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Abstract: As the scale of electricity consumption grows, the peak electricity consumption prediction
of campus buildings is essential for effective building energy system management. The selection of
an appropriate model is of paramount importance to accurately predict peak electricity consump-
tion of campus buildings due to the substantial variations in electricity consumption trends and
characteristics among campus buildings. In this paper, we proposed eight deep recurrent neural
networks and compared their performance in predicting peak electricity consumption for each
campus building to select the best model. Furthermore, we applied an attention approach capable
of capturing long sequence patterns and controlling the importance level of input states. The test
cases involve three campus buildings in Incheon City, South Korea: an office building, a nature
science building, and a general education building, each with different scales and trends of electricity
consumption. The experiment results demonstrate the importance of accurate model selection to
enhance building energy efficiency, as no single model’s performance dominates across all buildings.
Moreover, we observe that the attention approach effectively improves the prediction performance of
peak electricity consumption.

Keywords: smart energy systems; building energy management systems; energy forecasting; deep
recurrent neural networks

1. Introduction

The prediction of electricity consumption in campus buildings is crucial to effectively
manage building energy systems and prepare future electricity demand. Although the
operational periods of campus buildings in South Korea are reduced during vacations
corresponding to peak energy demand seasons, the energy demand of campus buildings
has a significant local socioeconomic impact due to their scale [1–3]. In the case of the
USA, educational buildings account for more than 19% of total energy consumption [4].
Accurate predicting of the electricity consumption in campus buildings helps electricity
suppliers plan their distribution in advance. This not only prevents the wastage of electricity
production but also helps avoid power outages [5].

Due to substantial variations in electricity consumption trends among campus build-
ings, influenced by seasonal and structural differences, the selection of the appropriate
model is of significant importance to accurately predict electricity consumption. For
instance, during the semester seasons, the variability of visitors who randomly change elec-
tricity consumption usage is high relatively in a general education building compared to an
administrative building [6]. An engineering building accommodates various experimental
productions that require significant electricity consumption [7]. Furthermore, the electricity
consumption in a large-scale building tends to be relatively high due to the installation of
systems, such as lighting and heating, ventilation, and air-conditioning (HVAC) that have
substantial electricity demands [8].
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There are many methods that have been proposed in prior works to predict electricity
consumption according to forecasting horizons such as short-term, medium-term, and long-
term [9,10]. Traditional prediction methods such as autoregressive (AR), autoregressive
moving average (ARMA), and autoregressive integrated moving average (ARIMA) were
utilized to predict electricity consumption [11]. However, since traditional prediction
methods typically rely on electricity consumption trends, the dynamic fluctuations in
electricity consumption pose a challenge when attempting to apply these methods for
accurate prediction results.

To overcome these limitations, several researchers have employed a supervised
learning (SL) approach, including random forest (RF) [12], support vector regression
(SVR) [13,14] and extreme learning [15], artificial neural network [16], and deep neural
network [17]. These methods were trained by searching for best parameters that describe
the hidden relationships between inputs and outputs and yield the lowest errors for the
test instances. Moreover, ensemble learning which combines different algorithms have
been applied to improve prediction performances [18,19]. They attempt to predict by using
weights to combine different methods and demonstrate better performance than a single
prediction model [20]. While SL-based methods improve prediction performances, they
usually struggle to observe the hidden sequence patterns due to the limitation of their
training mechanism [21].

Several studies have adopted various recurrent neural network approaches due to
their excellent training performances by capturing time-series patterns. Rahman et al. [22]
proposed a deep recurrent neural network (RNN) model for medium- and long-term
electricity consumption predictions. A study utilized long-short-term memory (LSTM),
which captures dynamic time-series trends better than RNN for predicting short-term
residential consumption prediction [23,24].

Subsequently, several studies proposed electricity consumption predic2tion models
by utilizing the combination of a convolutional neural network (CNN) and BiLSTM to
enhance prediction performances [25,26]. In [26], the experiment results demonstrate
that the proposed model outperforms over existing methods, such as linear regression,
LSTM, and CNN-LSTM on the IHEPC dataset. Additionally, several researchers have
applied an attention mechanism with LSTM [27,28] and with CNN-LSTM [29], which
considers the effects for all the past hidden states. They successfully improve prediction
performances, and their performance differences appear based on the characteristics of
commercial buildings [30].

Recently, attention approach-based approaches have been utilized to address energy
prediction problems. Li et al. [31] proposed RNN with an attention-based method for
predicting 24 h ahead the building cooling load prediction. Another study adopted an
attention approach to address building energy consumption prediction problems [32].
The results of this research demonstrate the importance of features through the attention
approach. Ding et al. [33] proposed LSTM with an attention method to forecast building
energy prediction. This study executed a case study of a green building and showed
that the LSTM with the attention method is better than the existing methods such as
LSTM and light gradient boosting machine (LGBM). The temporal attention approach was
utilized to predict electricity power load for providing reliable decisions regarding power
systems [34]. The experiment results on the real-world power load dataset obtained from
American Electric Power demonstrate that the attention approach is effective in enhancing
prediction performance.

Inspired by research results, this study carries out comparison analysis for multiple
campus building peak electricity consumption by using deep recurrent neural networks
(RNNs). The peak electricity consumption prediction of campus buildings is crucial to
effectively facilitate energy management since the electricity consumption demands can
be approximately 85% higher than expected [35], and the majority of them are measured
in a peak time [36]. Specifically, we investigate the performance differences based on
electricity consumption trends and characteristics of campus buildings by using six deep
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RNN models, which include LSTM, BiLSTM, CNN-LSTM, CNN-BiLSTM, CNN-LSTM
with attention (CNN-LSTM-A), and CNN-BiLSTM with attention (CNN-BiLSTM-A).

The main differences of this study compared to previous works are as follows. First,
in contrast with [30], we focus on developing models for predicting peak electricity con-
sumption of the campus buildings by using datasets collected in the real world. Second,
we employ CNN-LSTM and CNN-BiLSTM with attention approaches to address peak
electricity consumption problems. We demonstrate that the attention method helps to
improve prediction performance of peak electricity consumption. Third, we emphasize
the importance of determining appropriate hyper-parameters through sensitive analysis to
enhance prediction performance when training learning-based models.

This paper is organized as follows. Section 2 introduces all the proposed prediction
models based on deep RNNs explored in this research. We describe the dataset used in
the training and test phases of the prediction models, as well as experiment settings in
Section 3. Section 4 provides the results in comparative and sensitivity analyses with the
considered prediction models for each campus building. Finally, conclusions and future
works are presented in Section 5.

2. Deep RNN Algorithms for Peak Electricity Consumption Prediction
2.1. Features Considered in This Study

In this subsection, we describe the input features and output value used when training
and testing deep RNNs-based prediction models. The input features comprise weather,
calendar, and trend information. The weather information includes five elements such as
temperature (◦C), humidity (%), radiation (W/m2), cloudiness (Number), and wind speed
(m/s) since those help to capture the impact of the change in peak electricity consumption.
As the electricity consumption of campus buildings is related to the special characteristics
such as seasonality (Number), rest day (Number), and vacation (Number), we consider
these elements as input features. Finally, we consider electricity consumptions (kW) ob-
served before the peak time, since these consumptions are directly associated with the
trends of expected peak electricity consumption (kW).

The output value is the peak electricity consumption, which indicates the sequence
values observed in hourly increments for a peak time on a day. We remark that the
prediction models predict the expected peak electricity consumption in hourly increments
for a peak time on a day only considering the input features observed before peak time.

In detail, Table 1 displays and defines the input features and output value observed at
time t on day d as follows. The temperature, humidity, radiation, cloudiness, seasonality,
rest day, vacation, and electricity consumption are defined as τt,d, ut,d, rt,d, qt,d, st,d, rt,d,
vt,d, and et,d, respectively. These elements collectively form an input vector, denoted as
xt,d, represented as xt,d = [τt,d, qt,d, rt,d, ut,d, st,d, rt,d, vt,d, et,d]. The output value at a time k
(where k = T + 1) on day d is the electricity consumption, defined as lk,d.

Table 1. The input features and output value observed at time t on day d.

Symbols Categories Variable Units

Input

Weather

Temperature °C
Humidity %
Radiation W/m2

Cloudiness Number
Wind speed m/s

Calendar
Seasonality Number

Rest day Number
Vacation Number

Trend Electricity consumption kW

Output Prediction value Peak electricity consumption kW
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We utilize input features captured from t to the previous peak time T on day d to forecast
each peak electricity consumption from the starting peak time k to the end peak time K on day d.
Therefore, when a prediction model attempts to predict each peak electricity consumption at time
T, the input features used and the peak electricity consumption are denoted as xt,d, t = 1, 2, . . . , T,
d = 1, 2, . . . , D, and lk,d, k = T + 1, T + 2, . . . , K, d = 1, 2, . . . , D, respectively.

2.2. Peak Electricity Consumption Prediction Models Based on Deep RNN

The six different deep RNNs-based prediction models considered in this study are
introduced in this subsection, respectively. First, we describe the LSTM-based peak elec-
tricity consumption prediction model. LSTM has been utilized in various domains such
as natural language process (NLP) [37], photovoltaic power prediction [38], and visual
recognition [39]. The advantage of LSTM structure is its ability to address the long-term
dependencies through the use of gate functions and overcome the vanishing gradient
problem [40].

Figure 1 illustrates the structure of the LSTM cell for the proposed LSTM-based peak
electricity consumption prediction model [38], which consists of three components: a forget
gate denoted as ft,d, an input gate, and an output gate denoted as it,d, and an output
gate denoted as ot,d. These gates control how much the short-term- and long-term states
observed in previous and current times are memorized. To calculate the long-term state at
time t on day d, denoted as Ct,d, we define a candidate long-term state as C̃t,d. The previous
long-term state, denoted as Ct−1,d, interacts with the previous short-term state, denoted as
ht−1,d, and C̃t,d to calculate both ht,d and Ct,d.

Energies 2023, 16, x FOR PEER REVIEW 4 of 14 
 

 

Trend Electricity consumption kW 
Output Prediction value Peak electricity consumption kW 

We utilize input features captured from 𝑡  to the previous peak time 𝑇  on day 𝑑  to 
forecast each peak electricity consumption from the starting peak time 𝑘 to the end peak 
time 𝐾  on day 𝑑 . Therefore, when a prediction model attempts to predict each peak 
electricity consumption at time 𝑇 , the input features used and the peak electricity 
consumption are denoted as 𝑥 , , 𝑡 = 1,2, … , 𝑇 , 𝑑 = 1,2, … , 𝐷 , and 𝑙 , , 𝑘 = 𝑇 + 1, 𝑇 +2, … , 𝐾, 𝑑 = 1,2, … , 𝐷, respectively. 

2.2. Peak Electricity Consumption Prediction Models Based on Deep RNN 
The six different deep RNNs-based prediction models considered in this study are 

introduced in this subsection, respectively. First, we describe the LSTM-based peak 
electricity consumption prediction model. LSTM has been utilized in various domains 
such as natural language process (NLP) [37], photovoltaic power prediction [38], and 
visual recognition [39]. The advantage of LSTM structure is its ability to address the long-
term dependencies through the use of gate functions and overcome the vanishing gradient 
problem [40]. 

Figure 1 illustrates the structure of the LSTM cell for the proposed LSTM-based peak 
electricity consumption prediction model [38], which consists of three components: a 
forget gate denoted as 𝑓 , , an input gate, and an output gate denoted as 𝑖 , , and an output 
gate denoted as 𝑜 , . These gates control how much the short-term- and long-term states 
observed in previous and current times are memorized. To calculate the long-term state 
at time 𝑡  on day 𝑑 , denoted as 𝐶 ,  , we define a candidate long-term state as 𝐶 ,  . The 
previous long-term state, denoted as 𝐶 , , interacts with the previous short-term state, 
denoted as ℎ , , and 𝐶 ,  to calculate both ℎ ,  and 𝐶 , . 

 
Figure 1. Cell structure of LSTM-based peak electricity consumption prediction model. 

tanh

tanhForget gate Input gate

Output gate

Block cell

Figure 1. Cell structure of LSTM-based peak electricity consumption prediction model.

The detailed formulations for the LSTM cell at time t on day d are defined as
Equations (1)–(6).

ft,d = σ(W f [ht−1,d, xt,d] + b f ) (1)

it,d = σ(Wi[ht−1,d, xt,d] + bi) (2)
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C̃t,d = δ(WC[ht−1,d, xt,d] + bC) (3)

Ct,d = ft,d ∗ Ct−1,d + it,d ∗ C̃t,d) (4)

ot,d = σ(Wo[ht−1,d, xt,d] + bo) (5)

ht,d = ot,d ∗ δ(Ct,d) (6)

where W f , Wi, WC, and Wo are the weight values and b f , bi, bC, and bo are bias parameters
of the LSTM cell, which are necessary to be trained through back-propagation. To calculate
the output for each gate, we utilize sigmoid function, denoted as σ. We also employ
hyperbolic tangent function, denoted as δ to calculate internal state C̃t,d and short-term
state ht,d (∗) indicates the element-wise multiplication.

Figure 2 illustrates the architecture of the BiLSTM-based prediction model. Although
the structure of BiLSTM is very similar to LSTM structure, it can more carefully consider
both the past and future states for a specific time through forward and backward short-

term states [41], denoted as
→
h t,d and

←
h t,d, respectively.

→
h t,d controls the degree to which

sequential trends memorize between given inputs and outputs, while
←
h t,d captures the

complex time-series relationships of the past from future sequential patterns. This structure
helps to enhance prediction performance by learning periodic dependencies between the
input and output values.
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Figure 2. Architecture of BiLSTM-based peak electricity consumption prediction model.

Next, we introduce the peak electricity consumption prediction models based on
the CNN-LSTM and CNN-BiLSTM, respectively. These algorithms were well known for
their impressive performance in energy prediction problems [42,43]. Figure 3 illustrates
the architecture of the CNN-LSTM-based prediction model, which comprises multiple
one-dimension convolutional neural networks (1D-CNNs) and LSTMs. The architecture
of CNN-BiLSTM is identical to CNN-LSTM, with the only difference being the incorpo-
ration of BiLSTM. Accordingly, we only describe the structure of the CNN-LSTM-based
prediction model.

1D-CNNs are designed with two 1D convolutional layers, each having a specific kernel
size. Additionally, a max pooling layer is employed with a particular pixel window and
strides after each 1D-CNN. Initially, 1D-CNNs uses xt,d, t = 1, 2, . . . , T, d = 1, 2, . . . , D, to
extract compacted features representing complex irregular trends of electricity consumption.
These compacted features are then used as input values for each LSTM and subsequently
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passed to fully connected neural networks for predicting lk,d, k = T + 1, T + 2, . . . , K,
d = 1, 2, . . . , D. This implies that the output layer of the fully connected neural network
has K nodes, with each node’s value representing an hourly peak electricity consumption.
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Finally, we describe the attention approach applied for the proposed CNN-LSTM
and CNN-BiLSTM prediction models. This approach helps to capture long sequential
input features by utilizing the context vector, which controls the importance level of the
input states. In this study, we utilize the Luong attention approach [44], which quickly
computes the hidden state vector compared to the Bahdanau attention approach [45] by
employing local attention. The Luong attention approach utilizes global and local attention
phases. During the global attention phase, the context vector is employed to calculate
the importance level of each input feature. The context vector aims to capture effectively
improved states to accurately predicting lk,d by calculating the weighted average over all
the source states [40]. The goal of local attention is to understand the importance level
of relevant states within a particular window size. This approach offers the advantage of
avoiding the computationally expensive nature of soft attention, as suggested in [46], and
is easier to learn compared to the hard attention approach.

3. Experiment Settings
3.1. Dataset

The datasets, including the hourly recorded weather information and electricity con-
sumption for each building, were collected in Incheon City, South Korea, from 1 December
2019 to 31 July 2021, resulting in a total of 39,240 instances. For the training of the proposed
models, we selected 24,192 instances, while the remaining instances were employed as test
instances. We note that the proposed models exclusively utilize input features captured
between 06:00 to 09:00 to predict the expected peak electricity consumption between 10:00
to 15:00. Therefore, we extracted the input and output values observed between 06:00 to
15:00 from both the training and test instances to train the proposed models and evaluate
their performance.

Table 2 presents the descriptive statistics of electricity consumption for each building.
There are three different types of buildings: office, nature science, and general education.
The nature science building exhibits lower peak and off-peak electricity consumption
compared to the others. Conversely, the peak electricity consumption and its standard de-
viation in the general education building are higher than in the other buildings. This could
be attributed to the higher variability in the number of visitors to the general education
building, as well as the larger overall visitor count in comparison to the other buildings.
In addition, the fluctuations of the peak electricity consumption for the general education
building are high compared to the other buildings.
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Table 2. Descriptive statistics of electricity consumption for each building.

Building Types
Electricity Consumption

Peak Off-Peak Average Standard
Deviation

Office 451.0 95.0 202.1 49.9
Nature science 298.0 13.0 65.8 55.9

General education 565.0 66.0 178.4 77.3

Furthermore, we perform a standard uncertainty analysis, as suggested in [43], on
the variables representing weather conditions to describe the difference between seasons.
Table 3 displays the standard uncertainty levels for each variable across the four seasons.
Humidity and cloudiness are measured on scales of 0–100 and 0–10, respectively, with
higher values indicating increased wetness and cloudiness. The results describe that the
standard uncertainty level for the variables considered in this study is similar, while the
uncertainty levels of temperature and radiation variables are higher in spring and autumn
compared to other seasons.

Table 3. Standard uncertainty level of each variable according to each season.

Models
Standard Uncertainty Level

Temperature Humidity Radiation Cloudiness Wind Speed

Spring 0.0066 0.0031 0.0891 0.0022 0.0041
Summer 0.0015 0.0022 0.0609 0.0009 0.0011
Autumn 0.0058 0.0024 0.0852 0.0008 0.0038
Winter 0.0054 0.0021 0.0611 0.0015 0.0017

3.2. Measure Metrics

To analyze the effectiveness of the proposed models for each building, three well-
known metrics such as mean absolute error (MAE), root mean square error (RMSE), and
coefficient of variance (CV) are adopted and denoted as follows:

MAE =
1
N

K

∑
k=1

D

∑
d=1

∣∣∣lk,d − l̂k,d

∣∣∣ (7)

RMSE =

√√√√ 1
N

K

∑
k=1

D

∑
d=1

(
lk,d − l̂k,d

)2
(8)

CV =

√
1

N−1 ∑K
k=1 ∑D

d=1

(
lk,d − l̂k,d

)2

A
× 100 (9)

where l̂k,d and A are the predicted peak electricity consumption at time k on day d and the
mean of the actual peak electricity consumption, respectively. N is the total number of
observations.

3.3. Training Details

Discovering adequate hyper-parameters of deep RNNs is crucial to obtain high perfor-
mance for peak electricity consumption. Yet, due to a large search space, it is difficult to
decide proper hyper-parameters. Hence, we perform a random search [47] to select best
hyper-parameters of all the proposed models, as illustrated in Figure 4.
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Figure 4. The progress of training by selecting best hyper-parameters for each model.

Based on the random search, the hyper-parameters for each prediction model are
determined as follows. All prediction models consist of three recurrent layers, each of
which has 128, 64, and 32 nodes, along with five fully connected layers consisting of 512,
256, 128, 64, and 32 nodes, respectively. In the case of 1D-CNNs, a kernel size is set to be
2× 2, and two strides were used in a max pooling layer. Rectified linear units [48] serve
as activation function in all layers of all the proposed models. The batch size is set to one
to consider time-series properties of input features [49], and we utilized Adam optimizer
for training the models. Moreover, we set early stopping epoch to 30 to resolve overfitting
problem. At the beginning of training all models, weights were randomly initialized within
the range of zero to one.

4. Experiment Results

The performance comparisons between the applied models are carried out in terms
of MAE, RMSE, and CV for each building, as presented in Table 4. Furthermore, to
demonstrate deep RNN algorithms, we implemented XGBoost, which is a tree-based
algorithm and well known to be an effective energy prediction [50]. Bold values imply the
best performance which can minimize prediction errors among the considered models.

Table 4. Comparison results for the proposed models across each campus building.

Models
Office Nature Science General Education

MAE RMSE CV MAE RMSE CV MAE RMSE CV

XGBoost 16.16 22.26 9.81 11.21 16.74 10.11 17.62 24.11 20.58

LSTM 14.63 20.68 8.48 10.42 15.24 9.94 15.50 22.73 19.82
BiLSTM 14.16 20.53 8.44 9.87 14.91 9.97 14.19 21.73 12.61

CNN-LSTM 12.85 18.47 8.48 6.64 9.80 10.75 17.06 24.17 13.81
CNN-BiLSTM 12.50 18.36 8.56 6.06 9.23 9.85 19.15 25.52 12.51

CNN-
LSTM-A 12.36 17.90 8.11 6.17 9.43 10.41 15.03 24.21 14.77

CNN-
BiLSTM-A 12.25 17.86 7.99 6.97 9.98 11.07 14.06 19.89 12.15

It is observed that the prediction performance of any single model is not dominant.
The results imply the accurate model selection is essential to improve prediction accuracy
and manage an efficient energy system for each campus building. Moreover, the proposed
models outperform XGB for all buildings, which imply neural networks that can observe
sequence trends and improve peak electricity consumption performance.

When fluctuation of electricity consumption is high, the performances of CNN-LSTM
and CNN-BiLSTM are better than LSTM and BiLSTM. This means that the CNN helps
to capture the high changes in electricity consumption. The prediction performances of
CNN-BiLSTM-A tend to be more effective compared to the other models. The results might
need to be associated with the fact that BiLSTM and the attention approach contribute to
precisely observing sequential patterns between input and output values.

To analyze the performance of the proposed models with respect to different seasons,
which exhibit varying trends in electricity consumption, we investigate the RMSE obtained
from these models for each building, as shown in Figure 5a–d. Moreover, Figure 6a–c
visualize the details of the actual and predicted peak electricity consumption, respectively,
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of each model across all seasons. The RMSE deviation for all models is notably high when
attempting to estimate peak electricity consumption for three campus buildings during
spring and autumn, as weather conditions during these seasons exhibit a high level of
uncertainty, as shown in Table 3.
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These results suggest that CNN-BiLSTM-A outperforms the other models for office
and general education buildings regardless of seasons. These results are related to the fact
that the attention approach helps to capture the relevant sequential patterns between inputs
and outputs. In contrast, LSTM and BiLSTM show relatively high RMSE compared to the
other models. This is due to their simple neural network architecture, which may be less
effective for predicting peak electricity consumption. Furthermore, from Figures 5b and 6b,
we observe that the prediction deviation of all models is relatively high for the nature
science building in summer. This reveals that the performance of all models is ineffective
in predicting peak electricity consumption. This inefficiency is attributed to the significant
differences between electricity consumption during peak times and before peak times, as
well as the high fluctuations in hourly electricity consumption. Nevertheless, CNN-BiLSTM-
A consistently exhibits better prediction performance compared to the models. Hence,
CNN-BiLSTM-A proves valuable in managing energy systems by accurately predicting
peak electricity consumption of campus buildings in the real world.

Finally, we conduct a sensitivity analysis to investigate how changes in peak electricity
consumption are influenced by variations in the number of training instances and hyper-
parameters since these factors impact the training performance of deep RNN approaches.
Table 5 displays the MAE and RMSE of each model according to the number of training
instances and loss function. It is evident that the performance of the proposed models tends
to improve when large training instances are used during training except for CNN-LSTM-A.
The LSTM, BiLSTM, CNN-LSTM, and CNN-BiLSTM models show greater efficiency when
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utilizing MAE as the loss function than when using MSE. In contrast, CNN-LSTM-A and
CNN-BiLSTM-A reduce prediction errors when using MSE rather than MAE. It implies
that appropriate hyper-parameter settings can significantly impact prediction performance
depending on a specific algorithm. Additionally, the results indicate the importance of
selecting the number of training instances when developing deep RNN-based electricity
prediction models. Therefore, the operator of the campus building successfully enhances
energy systems by developing the electricity consumption prediction model for each
building through suitable hyper-parameter settings suggested in Table 5.
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Figure 6. Visualization of the actual and predicted peak electricity consumption of each model across
all seasons in three buildings.
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Table 5. The results of the proposed models according to different number of training instances and
loss functions.

Loss Functions Models

Number of Training Instances

4 8 12

MAE RMSE MAE RMSE MAE RMSE

MAE

LSTM 18.96 25.67 16.34 22.6 16.42 21.29
BiLSTM 18.91 25.72 15.29 21.82 15.49 21.73

CNN-LSTM 18.42 24.94 17.7 24.76 16.97 24.17
CNN-BiLSTM 20.23 27.60 17.83 23.95 18.58 25.52
CNN-LSTM-A 16.91 23.02 16.21 22.64 17.54 24.21

CNN-BiLSTM-A 18.09 24.23 15.66 22.06 16.86 23.89

MSE

LSTM 20.95 27.81 17.15 23.35 15.50 22.05
BiLSTM 20.24 26.84 15.57 22.13 15.69 22.35

CNN-LSTM 18.69 24.29 18.63 24.83 17.06 24.09
CNN-BiLSTM 20.39 26.54 18.1 24.38 19.15 25.34
CNN-LSTM-A 18.58 24.60 14.68 20.57 15.03 21.58

CNN-BiLSTM-A 19.08 24.87 15.49 22.12 14.26 20.49

5. Conclusions

In this study, we implemented six deep RNN approaches-based peak electricity pre-
diction models for peak electricity consumption to identify the most suitable approach
across each campus building. These models are trained by using input features consisting
of season, calendar, and trend factors, observed before peak electricity consumption time
to estimate peak electricity consumption. To determine the most suitable model for peak
electricity consumption for each campus building, we perform a comparative analysis
in terms of overall and seasonal performances. Theoretical implications from the experi-
ment results demonstrate that the prediction ability between the approaches is different
according to the characteristics of a building and trends of electricity consumption. Com-
pared to the previous study [30], our results demonstrate that a suitable model selection
is able to significantly support sophisticated management of campus buildings for each
building operator.

Moreover, the findings from Figures 5 and 6 suggest that the attention method en-
hances peak electricity consumption across seasons by effectively capturing seasonal con-
sumption trends. This finding provides managerial implications since an accurate peak
electricity consumption can significantly support sophisticated management of campus
buildings for each building operator. The sensitive analysis results in Table 5 indicate that
the performance of deep RNN algorithms tends to underperform when the number of
training instances is lower and varies depending on the number of training instances and
hyper-parameters. This implies that sensitive analysis is crucial for improving prediction
performance, especially when the training instances are limited in real-world scenarios.

However, this research has some limitations. The dataset used in this study includes
electricity consumption records during the COVID-19 pandemic period, which may intro-
duce bias into the prediction results. Future studies may be needed to mitigate potential
biases by collecting additional data. Furthermore, the experiment results may have limita-
tions in managing all campus buildings in real-world environments, as they were derived
from data collected from only three buildings. In future work, efforts to collect data from
all campus buildings and implement new methods to enhance performance are necessary
for effectively managing overall building energy systems in real-world environments.
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