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Abstract: Accurate estimation of battery health is an effective means of improving the safety and
reliability of electrical equipment. However, developing data-driven models to estimate battery
state of health (SOH) is challenging when the amount of data is restricted. In this regard, this study
proposes a method for estimating the SOH of lithium batteries based on sample data generation and
a temporal convolutional neural network. First, we analyzed the charge/discharge curves of the
batteries, from which we extracted features that were highly correlated with the SOH decay. Then,
we used a Variational Auto-Encoder (VAE) to learn the features and distributions of the sample data
to generate highly similar data and enrich the number of samples. Finally, a temporal convolutional
neural network (TCN) was built to mine the nonlinear relationship between features and SOH by
combining the source and extended domain data to realize SOH estimation. The experimental results
show that the proposed method in this study has less than 2% error in SOH estimation, which
improves the accuracy by 64.9% based on its baseline model. The feasibility of using data-driven
models for battery health management in data-constrained application scenarios is demonstrated.

Keywords: battery; state of health; limited data; sample generation; Variational Auto-Encoder;
temporal convolutional neural network

1. Introduction

Lithium-ion batteries (LIBs) are widely used in electric vehicles and energy storage
systems because of their high energy density, long cycle life, and low environmental
pollution [1,2]. However, under long-term cyclic operation, lithium-ion batteries’ state of
health (SOH) will decline to a certain extent, mainly manifested as capacity decay, internal
resistance increase, and power decrease [3]. The SOH decline is a slow, irreversible, and
nonlinear change process due to charge/discharge multiplicity, charge/discharge depth,
charge/discharge frequency, and chemical properties [4]. As the SOH of a battery declines,
the likelihood of its failure during operation and the risk of thermal runaway gradually
increases. Therefore, accurate SOH estimation provides real-time battery health information
and early warning of potential risks, ensuring long-term stable operation of the battery
system [5].

SOH indicates the health level of a battery’s current performance compared to its
initial performance and cannot be directly measured by a sensor. SOH decay is closely
related to the historical operating conditions of the battery, where external factors such
as charge/discharge multipliers, operating temperatures, and the environment influence
the aging process and ultimately lead to different aging paths for the battery. In addition,
small internal defects in the manufacturing process of batteries can lead to deviations in
their aging behavior, which poses a challenge for SOH monitoring and assessment [6]. In
order to realize the effective prediction of battery capacity degradation trajectory, many
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scholars have proposed different methods from the internal mechanism and external condi-
tions of the battery, and these methods can usually be classified into three categories: the
experimental method, the physical modeling method, and the data-driven method [7,8].
The experimental method provides clear and intuitive data based on real-world tests, and
its results are highly reliable and especially suitable for battery performance verification
under specific conditions. However, the disadvantages of this method are that it is time-
consuming, has a high resource overhead, and requires re-experimentation for different
battery types or operating conditions, which limits its adaptability [9]. The physical model-
ing approach is based on the specific physical and chemical processes of the battery; it has a
well-defined mechanism, provides accurate predictions for known conditions, and is highly
scalable. However, it is a relatively complex modeling process that requires an in-depth
understanding of the internal processes of the battery and may involve complex numerical
solutions. Second, the physical model is very sensitive to initial conditions and environ-
mental changes, making it necessary to adjust the model in different application scenarios
repeatedly. In addition, as battery technology advances, the complexity of the internal
mechanisms increases, making the physical model increasingly complex and difficult to
respond quickly to the needs of real world applications [10,11]. In contrast, the data-driven
approach shows clear advantages. It can learn directly from a large amount of data and
is not bound by a specific physical mechanism, thus providing better adaptability and
scalability. The data-driven method does not rely on complicated experimental processes.
As long as there are enough data, accurate predictions can be made, greatly reducing the
complexity of model building. Moreover, with the continuous enhancement of big data
and computing power, the data-driven method’s prediction accuracy and application scope
are expected to be further improved, making it the preferred method for predicting battery
capacity decay trajectories [12–14]. Table 1 demonstrates the research results related to
SOH estimation using data-driven methods in the last two years. However, data-driven
approaches usually require a large amount of data for battery modeling or algorithm
initialization. However, in practice, it is often impossible to obtain sufficient historical
battery operating data due to the cost of data acquisition and storage [15]. Therefore, it is
challenging to build data-driven models to achieve accurate SOH prediction with small
amounts of data [16].

In order to solve the data-driven problem of strong data dependence, many scholars
use intelligent optimization algorithms to optimize the model’s structure and parameters
further to improve the SOH estimation accuracy with the existing data. Li et al. [16]
establish a support vector regression (SVR) model to estimate the SOH based on the battery
charge/discharge data and propose an improved ant lion algorithm to optimize the model
parameters of the SVR to improve the model prediction accuracy further. Chang et al. [17]
extracted features highly correlated with SOH attenuation from incremental capacity
curves and optimized a wavelet neural network using a genetic algorithm to improve
SOH estimation accuracy based on the wavelet neural network. However, although these
methods mine the information in limited data by optimizing the model, they do not
fundamentally solve the problem of the limited amount of data, so the amount of data
still constrains the model’s performance. In this regard, many scholars have proposed a
transfer learning approach to solve the problem of model development in the case of a
small amount of data through model migration techniques. Deng et al. [18] categorized
the battery degradation patterns, chose a reference degraded battery for each class, and
trained its SOH estimation model. Finally, the trained model was applied to other batteries
by pre-training and fine-tuning, which realized the development of the SOH estimation
model even using only a small amount of data from other batteries. Wu et al. [19] trained
a support vector regression (SVR) model using iterative migration on 30 source-domain
datasets. This method uses only a small amount of target-domain data in combination
with source-domain data to realize SOH prediction over the whole life cycle of a battery.
However, the above transfer learning methods assume that the training and test data
follow the same distribution, and the migration effect of two widely different datasets is
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often unsatisfactory. Therefore, in practice, models developed based on datasets from one
working condition may not be applicable for migration to another working condition due
to distributional differences.

Table 1. SOH estimation methodologies published in 2022–2023.

Methods Authors, Year Novelty Result

WOA-Elman Zhang et al. [20],
2023

Health features are extracted based on surface temperature,
incremental capacity, and differential voltage; SOH estimation
using Elman neural network; optimization of Elman neural
network parameters using the whale optimization algorithm
(WOA).

Root mean square
error less than 2%

CAE-BiLSTM Zhu et al. [21],
2023

Health features were extracted directly from the raw data with a
convolutional auto-encoder (CAE); SOH estimation was
performed using a bidirectional LSTM (BiLSTM) neural network.

Mean absolute error
less than 2%

VMD-DBO-SVR Wu et al. [22],
2023

The SOH sequence is decomposed into a series of modal
component subsequences by variational modal decomposition
(VMD); the subsequences are predicted and reconstructed by
support vector regression (SVR); the SVR model parameters are
optimized using the dung beetle optimization algorithm (DBO).

Average absolute
percentage error less
than 2%

ECM-Transformer Luo et al. [23],
2023

Fitting electrochemical impedance spectra using equivalent
circuits model (ECM); health features are extracted from the
equivalent circuit parameters, and SOH estimation is performed
using a transformer neural network.

Mean absolute
percentage error less
than 1.63%

ECM-ACO-EBM Lin et al. [24],
2023

Identify the internal resistance during constant-current charging
using an equivalent circuit model; the SOH estimation model is
built using the explanation boosting machine (EBM);
optimization of EBM model parameters using ant colony
optimization (ACO) algorithm.

Average absolute
error less than 1%

EIS-GPR Zhou et al. [25],
2022

Geometrical properties of the electrochemical impedance
spectrum (EIS) are found for the high and medium frequency
cases; health features were extracted from the high-frequency and
mid-frequency impedance spectra; the SOH estimation model
was constructed using Gaussian process regression (GPR).

Root mean square
error less than 1.12%

AR-RVM Feng et al. [26],
2022

A framework for battery SOH prediction was developed based
on autoregressive (AR) model; an error compensation mechanism
based on isobaric discharge time is constructed using a relevance
vector machine (RVM).

Root mean square
error less than 1%

EM-GWO-IRBFNN Wu et al. [27],
2022

An empirical model (EM) is proposed to describe the general
trend of SOH decay; capacity regeneration of the battery is
simulated using an improved radial basis function neural
network (IRBFNN) as compensation for the empirical model;
optimization of model parameters for IRBFNN using the gray
wolf algorithm.

Root mean square
error less than 1%

To address the above issues, this study proposes a sample data generation and data-
driven SOH estimation method for lithium batteries, which realizes the model development
in the case of only a small number of samples. First, we analyzed the charge/discharge
curves of the battery, from which we extracted features highly correlated with the SOH
decay. Next, we use generative self-coding networks to learn the features and distributions
of the sample data, thus generating highly similar data and enriching the number of
samples. Finally, a temporal convolutional neural network is built to mine the nonlinear
relationship between features and SOH by combining the source and extended domain
data, thus realizing SOH estimation. The contributions of this study are mainly three points:

(1) Historical battery operating data were analyzed, from which features related to SOH
decay were extracted;
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(2) A Variational Auto-Encoder (VAE) was built to generate data that are highly similar
to the samples, which enriches the number of samples and solves the difficulty of
model development in the case of a small number of samples;

(3) A temporal convolutional neural network was built to capture the decaying trajectory
of SOH accurately.

The rest of the paper is organized as follows: Section 2 describes the dataset used in
this study. Section 3 describes the SOH estimation process by this study’s proposed method.
Section 4 validates the effectiveness of the proposed method for SOH estimation. Section 5
summarizes the work of this study.

2. Introduction to the Dataset
2.1. SOH Definition

State of health (SOH) is a key parameter of the battery management system that reflects
the current life status of the battery [28]. SOH is defined as shown in Equation (1) [29]:

SOH =
Qi
Q0
× 100% (1)

where Q0 is the battery’s rated capacity, and Qi is the battery’s current capacity.

2.2. Battery Dataset

The public datasets from NASA [30] and the Center for Advanced Life Cycle En-
gineering (CALCE) [31] were selected for this study. In addition, this study also built
an experimental platform for battery charge/discharge testing and constructed a battery
test dataset.

For the CALCE dataset, the batteries taken in this study are numbered CS2-35 and CS2-
36, which have a nominal capacity of 1.1 Ah and are tested for charging and discharging at
24 °C ambient temperature. Both batteries were charged with constant current-constant
voltage (CC-CV), first charging at a charge multiplication rate of 0.5 C until the battery
voltage reaches a cutoff voltage of 4.2 V and then charging at a constant voltage of 4.2 V
until the current drops to 40 mA. Discharging was performed at a discharge multiplication
rate of 1 C until the voltage dropped to 2.7 V.

For the NASA dataset, batteries numbered B0005 and B0006 were used in this study,
with a nominal capacity of 2 Ah at an ambient temperature of 24 °C. Both batteries were
charged in 1.5 A cross-current mode to a voltage of 4.2 V, followed by charging at a constant
voltage until the current dropped to 20 mA and discharging at a constant current of 2 A
until the voltage of the batteries dropped to 2.7 V and 2.5 V, respectively.

In this study, two commercial 18650 batteries (INR18650-33G) with a nominal capacity
of 3.15 Ah and a rated voltage of 3.6 V were also used for the charge/discharge test, and
the experimental platform is shown in Figure 1. The experimental platform consists of a
power battery hardware-in-the-loop test system (chroma 17020), a thermostatic chamber
(JINGHONG), and a data acquisition instrument (keysight 34972A). Both batteries were
charged at 1 C to a cutoff voltage of 4.2 V, then charged at a constant voltage of 4.2 V until
the current dropped to 0.15 A, and finally discharged at 1 C to a cutoff voltage of 2.5 V.

The variation curves of battery capacity with the number of cycles for the three
datasets are shown in Figure 2. All capacities are expressed by converting to SOH via
Equation (1). The SOH for all three datasets shows a nonlinear decrease, accompanied by
the phenomenon of capacity regeneration. Among them, the NASA dataset has the most
pronounced capacity regeneration, and its capacity regeneration has a larger amplitude,
while the CALCE dataset exhibits capacity fluctuations within a small range. The test data
from the experimental platform of this study had less SOH volatility overall but decayed
faster. The above observations reveal the variability in battery degradation and capacity
regeneration behavior across different datasets, providing a comprehensive and diverse
testing scenario for this study.
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Figure 1. Battery charge/discharge test platform.

Figure 2. SOH decay curves for the three datasets: (a) NASA battery SOH decay curves; (b) CALCE
battery SOH decay curves; (c) experimental battery SOH decay curves for this study.

3. SOH Estimation Process
3.1. Feature Extraction

While data such as voltage, current, temperature, and time during the operation of LIBs
can be directly measured, battery capacity usually cannot be directly measured. It can only
be indirectly estimated by other means. Battery capacity degradation is commonly used to
characterize the aging process of a battery, so extracting features from directly measurable
data that can characterize battery aging at different scales is critical for estimating battery
health [32,33]. In this study, taking the CS35 battery as an example, three features related to
its capacity degradation were extracted from the lithium battery charge/discharge dataset.
The selected features are as follows:

F1: Constant current charging time (CCCT). As shown in Figure 3a, the graph illus-
trates the charging voltage curve versus time at 100-cycle intervals. It is not difficult to find
that the time for the battery voltage to reach the cutoff voltage gradually decreases with
the increased number of cycles. The CCCT change is due to the decay of lithium battery
materials, and the shortening of the constant current time indicates the deepening of the
battery polarization phenomenon, which reflects the battery’s aging to a certain extent [34].

F2: Average constant current charging voltage (ACCV). As the battery is used, its
internal impedance gradually increases due to factors such as electrolyte degradation and
structural changes in the active material. When a battery is charged, the increase in internal
impedance causes the overall voltage of the battery to rise. As shown in Figure 3a, the
discharge voltage curve moves to the upper left as the number of cycles increases so that
the average charge voltage can be used as a reverse indicator of battery aging.
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F3: Average discharge voltage (ADV). As shown in Figure 3b, the discharge voltage
curve moves to the lower left as the number of cycles increases. The average discharge
voltage decreases gradually with battery aging, which is consistent with the trend of SOH.

Figure 3. Battery charge/discharge voltage curve: (a) Charging curve. (b) Discharging curve.

3.2. Variational Auto-Encoder

A Variational Auto-Encoder (VAE) as a form of deep generative modeling is a genera-
tive network structure based on the variational Bayes (VB) inference proposed by Kingma
et al. [35] in 2014. Unlike the traditional autocoder that describes the latent space through
numerical values, it describes the observation of the latent space in a probabilistic way,
which has shown great application in data generation.

The variational self-coding network contains encoders and decoders connected in
series, as shown in Figure 4. The VAE utilizes two neural networks to model two proba-
bility density distributions: one for variational inference of the original input data, which
generates variational probability distributions of the hidden variables, known as the in-
ference network, and the other reduces to generate approximate probability distributions
of the original data based on the generated variational probability distributions of the
hidden variables, known as the generation network. An inference network encodes the
input data X into a low-dimensional hidden variable Z that obeys a certain probability
distribution. To realize this function, the inference network has to make an approximation
to infer the true a posteriori probability pθ(Z|X ) concerning the positional parameter θ
using a recognition model qϕ(Z|X ) concerning the parameter ϕ. Typically, the altered
recognition model is preset to an ordinary normal distribution concerning the parameter
ϕ. After determining the recognition model, the hidden variable Z can be obtained by
sampling X input data. The generative network can reconstruct the hidden variable Z,
which obeys the distribution, in the output data X′ approximately the same as the input
data X by the Bayesian Equation (2):

qϕ(Z|X ) ≈ pθ(Z|X ) =
pθ(Z|X )pθ(Z)

p(X)
(2)

where parameter variations control the prior probability pθ(Z) of the hidden variable Z
to a standard normal distribution, which leads to the conditional probability pθ(Z|X ). By
sampling the hidden variable Z with the conditional probability, the task of generating an
approximation of the input data X can be realized.
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Figure 4. Structure of the Variational Auto-Encoder model.

Using the Variational Auto-Encoder (VAE) model, we take the three key features
extracted in Section 3.1 with the capacity data of the battery as inputs. The VAE is trained
to generate new data as outputs highly similar to the original input data in structure and
characteristics, thus enriching the sample data.

3.3. Temporal Convolutional Network

The temporal convolutional network (TCN) [36] introduces an innovative architecture
for sequence data analysis that incorporates key components such as causal convolution,
inflationary convolution, and residual modules in its structure. The key to this network
is to utilize the features and structure of convolution for time series analysis, which en-
sures computationally efficient and long-range dependency capture. It enables parallel
computation, thus improving training efficiency.

Conventional convolutional layers have a significant problem when dealing with
time-series data: they do not consider the temporal order of the data. They may use
“future” data to predict the “present”. To solve this problem, the TCN introduces the
“causal convolution” mechanism. Causal convolution is a special convolution operation
that ensures that the current point in time only extracts features from past information
and does not see future data when performing calculations. Causal convolution can be
expressed by Equation (3) as:

yt = ∑k
i=0 xt−i ∗ωi (3)

where yt represents the output at time t; x is the input sequence; ω is the convolution kernel;
and k defines the size of the convolution kernel, which also determines how far into the past
the model can see at the current point in time. This mechanism ensures that the model’s
predictions are based only on previous events, avoiding the problem of data leakage.

Expansion convolution, which “inflates” the convolution kernel by inserting a fixed
number of zeros, increases its width, allowing it to cover a larger range of inputs without
increasing the number of parameters or computational complexity. This is shown in
Equation (4):

yt = ∑k
i=0 xt−d×i ∗ωi (4)

where d is the expansion rate, determining the spacing between each weight in the convo-
lutional kernel. The expansion rate typically increases exponentially as the layers increase,
so deeper layers of the network can observe longer temporal distances and thus capture a
longer range of dependencies. As shown in Figure 5a, the bottom layer with d = 1 indicates
that each point is sampled at the input, and the middle layer with d = 2 indicates that
every two points are sampled as input. In general, the higher the layer, the larger the d
used. So, inflated convolution makes the size of the effective window grow exponentially
with the number of layers. In this way, the convolutional network uses relatively few layers
to obtain a large sensory field.
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The problem of gradient vanishing or gradient explosion often accompanies the
training of deep networks. To solve this problem and accelerate the convergence of the
network, the TCN employs a residual structure. As shown in Figure 5b, a basic residual
module consists of two convolutional layers and a nonlinear mapping. WeightNorm and
Dropout are also added to each layer to regularize the network. Its output is added to the
original input to form the final output. This is represented in Equation (5):

Y = TCN(X) + X (5)

where TCN(X) is the result of input X after it has been causally convolved through two
layers, this “jump” connection ensures that the gradient can flow directly to earlier layers,
thus avoiding the problem of vanishing gradients and enhancing the expressive power of
the model.

Figure 5. Structural elements of temporal convolutional neural network: (a) Visualization of a stack
of causal convolutionar layers; (b) TCN residual block; (c) An example of residual connection in
a TCN.

Based on the features extracted in Section 3.1, we employ a temporal convolutional
neural network (TCN) to model and capture the complex nonlinear relationship between
the features and the battery health state. Specifically, the mapping relationship between the
health state of the battery and the features can be described by Equation (6):

SOH = fTCN(F1, F2, F3) (6)

3.4. VAE-TCN Model

The data-driven SOH estimation process based on this study is divided into sample
generation and SOH estimation, as shown in Figure 6. First, the training set is used as the
source-domain data, and the VAE is used to learn in-depth the battery health features and
their corresponding SOH labels contained in the source-domain data. The VAE model can
accurately capture the intrinsic distribution of battery characteristics through this deep
learning approach, generating extended domain data highly similar to the original training
data but quantitatively richer. These newly generated data not only enrich the diversity
of the dataset but also enhance the basis for subsequent TCN model training. Next, the
original source-domain data and the newly generated extended-domain data are efficiently
combined and jointly used as the training set for the TCN model to achieve more accurate
SOH estimation. This approach can combine the technical characteristics of VAE and TCN
models, which not only improves the estimation accuracy of SOH but also enhances the
model’s generalization ability to different types of battery data, providing an efficient and
reliable analysis tool for battery health management.
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Figure 6. Flow of SOH estimation by combining VAE and TCN.

4. Results

In order to verify the effectiveness of the method proposed in this study, we first
divided the first 20% of the data from each cell into a training set and the last 80% into
a test set. Next, we train variational self-coding nets using the training set and generate
100 sets of extended domain data for six batteries. Finally, the source-domain training set is
combined with the extended-domain data to train the TCN model to predict the battery
health status.

In order to demonstrate the superiority of the models proposed in this study, we
compared the effects of the traditional long short-term memory neural network (LSTM)
model, the TCN model, and the VAE-TCN model. Among them, the LSTM and TCN are
the models trained using only 20% of the data, while the VAE-TCN is the model trained
with 20% of the source-domain data after using VAE for data generation. Finally, we also
compare the results of the methods proposed in this study with other related literature.

4.1. Evaluation Indicators

In order to quantify the effectiveness of the model in estimating health status, root
mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error
(MAPE), and coefficient of determination (R2) were selected as evaluation metrics in this
study [37]. The formula for the evaluation indicators is as follows:

RMSE =

√
1
n

n
∑

t=1

(
ytru(t)− ypre(t)

)2

MAE = 1
n

n
∑

t=1

∣∣ytru(t)− ypre(t)
∣∣

MAPE = 100%
n

n
∑

t=1

∣∣∣ ytru(t)−ypre(t)
ytru(t)

∣∣∣
R2 = 1−

∑
t
(ytrue(t)−ypre(t))

2

∑
t
(ytrue(t)−ȳtrue)

2

(7)

where ytru and ypre are the actual and predicted values of the sample t, respectively; ȳtrue is
the average of the actual values; and n is the number of samples.

4.2. Experimental Results

All experiments were conducted on the Tensorflow 2.6.0 platform with NVIDIA
Geforce RTX 3050 equipped with 4 GB RAM. On six batteries, CS35, CS36, B0005, B0006,
#1, and #2, we validated the model proposed in this study to examine its accuracy in
recognizing the degradation mechanism of the battery health state. Figure 7 reveals in
detail the estimated performance of the VAE-TCN model for these cells. The blue curve
represents the true value of SOH from the model, while the orange curve represents the
predicted SOH value. From Figure 7, it can be noticed that the predicted curves highly fit
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the actual data curves. This means that the method proposed in this study can accurately
identify the degradation trend of the battery even when only a small amount of data
is available.

Figure 7. SOH estimation results: (a) CS35; (b) CS36; (c) B0005; (d) B0006; (e) #1; (f) #2.

The capacity degradation trend of the batteries is generally characterized by non-
linearity and overall shows a fluctuating downward pattern. The CALCE dataset is par-
ticularly interesting, in which the fluctuations are significantly more dramatic. We detail
the prediction error metrics for each cell, including RMSE, MAE, MAPE, and R2, in Table 2.
For example, in the case of the CS35 cell, its RMSE and MAPE reach 0.0120 and 0.0115,
respectively. Significantly, the cell’s prediction accuracy in the early stage is quite high, but
the error in the later stage gradually increases as time goes by. The main explanation lies
in the relatively gentle decay trend in the early stage, which is highly consistent with the
training data and makes the model fit excellently in this stage. As for the CS36 cell, the error
metrics RMSE and MAPE are 0.0125 and 0.0120, respectively. This battery has a relatively
steady decay rate over its lifetime, and the model fits its overall performance, all showing
a high degree of accuracy with no error spikes. Looking further into the NASA dataset,
the B0005 battery exhibits an RMSE and MAPE of 0.0073 and 0.0072, making it the sample
with the best model predictions. It is commendable that the model successfully captures



Energies 2023, 16, 8010 11 of 15

the capacity regeneration characteristics of this battery, and the prediction curve is almost
synchronized with the actual curve with a negligible error. In contrast, the error of the
B0006 battery is relatively large, with RMSE and MAPE of 0.0146 and 0.0181, respectively.
In the later stages of this battery’s capacity decline, the model predictions are generally
low, leading to large prediction errors. The dataset tested on our research experimental
platform exhibits a more complex characterization of the capacity decay curves for batteries
#1 and #2. Compared to the other samples, there is a clear lack of regularity in the decline
curves of these two batteries, which are characterized by multiple large capacity fluctu-
ations. These significant fluctuations make forecasting challenging, hence the relatively
large prediction errors for both cells. Specifically, battery #1 has an RMSE of 0.0184, while
battery #2 is slightly better than the former, with an RMSE of 0.0170. These data indicate
that irregularities in the battery decline curve may significantly impact prediction accuracy.

The above analysis shows that our proposed VAE-TCN model achieves satisfactory
accuracy even when only 20% of the training data are used. This efficient performance
validates the feasibility of using data-driven models for battery health management in
data-constrained application scenarios.

Table 2. The results of SOH estimation by the method proposed in this study.

Battery
Accuracy

RMSE MAE MAPE R2

CS35 0.0120 0.0089 0.0115 0.9753
CS36 0.0125 0.0093 0.0120 0.9784
B0005 0.0073 0.0058 0.0072 0.9927
B0006 0.0146 0.0129 0.0181 0.9726

#1 0.0184 0.0156 0.0260 0.9689
#2 0.0170 0.0134 0.0260 0.9658

4.3. Model Comparison

In order to highlight the superiority of the models proposed in this study, this study
compares the estimation results of the LSTM, TCN, and VAE-TCN models for the SOH of
the batteries in the three datasets.

Figure 8 demonstrates the error scatter plots for the six cells; the closer the distribution
of the errors is to the diagonal line, indicating a more reasonable error size and distribution.
The figure shows that the TCN model exhibits higher accuracy on almost all cells compared
to the traditional LSTM model. This demonstrates the superior performance of the TCN in
dealing with time-series data such as battery degradation. Notably, the VAE-TCN model
formed achieves the best prediction when we introduce the variational self-coding network
for data expansion.

Table 3 demonstrates the error metrics for the different models. Specifically, taking the
B0005 battery as an example, this battery achieves an RMSE metric of 0.0073 when using
the VAE-TCN model, while this metric is 0.0208 when using the TCN model and 0.0394 for
the LSTM model. This means that compared to the TCN model, the VAE-TCN achieves a
64.9% improvement in the RMSE metric; compared to the LSTM model, the improvement
is even higher at 81.5%. This significant difference further reinforces that with limited
data, the VAE-TCN model, augmented with data by incorporating a variational self-coding
network, can significantly improve the accuracy of predicting battery health status. In
particular, the model can capture the degradation trend of battery capacity more accurately
and effectively for complex battery degradation mechanisms, providing a more reliable
decision basis for battery health management.
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Figure 8. Error scatter plots for different models: (a) CS35; (b) CS36; (c) B0005; (d) B0006; (e) #1; (f) #2.

Table 3. The accuracy of different models in this study.

Battery Model
Accuracy

RMSE MAE MAPE R2

CS35
LSTM 0.0255 0.0189 0.0251 0.8882
TCN 0.0192 0.0121 0.0165 0.9367
VAE-TCN 0.0120 0.0089 0.0115 0.9753

CS36
LSTM 0.0237 0.0164 0.0223 0.9215
TCN 0.0168 0.0145 0.0178 0.9606
VAE-TCN 0.0125 0.0093 0.0120 0.9784

B0005
LSTM 0.0394 0.0367 0.0471 0.7879
TCN 0.0208 0.0192 0.0232 0.9409
VAE-TCN 0.0073 0.0058 0.0072 0.9927

B0006
LSTM 0.0352 0.0313 0.0466 0.8400
TCN 0.0203 0.0175 0.0251 0.9467
VAE-TCN 0.0146 0.0129 0.0181 0.9726

#1
LSTM 0.0287 0.0243 0.0419 0.9246
TCN 0.0238 0.0161 0.0269 0.9484
VAE-TCN 0.0184 0.0156 0.0260 0.9689

#2
LSTM 0.0396 0.0354 0.0740 0.8117
TCN 0.0260 0.0219 0.0415 0.9191
VAE-TCN 0.0170 0.0134 0.0260 0.9658

This section validates the superiority of the methodology proposed in this study by
comparing the results with other studies. The comparison dimensions include the training
set data volume as well as the model prediction accuracy. As can be seen from Table 4,
the proposed method in this study is less dependent on the amount of data. Although
the amount of training data is much less than the other two studies, the model prediction
accuracy can still be comparable to the two.
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Table 4. Comparison of the methodology proposed in this study with other studies.

Methodology Training Set Size
RMSE

CS35 B0005

VAE-TCN 20% 0.0120 0.0073
Reference [38] 70% - 0.0068
Reference [39] 75% 0.0184 0.0092

5. Conclusions

The SOH estimation is a key technology of battery management systems, which is
of great significance to ensuring the safe operation of batteries. In this study, we propose
a sample data generation and data-driven SOH estimation method for lithium batteries,
which solves the problem of difficult data-driven modeling when the amount of data
is limited. First, we analyzed the charging and discharging curves of the battery, from
which we extracted features highly correlated with SOH decay, namely CCCT, ACCV, and
ADV. Next, we use a Variational Auto-Encoder to learn the features and distributions of the
sample data, thereby generating extended domain data that are highly similar to the sample.
We enrich the number of training samples by combining the extended domain data with
the source-domain data as a training set. Finally, a temporal convolutional neural network
is built for mining the nonlinear relationship between features and SOH, thus realizing
SOH estimation. The results show that the RMSE of the proposed method in this study
is minimized to 0.0073, which improves the accuracy by 64.9% based on its benchmark
model. The sample data generation enhances the basis for the TCN model training and
improves the model’s generalization ability. The datasets used in this study include lithium
ternary and lithium cobaltate batteries, demonstrating that the methodology proposed in
this study can effectively adapt and process different types of lithium-ion battery data.

In the future, we plan to apply the model to real vehicle operation data, integrate the
research in this paper with practical engineering applications, and validate the model’s
performance in complex and dynamic real-world environments. At the same time, the
model is further optimized through practical applications to improve its usefulness and
accuracy in vehicle health monitoring and maintenance, thus making a positive impact in
the field of vehicle maintenance and management.
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