do not require the historical
records of many variables due to the difficulty of their collection for grid operators.

4.1.2. Wind Power Forecasting

The unstable and random nature of wind speed is the primary contributor to the
complexity of creating a stable supply of energy from wind resources. Wind speed is
impacted by multiple atmospheric elements, including wind direction and atmospheric
pressure [80]. Power generation in wind farms fluctuates sharply with changes in wind
speed due to the non-linear generation between power generation and wind speed. En-
hanced forecasting capabilities for wind energy are therefore critical for wind farm site
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selection, energy production planning, and grid stability. Literature searches yielded a
number of reviews conducted on the use of AI for wind power forecasting, with AI methods
creating breakthroughs in the forecasting process [97]. Relevant results from these studies
are highlighted in this section.

AI techniques such as ANNs and SVM have been applied for wind speed forecasting,
primarily generating point forecasts. The stochastic nature of both wind speed and the
conversion of wind to power make uncertainty forecasts with a probabilistic framework
a necessary area of research for wind power forecasting. PIs are therefore employed to
quantify the uncertainty through upper and lower bounds of the forecasted variable [98].
The use of more than one ANN to forecast wind speed is recommended, and appropriate
choices for pre- and post-processing techniques to increase accuracy. Ensemble methods
have also shown promise for future use [99].

Big data research is becoming increasingly relevant to wind speed studies due to
the increase in data sources that can be utilized, including weather satellites, equipment
images, and time series. For example, forecasting using integrated information from wind
farms in various geographic locations of a region is recommended to be studied as an
alternative to only utilizing on-site data to forecast for a single farm [100]. Wind power
forecasting models are generally classified into three categories: physics-based, data-based,
and hybrid [101]. Data-based methods include AI approaches that assist in integrating big
data to forecast wind energy output. For data-based wind forecasting, the most common
approaches applied in studies are those employing AI methods and AI-based hybrid
methods [102]. The hybrid approach of coupling NWP with ML methods, such as ANNs,
is attracting attention due to its potential to produce more accurate forecasts. [101]. Hybrid
applications often lack sufficient interpretability, leading to recommendations for future
work to consider explainable AI methods for wind power forecasting [102].

4.1.3. Marine Power Forecasting

ML and DL can be applied to a variety of areas in the field of marine energy, varying
from perception in remotely sensed data, forecasting/prediction, optimization of design,
and autonomous operations using reinforcement learning. Tidal energy at present is in need
of more accurate energy forecasting methods to efficiently design and locate tidal turbines.
Traditional forecasting methods do not have the full potential to meet this requirement.
Currently, tidal currents are predicted using four method categories: statistical methods,
dynamic models, AI, and hybrid models. Reviews of work utilizing AI for tidal energy
forecasting discuss the utilization of DL for analyzing and extracting the change rules of
tidal currents and using the learned rules for forecasting. DL algorithms are touted as
a method that is not constrained by the weaknesses of current statistical methods and
numerical models. MLP has been utilized for forecasting tidal height, long short-term
memory (LSTM) for tidal water level prediction and meridional and zonal components of
tidal current velocity [103]. Forecasting of significant wave height is an important element
for wave energy management and requires heavy computational power in conventional
numerical simulation methods. ANNs have found applications in this field, with recent
advances including empirical mode decomposition techniques and transformer-based
encoders [81]. LSTM has been used for the prediction of power generation from wave
energy converters and has been shown to be faster and more accurate than the utilization
of numerical simulations [82].

4.2. Integration of Variable Renewable Energy into Power Grid

Energy transition initiatives have prompted power planning scenarios to move from
traditional versions to integrated ones, to account for the characteristics of VRE. In addition
to power generation forecasting, various elements exist which must be considered, includ-
ing power demand forecasting, energy storage systems, performance of energy systems,
and maintenance.
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4.2.1. Power Demand Forecasting

Accurate demand forecasting is critical to ensure reliability of power systems and
provide an uninterrupted power supply to end users. It is important for grid stability and
reliability, enabling grid operators to balance supply and demand in real-time in addition to
assisting with efficient allocation of resources to avoid over-generation or under-generation.
It also helps with minimizing costs associated with the purchase of power at high prices
during peak demand times. Demand forecasting allows for the effective planning of the
integration of VRE sources, including the needed infrastructure and charging schedules for
energy storage systems [104].

ML methods have undergone improvements due to advancements in data analytics
and have become a more standardized method for forecasting projected changes in energy
demand. Reviews of ML techniques for demand forecasting have classified the most
accurate forms based on a system level: on a microgrid/smart building level, ANNs or
hybrid ANNs should be deployed; on a smart grid/smart city level, hybrid ANNs are
found to perform best; and on a national/regional level, linear models display the best
accuracy [24]. Literature surveys of load forecast model research have shown advancements
in ANN to improve their capabilities over traditional methods [105]. A study conducted
for Queensland, Australia employed ANN models to forecast 6 h and daily electricity load
demand using climate data (e.g., temperature, rainfall, solar radiation) and determined
that the best performance was obtained from a hybrid ANN approach with multivariate
adaptive regression spline (MARS), multiple linear regression (MLR), and autoregressive
integrated moving average (ARIMA) models [83]. kNN is another method that has been
utilized for power demand forecasting [106,107]. A study conducted on analysis and short-
term forecasting of energy demand for industrial facilities utilized a modeling approach
based on clustering and kNN, with an error of 3% [108]. A predictive model for energy
consumption applying kNN was utilized in Malaysia and had a minor difference in error
compared to SVM while outperforming ANN [109]. KNN was applied in a study on
predicting the stability of the grid linked with VRE, which involved conducting supply and
demand predictions [110].

4.2.2. Energy Storage

Energy storage options that are commonly deployed include transient variation op-
tions such as pumped storage hydro, adiabatic compressed air, lithium-ion and redox-flow
batteries, and long-term storage such as hydrogen. Forecasting is important for scenarios
in which storage is available and decision-making capabilities are required for when to
charge and discharge batteries. The discussions in previous sections on AI techniques for
forecasting of power generation and demand are therefore applicable for energy storage
scenarios. Cost minimization is the primary planning goal, with the incorporations of
flexibility strategies for real-time scheduling and deployment [111]. Optimum battery
configuration is determined through the optimization of power matching and energy
management algorithms [112]. PSO is widely employed in this framework [113].

For off-grid applications, hybrid VRE systems and microgrids are utilized to com-
pliment energy storage options. AI methods are under study for use in optimization of
coupling VRE resources in Saudi Arabia [72] and supplementing physics-based forecasting
in Kuwait [114]. Some of the issues that arise with the development of these systems
include stability analysis, big data analytics, and optimization of the combined components.
Optimal sizing of hybrid microgrid systems is an example of where AI techniques can be
implemented, where metaheuristic algorithms including PSO and GA have been utilized
with good results. Evolutionary algorithms have been shown to achieve good results when
using three or fewer objectives and therefore should be designed based on the number of
objectives and constraints in the microgrid sizing problem [84].
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4.2.3. System Design, Materials, Monitoring, Performance, and Security

The role of AI is becoming increasingly significant in the space of VRE systems, in-
cluding the system design and materials, system monitoring and performance assessments,
and overall security. The optimized design and sizing of VRE system components is an-
other field in which AI has found applications. An example is ANN-based modelling of
solar-grade silicon under wide temperature variations. Electrical parameters of the studied
solar-grade silicon vary non-linearly with temperature. The ANN-based models allowed
for their prediction using a limited amount of data over a wide temperature range [115]. An
extensive list of more applications on AI for VRE design is provided in other reviews [116].

ML methods have found applications in renewable energy material studies, namely in
the development of materials and devices for energy harvesting, storage, conversion and
power grid optimization. Neural networks have become a recent subject of focus in the
field of physical system modeling with the underlying property physics. The most common
application in this field is the prediction of properties for material screening, which shortens
the time needed. Examples of uses for the developed descriptors include material design
for CO2 capture, battery electrolytes and electrode discovery, and material screening for
solar cells [117]. Closed-loop ML methods are being studied for applications in material
discovery, as they enable the expansion of explored chemical space without the typical costs
of time and effort. This is achieved through pattern detection in material structure–property
relationships to create databases for training models, which will then produce predictions
for other candidates in the chemical space [118]. Perovskites are a material type for which
ML methods are greatly advantageous due to having a large chemical space from which
constituents are selected [119].

AI can be of great assistance in applications for managing the performance and
maintenance of VRE systems. An example of performance management is the use of an
ANN to predict the temperature of the water outlet in a solar collector, through ingesting
seven input variables. The ANN serves to better understand the behavior of the heating
fluid, which can facilitate better use of mathematical models [120]. Another example is the
application of ANNs to enhance the performance of a hybrid distributed generation VRE
systems, in which the ANN was applied as a controller to enhance the quality of the power
network [121].

Predictive maintenance is the augmentation of the system’s current operation states
with the forecasting of future failure states. Predictive maintenance, along with condition-
based monitoring, assists in lowering system maintenance costs, minimizing downtime,
and increasing their useful life. AI methods have been incorporated for studies on devel-
oping prognostic maintenance systems, such as SVM and RF, for reliability assessment
and maintenance optimization [25]. AI techniques allow for monitoring and anomaly
detection of solar energy systems in real time through constant evaluation of performance
data. Variations from the predicted working behavior can be detected swiftly, such as
PV module failures, shading issues, and inverter malfunctions. This allows for increased
reliability of energy systems through minimizing downtime and reducing losses [122].
Wind turbine maintenance is an application of AI which utilizes ANNs, GA, PSO, and
fuzzy logic most frequently. ANNs are employed for monitoring, optimization, forecasting
and decision-making, resulting in them being the most adaptable method. Optimization
and decision-making are mostly performed utilizing GA and PSO, while risk mitigation
employs fuzzy logic [41]. For smart grids, fault detection and classification are a critical
component of self-healing and mitigating system failures. ANNs have been studied for in-
telligent fault detection, classification, and localization, with results indicating high success
rates, and they have the potential to significantly improve power system reliability [123].

With regards to performance prediction, literature reviews have found that ANN and
FL have been used more extensively than other approaches for solar energy performance
prediction. The number of studies conducted on hybrid approaches, such as adaptive
neuro-fuzzy interface system (ANFIS), are few despite their higher prediction accuracy
due to their significant costs and computational time requirements, in addition to the
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complexity they add to the prediction process [88]. Another area for applications of AI is
in system optimization incorporating batteries. Optimum configurations for batteries and
ultra-capacitors have been done with PSO, artificial bee colony optimization, and harmony
search algorithms [124].

Weather variations, in addition to playing a governing role in power generation
forecasting, also impact the resilience and performance of energy systems in addition to
the demand on them. Extreme weather conditions have been the main focus in modelling
weather impacts on power distribution systems, and weather causing specific faults. ML
methods employed in the integration of these conditions for system resilience include DL,
ANNs, and probabilistic modelling. Despite weather variables playing a prominent role in
the degraded reliability of VRE systems, they are often overlooked in reliability analysis. A
lack of modelling of the collective effects of weather conditions for forecasting total system
disruptions has been noted in the literature [125].

With the increased popularity of adopting smart grids along with VRE systems,
attention has been brought to several critical issues, including individual privacy, security,
and reliability in terms of communication and performance [126]. The cyber-physical
system of a smart grid integrating VRE can be made more secure using AI. Example studies
have looked into utilizing neural networks to identify the point of attack and impact of
cyber attacks, with the breach of consumer data privacy being identified as a significant
threat [127].

4.2.4. Cost Management

The costs involved in integrating VRE into power systems are not taken into account for
the levelized cost of electricity (LCOE), which can result in them negatively impacting the
economic feasibility of VRE. Several cost components control the integration of VRE systems
based on their characteristics, including uncertainty and variability. The uncertainty stems
from the differences between VRE forecasted output and actual generation, and the need
to balance the differences in a short time period. The variability relates to power being
generated in specific weather conditions, which does not always match demand, making
the frequent ramping up and down of backup generators necessary additional profile
costs [128]. As discussed in previous sections, AI can assist in more accurate VRE power
generation and demand forecasting, thus assisting in the mitigation of uncertainty and
variability costs. With increased availability of data on energy demand and supply, AI
will assist in optimized scheduling based on weather conditions and consumer patterns,
enabling further cost reductions [129].

5. Future Research Directions

With the increased penetration of VRE in the provision of energy supplies, challenges
have been identified in optimizing their utilization. This section delineates prospective
research trajectories in the realm of AI applied to VRE systems, elucidating strategic
avenues to optimizing their efficacy. Against the backdrop of a transformative global
energy paradigm increasingly reliant on renewable sources, the challenges inherent in
maximizing VRE potential necessitate nuanced and innovative AI-driven solutions. The
exploration in this section covers five pivotal trajectories, each addressing angles within
the convergence of AI methodologies and VRE management. From confronting intricacies
associated with data quality to augmenting transparency in AI models, and from probing
the quantum landscape to conjoining digital twins with AI, this segment establishes a
comprehensive foundation for leading-edge advancements. Further enrichment is garnered
through the inclusion of natural language processing (NLP), emphasizing the vital role of
linguistics in human–machine interactions and data comprehension. These prospective
research trajectories aspire to improve VRE by increasing their efficiency, dependability,
and eco-sustainability. Figure 7 summarizes the main gaps and challenges identified in this
paper and the future research directions proposed to overcome them.
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5.1. Data Availability, Types, and Quality

With the digitalization of energy, the need for data availability, processing, and inter-
pretation is becoming increasingly significant. ML is being employed for energy distribution
optimization and provides data-based services for VRE, which include supply, marketing,
storage, and usage, making it an integral part of the transition to smart grids [130]. Big
data research is primarily focused on working with structured data. Numerous forms of
unstructured data exist, which could contribute to the betterment of VRE operations, such
as remote sensing records and metrics of plant operations. Working with multi-modal
data would provide opportunities for potential betterment of forecasts and is an area being
looked into for research applications [102].

The collection of data on user consumption allows for time series analysis to infer
valuable data characteristics, which can be used for forecasting. Residential and commer-
cial buildings are increasingly being monitored in real-time, allowing the development
of historical records on consumption [131]. Current historical records are impacted by
numerous challenges, including potential limited access by utility providers due to data
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protection regulations and privacy concerns [132]. Another issue is the fragmentation of
data across different utility providers and regions. Data quality may be impacted by errors
in collection and metering accuracy in addition to outdated metering technologies being
employed in older buildings [133]. Future efforts are needed to construct uniform datasets
through updating metering technologies and data transmission methods and overcoming
the challenges of data access and fragmentation through government policies.

Availability and quality of historical climate observations is a necessary component
in the utilization of AI methods for energy forecasting generation. The lower precision,
shorter record lengths, and calibration issues are fundamental problems with the utilization
of satellite and reanalysis data, making ground observation availability of great importance.
Ground observations can be plagued with issues in data quality resulting from poor
configuration and/or maintenance of stations, inaccurate instrument readings, and issues
with post processing [134,135]. Advancements in sensor technologies and increasing
lengths of satellite measurement records can help combat this issue, as can commitments to
the maintenance and expansion of observation networks and open data-sharing initiatives
supported by governments and research institutions.

5.2. Explainable Artificial Intelligence

AI models are generally categorized through three classifications: white, grey, and
black-box models. White models are utilized for systems with parameters that are known
and well-defined in terms of parameters. Grey models are utilized when the system
formulas and equations are known, but their parameters are not. Metaheuristic and
evolutionary methods are generally employed in this category. One of the main current
challenges being faced in the use of AI for forecasting is the model being a black box, in
which the mathematical formulations of the relationship between input and output are not
fully revealed [136]. Black-box models are usually utilized when the system is completely
unknown, and the majority of current ML models work as black boxes [116].

To effectively understand and manage AI systems, it is important to incorporate
explainability to understand how the output is produced. Explainability has therefore
been determined as a critical factor in the wider adoption of AI applications in various
sectors [137]. The increased use of ML, and specifically DL models, has led to the field
of explainable artificial intelligence (XAI) undergoing significant growth. In the fields of
energy and power, accountability in decision-making is critical. Therefore, XAI has the
potential to solve the issues stakeholders have in trusting ML outputs. One main limitation
in the application of XAI is the absence of protocols and definitions to standardize it.
Another is the absence of evaluation metrics or metrics on the quality of explanation
provided by the technique. An important challenge presents itself in the interpretability of
the output from XAI techniques, and how to use them to make correct recommendations.
Overcoming these challenges and limitations would present opportunities for XAI to be
deployed for energy management and control, power system monitoring, and consumption
tracking among other potential applications [138].

5.3. Quantum Artificial Intelligence

Traditional approaches for renewable energy systems rely on classical computing
methods, which may soon hinder progress with the growing size and complexity of
applications in the field. Quantum computers utilize quantum bits or qubits as units of
fundamental information. Quantum hardware and algorithm advancements have made
quantum computing an attractive option for future research directions in energy [139].

Quantum artificial intelligence (QAI) presents itself as an attractive option for future
large-scale VRE developments. QAI has found applications in various areas of renew-
able energy, including power distribution networks, energy scheduling, network supply
optimization, power forecasting, system fault diagnosis, and system control [140]. For
ML tasks that are computationally challenging, quantum algorithms can help with faster
completion and reduce the time constraints. This utilization of quantum subroutines for
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ML techniques is called quantum ML (QML) [141]. QLM allows for the training of larger
and more complex models in a more efficient manner through the analysis of big data
containing multitudes of variables. Such capabilities can contribute to multiple aspects of
energy system management, such as more efficient tracking and prediction of meteorologi-
cal variables, allowing for more efficient and optimized use of resources and preparedness
for VRE systems with changing weather conditions [142].

5.4. Digital Twins Coupled with Artificial Intelligence

Digital twins are virtual representations of physical systems created through the use of
various data sources. The purpose of a digital twin is to mirror the attributes and behavior
of the real-world physical counterpart. It allows for real-time data integration, two-way
communication of information between the digital and physical systems, simulation of
scenarios, performance prediction, and lifecycle management.

Digital twin technology shows promise at assisting in the optimization of energy plant
operations and assets to further the goals of decarbonizing the energy sector. The use
of energy digital twins (EDT) to digitalize processes can contribute to better efficiency
and optimization of energy systems. It can contribute to better energy management,
maintenance, design, existing site extensions, and VRE integration. Battery digital twins
are predicted to have a significant future role in the development of battery technologies,
allowing for the development of longer life battery systems. Challenges identified for
widespread application include the lack of standardization of testing and data processing
procedures as well as the need to combine electrochemical information and novel sensing
methodologies in models for estimation of system lifetime [143]. Additionally, EDTs
have found applications in the chemical energy and power system fields. One challenge
identified was the lack of discussions around the ability of EDTs to validate operational
decisions at run time before application at power plants. Quality assurance processes must
be included in order to promote wider EDT adoption with minimal risks [144].

AI techniques can contribute to EDT developments in multiple ways, such as opti-
mization for the reduction of intractable search-spaces, generating models for complex
systems, and time series forecasting for modeling extreme events [145]. In order for AI
and ML algorithms to be applied in this field, they must achieve a level of maturity based
on a concrete understanding of what they can contribute to the energy industry. Research
is needed to incorporate AI engineering processes into EDT processes in addition to uti-
lizing XAI [144]. Through simulation of behavioral characteristics of VRE sources using
EDT, system operators can better optimize grid performance, resulting in increased energy
efficiency and cost savings [146].

5.5. Natural Language Processing

Natural language processing (NLP) is an area under the domain of AI which explores
how to utilize natural language text and speech for the development of tools and methods
that enable computer systems to perform tasks in response [147]. NLP has found uses
in a number of applications related to renewable energy. One such application is in the
forecast of stocks using a NLP technique to investigate the sentiment of investors on
social media, combined with deep learning and benchmark models, with study outcomes
showing that the sentiment variables provide valuable information that is not incorporated
through traditional financial market analysis, and enhance the forecasts of renewable
energy stocks [148]. NLP is also being utilized as an assistant and advisor on decisions for
policymakers and energy producers [149].

For future applications, NLP could be used to analyze weather forecasts and historical
data in order to make predictions about renewable energy resource availability, helping
to optimize energy production and storage. NLP can also help utilize unstructured data
included in reports, emails, etc., in addition to making human–machine communication
easier [150].
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6. Conclusions

This paper undertakes a thorough review and examination of the landscape of inte-
grating artificial intelligence (AI) with variable renewable energy (VRE) systems, laying
a foundation for optimizing their utilization in the dynamic context of the global energy
paradigm. The initial section meticulously assesses the current state of VRE technologies,
emphasizing their pivotal role in achieving sustainability objectives. It elucidates the
challenges inherent in VRE, ranging from intermittency to grid integration complexities,
and proposes AI-driven solutions to enhance reliability and efficiency. A critical facet
highlighted throughout is the substantial impact of weather variations on VRE system
performance, bringing attention to the need for robust forecasting solutions. The extensive
exploration of these applications contributes to a deeper understanding of the transforma-
tive potential of AI in steering VRE systems towards heightened efficiency and reliability.

Transitioning to the next section, the paper delves into the application of ML techniques
for VRE forecasting and management. By dissecting various ML models and algorithms,
it underscores their versatility in addressing the intricate nature of VRE systems. The
importance of diverse, high-quality data in training robust models is underscored, while
the inclusion of ensemble methods and hybrid models showcases innovative approaches
to bolster the predictive capabilities of AI. The weather-focused discussions within this
context underscore the influence of meteorological conditions on the performance of VRE
systems, emphasizing the pivotal role of accurate weather forecasting in optimizing en-
ergy production.

The identified future research directions provide strategic insights to further harness
the capabilities of AI for VRE. Addressing the challenges posed by diverse data types and
qualities emerges as a crucial focal point, necessitating concerted efforts in data handling
and accessibility for AI training and testing. The imperative of XAI has been highlighted
as pivotal in fostering trust among end-users, countering the prevailing opacity of “black
box” ML models. QAI stands out as a promising frontier with the capacity to expedite and
empower complex AI models in the VRE domain. Moreover, the envisioned convergence
of EDTs with AI, once matured, promises advancements in optimization and time series
forecasting for VRE systems. This coupling holds the potential to elevate the efficiency
and resilience of energy grids. Furthermore, the incorporation of NLP introduces a new
dimension, offering avenues for improved human–machine communication, diverse data
format utilization, and enhanced forecasting of VRE-related variables.

In summary, this paper asserts the transformative potential of AI in mitigating chal-
lenges associated with VRE, extending from improving forecasting accuracy to optimizing
energy distribution and grid integration. By encompassing an in-depth analysis of the
present state, application of ML techniques, and prospective research trajectories, the paper
provides valuable insights for researchers, policymakers, and industry stakeholders. Policy
interventions are recommended to incentivize research and development in AI applications
for VRE, fostering collaboration between industry stakeholders and research institutions.
Practical applications should prioritize the integration of XAI models, ensuring trans-
parency and accountability in decision-making processes. Additionally, investments in QAI
research and the convergence of EDTs with AI warrant strategic consideration to capitalize
on their transformative potential. Ultimately, the adoption of these recommendations can
pave the way for a more sustainable and efficient future in the realm of VRE systems.
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Nomenclature

AI Artificial Intelligence
ANN Artificial Neural Network
ANFIS Adaptive Neuro-Fuzzy Interface System
ANOVA Analysis of Variance
ARIMA Autoregressive Integrated Moving Average
CNN Convolutional Neural Network
DL Deep Learning
EDT Energy Digital Twins
GA Genetic Algorithm
GHI Global Horizontal Irradiance
LCOE Levelized Cost of Electricity
LSTM Long Short-Term Memory
MARS Multivariate Adaptive Regression Spline
MA Metaheuristic Algorithm
ML Machine Learning
NLP Natural Language Processing
PI Prediction Interval
PSO Particle Swarm Optimization
PV Photovoltaic
QAI Quantum Artificial Intelligence
QML Quantum Machine Learning
RF Random Forest
RMSE Root Mean Square Error
SVM Support Vector Machine
SWH Significant Wave Height
VRE Variable Renewable Energy
WSTD Wavelet Soft Threshold Denoising
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