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Abstract: In recent years, with the development of societies and economies, the demand for social
electricity has further increased. The efficiency and accuracy of electric-load forecasting is an im-
portant guarantee for the safety and reliability of power system operation. With the sparrow search
algorithm (SSA), long short-term memory (LSTM), and random forest (RF), this research proposes an
SSA-LSTM-RF daily peak-valley forecasting model. First, this research uses the Pearson correlation
coefficient and the random forest model to select features. Second, the forecasting model takes the
target value, climate characteristics, time series characteristics, and historical trend characteristics
as input to the LSTM network to obtain the daily-load peak and valley values. Third, the super
parameters of the LSTM network are optimized by the SSA algorithm and the global optimal solution
is obtained. Finally, the forecasted peak and valley values are input into the random forest as features
to obtain the output of the peak-valley time. The forest value of the SSA-LSTM-RF model is good,
and the fitting ability is also good. Through experimental comparison, it can be seen that the electric-
load forecasting algorithm based on the SSA-LSTM-RF model has higher forecasting accuracy and
provides ideal performance for electric-load forecasting with different time steps.

Keywords: electric-load forecasting; daily peak-valley; random forest; LSTM; SSA

1. Introduction

As a clean and efficient secondary energy, electricity will play a more important role
in serving people’s energy demands and building a clean, low-carbon, safe, and efficient
energy system. Electric-load forecasting refers to forecasting future electricity demand
and load trends [1]. The demand for efficient and accurate forecasting of electric load is
more urgent, so as to optimize the planning and scheduling of power-system operation, to
ultimately achieve the improvement of the economy and the society, and to complete the
stable transformation of the power industry.

In terms of load forecasting, there are short-term forecasting horizons, mid-term
forecasting horizons, and long-term forecasting horizons [2]. Short-term forecasting usually
refers to forecasting horizons ranging from a few hours to a few weeks, and it can coordinate
power generation and develop a reasonable scheduling plan. Mid-term load forecasting
usually refers to forecasting horizons ranging from a few months to a few years; it can
provide support for ensuring the consumption of enterprise-production electricity and
residential electricity, and for the reasonable operation and maintenance decisions of the
power system. Long-term load forecasting usually refers to forecasting horizons of 3 years
or more, and it can serve for the planning of the power industry.

Nonlinear and temporal characteristics are two major characteristics of electric loads [3].
There are two major categories of electric-load forecasting algorithms: traditional algo-
rithms and artificial-intelligence algorithms [4]. Traditional algorithms are represented by
time-series algorithms, such as Fourier expansion and multiple linear return [5]. These
algorithms have the advantages of fully considering the temporal nature of electric-load
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data. However, their data-regression ability is weak, and they require good stationarity
of the time-series data [6]. Therefore, they cannot accurately forecast data with nonlinear
relationships. However, with the increasing complexity of electric-load forecasting, the
statistical methods cannot effectively predict nonlinear load data, resulting in significant
prediction errors. Meanwhile, statistical methods are extremely sensitive to changes in
abnormal load values and cannot effectively predict sudden changes and peak loads. The
new artificial-intelligence algorithm can better fit nonlinear data. According to some of
the relevant literature [7,8], the back propagation (BP) neural network has been commonly
used for load forecasting, but the learning ability of the BP neural network is relatively
poor and the forecasting accuracy needs to be improved. Other examples from the lit-
erature [9,10] have used the fuzzy-inference algorithm, but its calculation speed is too
slow and its accuracy is low. Other researchers [11,12] used the support vector regression
(SVR) algorithm to load forecasting. Still other researchers [13] used decision trees for
forecasting. However, these artificial-intelligence algorithms do not take into account the
temporal nature of electric loads, and the manual addition of time features is required in
the forecasting to ensure the accuracy to a certain extent [14].

The development of the artificial neural network (ANN) has led its various models
and variants being widely applied in the field of load forecasting, with the most repre-
sentative being the back propagation (BP) neural network [15]. Some researchers [16,17]
addressed the problem of the traditional BP algorithm easily falling into local minima.
They optimized the network performance, improved the forecasting accuracy of gradient
descent, and improved the connection weights of the neural networks. The researchers
in [18] carried out point forecasting and interval forecasting for electric-consumption data,
and their point forecasting and interval forecasting algorithms, which were constructed by
wavelet transform and improved by particle swarm optimization, were both better than
traditional BP.

The model has improved in accuracy. The recurrent neural network (RNN) effectively
overcomes the drawback of the ANN’s inability to forecast data based on temporal depen-
dencies by combining the temporal nature of data with network design [19,20]. However,
when dealing with nonlinear data with long time spans, the RNN also faces the problem
of gradient vanishing and exploding. Hochreiter and Schmidhuber [21] proposed the
long short-term memory (LSTM) neural network to improve it, which effectively solved
the problem of long-term temporal dependency among data. The researchers in [22–25]
adopted a deep-learning framework, which was a double-layer LSTM neural network,
combining the output layer of LSTM with the full connection layer, combining support
vector regression (SVR) with LSTM to build a mixture model, and making different im-
provements on the construction of the LSTM model to obtain more accurate forecasting
results. The researchers in [26] improved LSTM input data by fusing multi-scale feature
vectors through the convolutional neural network (CNN). The researchers in [27,28] used
particle swarm optimization (PSO) to optimize LSTM network parameters. The results
showed significant improvements in artificially setting network parameters and improved
the forecasting accuracy of network models compared to previous LSTM algorithms [29].
The long short-term memory (LSTM) network takes into account the temporal and non-
linear nature of data, with high forecasting accuracy, so it is widely used in electric-load
forecasting [30]. However, the model parameters of the LSTM and other neural networks
are difficult to determine and often rely on human experience for selection. The fitting
ability and the prediction performance of different model parameters vary greatly. The
global optimization ability and convergence speed are low, making the LSTM prone to the
risk of particle local optima.

This research processes the 15 min electric-load data of the regional power grid to
obtain the daily maximum (minimum) at peak-valley time. The temporal features and
weather features are extracted, and the correlation test is carried out to screen out the
feature sets whose correlation exceeds the threshold. The numerical forecasting model
is established, and the time-segment classification model is further established and the
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parameters are adjusted. The load and weather characteristics of the previous two years
are forecast, the forecasting results of the maximum (minimum) daily load and the arrival
times in the next three months are provided, and the forecasting accuracy is analyzed.

The category variables with no order relation are coded independently to avoid the
partial ordering of the variable values with no partial-order relation and to expand the
characteristics. When screening features, the Pearson correlation coefficient is used to
quantify the linear correlation, and the random forest is used to calculate the nonlinear
correlation. It selected the indicators that reach the threshold to form the final feature
set. The feature engineer not only considers fully the mining feature information, but also
avoids dimensional disasters and multicollinearity problems through double screening.

In the medium-term load forecasting of daily peak and valley, this research applies the
deep-learning model with long short-term memory (LSTM) and the relevant information of
the sparrow search optimization algorithm (SSA) to accelerate the model convergence. The
SSA was proposed in 2020; it mainly simulated the foraging and anti-predation behavior
of the sparrow population [31]. This intelligent optimization algorithm is very novel,
has strong optimization ability, and can greatly improve the efficiency of the forecasting
model [32]. The SSA algorithm can research the global optimal solutions of load-forecasting
results and can effectively prevent the situation in which the best expectation value found
by the algorithm is always a local extreme value [33].

This paper proposes the LSTM-SSA-RF algorithm for the first time, which is applied
to middle-term load forecasting. The innovation points of this paper have two aspects.
First, the traditional algorithms with regression and neural networks have not had good
results on middle-term load forecasting; the LSTM-SSA-RF algorithm has greater accu-
racy. The novel time-series forecasting algorithm and the novel intelligent optimization
algorithm have been used in short-term load forecasting and not usually in middle-term
load forecasting. Second, this paper adopts a new feature selection process with nonlinear
correlation analysis.

This paper is organized as follows. Section 2 describes the considered methods
and the algorithm framework. Section 3 provides the data processing, the characteristic
engineering, and the forecasting results, which are reported and compared. Section 4
discusses the forecasting results. Section 5 draws some conclusions.

2. Methods and Algorithms
2.1. Single Algorithm Description of SSA-LSTM-RF
2.1.1. Long-Term and Short-Term Memory Network (LSTM)

LSTM is an excellent variant of the recurrent neural network (RNN), which can learn
and preserve historical features for a long time. It can effectively solve the problem of
gradient explosion and gradient disappearance by introducing a new internal state and
gating mechanism [34]. LSTM can fully mine the temporal characteristics of data, with
high forecasting accuracy, so it is widely used for electric-load forecasting—especially
for medium-term and short-term forecasting [35]. Using the long-term dependence of
LSTM learning data to measure the historical characteristic status improves the accuracy
of forecasting.

LSTM adds or deletes cell-state information through a gate structure by introducing a
memory structure and combining the output of the previous node at each time step. The
LSTM’s basic unit and its specific calculation process are in Figure 1.

The forgetting gate is determined as follows:{
ft = σ

(
W f [ht−1, xt] + b f

)
(1)

The forgetting gate and the network structure parameters through the forgetting gate
are adjusted through loss-function feedback during the training process. That is, according
to the output of the previous stage and the input of the current stage, the forgotten part of
the state of the moment is determined through the sigmoid function.
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The input gate is determined as follows:

it = σ(Wi[ht−1, xt] + bi) (2)

C̃t = tanh(WC[ht−1, xt] + bC) (3)

where it is the input gate, controlling the network structure parameters through the input
gate. That is, according to the output of the previous stage and the input of the current
stage, the part that needs to be remembered for the state of the moment is determined
through the sigmoid function, using the function to control the part of the alternative state
added to the current state. Finally, you can obtain the current status, as follows:

Ct = ft·Ct−1 + it·C̃t (4)

The output gate is determined as follows:

ot = σ(Wo[ht−1, xt] + bo) (5)

ht = ot·tanh(Ct) (6)

where ot is the output gate, and ht is the network structure parameter through the output
gate. The final output is the product of the part that needs to be output through the sigmoid
function and the current state mapped by the function.
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2.1.2. Sparrow Search Optimization Algorithm (SSA)

The LSTM model has high accuracy in medium-term load forecasting. Due to the large
data set, this research also introduces the sparrow search algorithm (SSA) to accelerate
the convergence. The SSA is a relatively novel intelligent optimization algorithm that
seeks the optimal solution by simulating the foraging and anti-predation behavior of a
sparrow population [36]. In the past two years, scholars have found through experiments
that its convergence speed and accuracy are very good. Compared with particle swarm
optimization (PSO), the SSA has a smaller probability of falling into a local optimum and
stronger global search ability [37].

2.1.3. Random Forest Algorithm

Decision tree is a highly explanatory machine-learning model that conforms to the way
people think and to business logic. However, considering the problems of local optimization
and overfitting in regression using a single decision tree, we chose to use the random forest
model [38]. Random forest is a very typical integrated learning technology, mainly using
bagging technology. The random forest model has a good filtering effect on noise and
outliers; it can overcome the overfitting problem, and it shows good parallelism and
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scalability in the classification of high-dimensional data. Based on its superior performance,
the final choice was using random forest to forecast the peak-valley time [39].

2.2. Combined SSA-LSTM-RF Forecasting Algorithm
2.2.1. SSA-LSTM-RF Model Framework

In this research, we extracted the daily peak (valley) time from the 15 min interval load
data of the power grid in the region, and combined them with the processed climate feature
set and the trend feature set to form the peak forecast data set and the valley forecast data
set. In order to forecast the peak and valley values of the daily load in the next three months
and the corresponding arrival times, it was necessary to establish a medium-term load
forecasting model and adjust the parameters to achieve the optimal forecasting accuracy.
Based on the applicability analysis of the theoretical analysis part, this section mainly
forecasts the load based on the LSTM model, optimizes it with the SSA algorithm, and
then introduces random forest forecasting to reach the peak and valley times. The overall
process is shown in Figure 2.
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The overall process is shown in Figure 3, and the optimization process was as follows:

(1) Data process: Miss load data elimination, detect outlier data, process the data with
wavelet smoothing and denoising, and select a time window of the load data.

(2) Feature engineer: Create an alternative feature set of the load data and build a feature
vector with influence factors.

(3) Initialization: Initialize and train LSTM and determine the sparrow population size,
the number of iterations, and the initial safety threshold based on the object to be
optimized to initialize the SSA algorithm.

(4) Fitness value: Determine the fitness value of each sparrow using the RMSE of the
model forecasting value and sample data.

(5) Update: Update the sparrow position, obtain the fitness value of the sparrow popula-
tion, and save the optimal individual position and the global optimal position values
in the population.

(6) Iteration: Determine the iteration based on the loop conditions. If the conditions are
met, exit the loop and return the individual optimal solution, which is the optimal
parameter of the network structure. Otherwise, continue with step (5) of the loop.

(7) Optimization result output: Assign values to the optimization object based on the
optimal particles output by the SSA algorithm and use random forest optimal network
parameters to classify and reconstruct the LSTM.
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2.2.2. The SSA-LSTM Model Realizes Daily Peak and Valley Value Forecasting

In view of the complexity and diversity of medium-term electric load data, the SSA-
LSTM model proposed in this section takes the historical electric load data as input and
considers the impact of temperature, humidity, and date-type factors. The network model is
constructed by modeling learning, and the internal change rules of network characteristics
are also mined; The mapping, weighting, and learning parameter matrices are used to
assign the corresponding weight value to the hidden state of LSTM network. At the same
time, aiming at the problem of difficult selection of the model’s parameters, the sparrow
search algorithm (SSA) is further proposed to realize the optimal selection of the model’s
parameters [40].

SSA can be abstracted as an interactive model of bird explorers and followers who
join the early warning mechanism (that is, there are some sparrows as scouts). Then, the
position and the fitness value vector of the sparrows are set. The root mean square error
(RMSE) is selected as the fitness function of the sparrow population.

The number of explorers and followers in the whole sparrow group is constant—that is,
each additional follower will reduce one discoverer. The complete process of the algorithm
is as follows [41].

Step 1: Initialize the population and set the maximum number of iterations.
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Step 2: Update the discoverer location. At the beginning of each iteration, the explorer,
as the best individual in the group, will obtain food first in the search process. During each
iteration, the explorer’s position is updated as follows.

xt+1
i,d =

xt
i,d × exp

(
− i

a × itermax

)
, R2 < ST

xt
i,d + Q, R2 > ST

(7)

where xt+1
i,d represents the position of the i sparrow in the d dimension during the t time

iteration; α represents a random number within the range of [0, 1]; R2 indicates the alert
value between [0, 1]; ST indicates the safety value between [0.5, 1]; and Q is a random
number with normal distribution. When R2 < ST, it indicates that the environment is safe
and the explorers are foraging in the area. Otherwise, it indicates that there are predators,
and the scouts in the population need to send an alarm to signal the birds to go to the safe
area for food.

Step 3: Update the follower position.

xt+1
i,d =

 Q × exp
(

xt
worst−xt

i,d
x2

)
, i > n/2

xt+1
p +

∣∣∣xt
i,d − xt+1

p

∣∣∣·A+·L, i ≤ n/2
(8)

where xt
p represents the optimal position of fitness controlled by the explorer during the

t + 1 time iteration; xt
worst indicates the global worst position; and n is the population size.

Each element of A1×d is randomly selected as 1 or −1, and A+ = AT(AAT)−1; L1×d takes
1 for each element. When i > n/2, the i follower has a low fitness value and needs to go to
other areas for food.

Step 4: Randomly select the scout and update the position. The SSA indicates that
there are individuals in each generation of the population with warning ability—that is,
they can detect hazards. Generally, the range is 10–20%. The formula for updating the
position of these sparrows is as follows.

xt+1
i,d =

xt
best + β ×

∣∣∣xt
i,d − xt

best

∣∣∣, fi > fg

xt
i,d + K· |x

t
i,d−xt

worst|
fi− fg+ε , fi = fg

(9)

where β is a random number of standard normal distribution of load; xt
best indicates the

current global optimal location; fi indicates the current fitness value of sparrow, fg and fw,
respectively, represent the current best and worst fitness values; and k represents a uniform
random number of [–1, 1]. The setting of ε can prevents the denominator from being 0.
When fi = fg, it shows that the sparrow is at the center of the population and is randomly
close to other sparrows. When fi > fg, it shows that sparrows are vulnerable to predators
in the remote areas of the whole population.

Step 5: When the number of iterations reaches the optimum value, stop the iteration.
In the above analysis, the SSA algorithm has been completed to optimize the parame-

ters of LSTM model.

2.2.3. RF-LSTM Realizes Peak and Valley Time Forecasting

A. Peak forecasting

In this research, the forecasting result of the daily peak was input into the random
forest model, again as a feature. By dividing a time point every 15 min, 24 h were divided
into 96 time points and numbered, and 96 time points were used as the classification target
of the classifier.



Energies 2023, 16, 7964 8 of 21

According to the observation and analysis of the Pearson correlation coefficient, the
peak time fluctuated greatly and was related to weather factors such as temperature, so the
highest and lowest temperatures of the day were taken as the input features.

In addition, the peak time and the time were inseparable, with obvious seasonality
and periodicity. The following time series characteristics were considered in this research:

B. Valley forecasting

Because the valley time is relatively stable, it has little correlation with weather factors
and it also has certain periodicity and seasonality. Therefore, the LSTM time-series model
was selected to forecast the working electric data at 15 min intervals, and the valley time
was extracted from the daily valley time in the results. The comparison showed that the
effect of the LSTM model in forecasting the valley time was far from that of the random
forest classifier.

2.3. Evaluation Indicators

In this research, RMSE, MAPE, MSE, and R-squared were selected as the evaluation
indicators of the model [42].

Mean square error (MSE): MSE is the square of the difference between the real value
and the forecasted value, and then the sum is averaged. The range is [0, +∞). When the
forecasted value is completely consistent with the real value, it is equal to 0—that is, the
perfect model. The greater the error, the greater the value.

MSE = 1/n
n

∑
i=1

∣∣y′i − yi
∣∣2 (10)

Root mean square error (RMSE): RMSE is the square root of MSE. It measures the
deviation between the forecasted value and the true value, and it is sensitive to the abnormal
value in the data.

RMSE =

√
1/n

n

∑
i=1

∣∣y′i − yi
∣∣2 (11)

Mean absolute percentage error (MAPE): MAPE measures the percentage error be-
tween predicted results and actual observations. The range is [0, +∞), where 0% of MAPE
indicates a perfect model, and more than 100% of MAPE indicates an inferior model.

APE = 100%/n
n

∑
i=1

∣∣∣∣y′i − yi

yi

∣∣∣∣ (12)

R2 (R-squared) determination coefficient: R2 measures the degree of linear correlation
between two variables. The numerator is the sum of the square difference between the
real value and the forecasted value; The denominator is the sum of the square differences
between the true value and the mean value. The value range of R-squared is [0, 1]: if it
is closer to 0, the model fitting effect is very poor; if the result is 1, there is no error in
the model. Generally speaking, the larger the R-squared, the better the fitting effect of
the model.

R2 = 1 − ∑n
i=1

(
ŷi − yi

)2

∑n
i=1

(
y−i − yi

)2 (13)

3. Analysis and Results
3.1. Data Preprocessing
3.1.1. Handling Outlier Data

The existing methods for handling electric load data can generally be divided into three
categories: statistical model methods, clustering model methods, and classification model
methods. Statistical models describe the patterns and distributions of outlier data, compare
similarities, and use outlier data indicators or criteria to construct one or more combination
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probability models. Clustering models can obtain classification results based on differences
in load characteristics, effectively reflecting the overall characteristics of the load curve
and detecting anomalies. Classification models often require a large amount of labeled
information, and the actual application of abnormal samples is much smaller than that of
normal samples, which can also lead to the problem of imbalanced sample distribution.

This research used the regional 15 min load data, industrial daily load data, and
meteorological data. First, the standard deviation algorithm (k sigma) was used to test the
outliers of the regional 15 min load data and the industrial daily load data and to set them
as blank. Under the assumption of normal distribution (large samples can be regarded as
normal distribution, approximately), the k sigma principle indicates that the probability
of values outside the k times standard deviation of the average value is very small. Then,
it checks the abnormal value of the 15 min load data of the area, selects k = 3, and sets
332 abnormal records.

3.1.2. Filling in Missing Values

Even though some of the technologies used in this research contained the existence
of missing values, considering that different models have different means to deal with
missing values, in order to ensure the accuracy of the solution, it was still necessary to fill
in the missing values. In Figure 4, the data set was searched and it was found that only the
regional 15 min load data and the industry daily load data had missing values (including
the abnormal values that had been set to null). For this kind of numerical data, this research
applied the linear interpolation algorithm to retain the local linear trend.
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3.1.3. Data Processing by Type

The exploration data found that the “weather” characteristic format of meteorological
data in the basic data was “weather 1/weather 2”, which could not be directly applied
to numerical analysis. It was easy to lead to “dimension disaster” when using unique
hot coding for expansion. A custom weather dictionary was selected, and each weather
corresponded to the amount of illumination and precipitation, which was convenient for
model training. Similarly, there were as many as 39 features of “wind and direction”, which
were not directly coded. The wind characteristics were reserved.

Seasonal features were added to basic data. Because there was no order or difference
between the values of a “season”, this research needed to use dummy variables and used
the unique heat coding to expand the feature.

3.2. Characteristic Engineering
3.2.1. Creating an Alternative Feature Set

First, it was necessary to establish sufficient alternative feature sets. According to a
large number of existing research bases, the main influencing factors of medium-term and
short-term load are time-sequence factors, meteorological factors, and random interference
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factors, which consider the forward dependence of load and the historical load data. Due
to the unforecastable nature of random interference factors, this research did not separately
select random interference factors as characteristics; this is explained in the section on
mutation-point analysis and policy-effect evaluation.

(1) Time series factors included the month, the day ordinal of a month, the hour, the
day ordinal of a year, the week ordinal of a year, the working day, holidays, the time
period ordinal (divided by 3 h), the season ordinal (converted into a unique code), the
beginning of a month, the end of a month, etc.

(2) Meteorological factors included the maximum temperature, the minimum tempera-
ture, the temperature difference, the wind force, illumination, precipitation, etc.

(3) Trend factors (historical load data) included the maximum (minimum) load of the
previous day and the maximum (minimum) load of the previous week.

In considering the continuity of monthly data and hourly data, direct coding is not
suitable. For example, 23 points and 0 points are similar in a practical sense, but direct
coding can easily lead to a distance of 23 h. In order to avoid the discrepancy between the
coding meaning and the actual meaning, in the regression analysis, this research cosined
the monthly data (Formula (1)) and the hourly data (Formula (2)).

month(k) = cos
k

31
·2π (14)

hour(k) = cos
k

24
·2π (15)

3.2.2. Feature Selection

Feature selection (FS) is an important problem in feature engineering. By eliminating
redundant features and searching for the optimal feature subset, the efficiency of model
solving is ultimately improved. This research mainly used the filter algorithm to filter the
characteristics according to the correlation indicators in various statistical tests.

(1) Linear correlation analysis: Pearson correlation coefficient

Pearson correlation coefficient is a typical indicator to measure the linear relationship
between two variables. The calculation is relatively simple. The larger the coefficient, the
stronger the linear correlation.

(2) Nonlinear correlation analysis: random forest

Both the maximum mutual trust coefficient (MIC) and the Gini coefficient can be used
to calculate nonlinear correlation. In this research, the feature selection algorithm based
on random forest was used to select features by calculating the average reduction of the
impurity of each feature. For classification, information gain was used. For regression,
variance was used.

The nonlinear correlation coefficient of the regression model was calculated by random
forest, and double screening was carried out.

The results of feature screening in Figure 5 were based on the following:

(1) Peak value forecasting: The difference between the charge peaks and valleys of the
previous day, the maximum temperature, the minimum temperature, the season, the
light, the precipitation, the weekend/workday/holiday time point, the peak value of
the previous day, the peak value of the previous 2 days, the peak value of the previous
5 days, the peak value of the previous 6 days, the peak value of the previous 7 days,
and the peak value of the previous 30 days.

(2) Valley value forecasting: The difference between the charge peaks and valleys of the
previous day, the maximum temperature, the minimum temperature, the season, the
valley value of the previous day, the valley value of the previous 2 days, the valley
value of the previous 3 days, the valley value of the previous 7 days, and the valley
value of the previous 30 days.
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(3) Forecasting of peak time: The forecasted peak, the maximum temperature, the mini-
mum temperature, the light, the precipitation, whether it was a holiday, the season,
the time point of the first day, the time point of the first 2 days, the time point of the
first 5 days, the time point of the first 6 days, the time point of the first 7 days, and the
time point of the first 30 days.

(4) Forecasting of valley time: The time point of the first day, the time point of the first 2
days, the time point of the first 5 days, the time point of the first 6 days, the time point
of the first 7 days, and the time point of the first 30 days.
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3.3. Data Process Results of the SSA-LSTM-RF Algorithm

This research selected the number of neurons in the hidden layer of LSTM and included
the first hidden nodes L1, the second hidden nodes L2, the iterations number iter, and the
learning rate lr. These four key parameters that affected the performance of the LSTM
model were taken as the optimization objects of the SSA.

The SSA-LSTM-RF optimization process in Figure 6 was as follows:

(1) The number of neurons in the hidden layer of LSTM, included first hidden nodes L1,
the second hidden nodes L2, the iterations number iter, and the learning rate lr were
taken as the optimization objects, and constructed the parameter optimization range.

(2) The individual fitness of sparrows was determined, and MSE was regarded as the
fitness-evaluation function, which was the fitness curve value of the SSA algorithm.

(3) The position information of sparrow individuals was calculated and updated to obtain
fitness values. If the result was the global optimal fitness, then the optimal fitness in
the current sparrow population of the individual position was saved; if not, update
sparrow position was updated.

(4) It was determined whether the number of iterations reached the upper limit. If so,
the optimization process was exited and the returned optimal solution was saved.
Otherwise, loop 3 was continued.

(5) The optimized L1, L2, iter, and lr were substituted into the LSTM model with a
random number.

(6) The optimized model was used for forecasting.

As shown in Table 1, through 175 iterations, the learning rate reached 0.0060 and the
hyperparameters received the optimization stations.
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Table 1. The results of the SSA for hyperparameters.

Hyperparameters Value

L1 270
L2 383
iter 175
lr 0.0060

As shown in Figure 7, the optimization results of the SSA-LSTM-RF algorithm, shown
in Figure 7a, were significantly better than those of the PSO-LSTM-RF algorithm, shown in
Figure 7b, with higher convergence accuracy and relatively fewer iterations. The results
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also provided sufficient persuasiveness for the forecasting model established in this article
to be used for medium- and short-term power-load forecasting.
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Figure 7. Comparison of fitness curves between SSA-LSTM-RF and PSO-LSTM-RF. (a) SSA-LSTM-RF
fitness curve. (b) PSO-LSTM-RF fitness curve.

3.4. Forecast Results of Minimum and Maximum Daily Loads

This research used the SSA-RF-LSTM model to evaluate the forecast results of the
minimum daily load. The collected data of certain areas every 15 min were experimented
with, using the SSA-RF-LSTM model.

This research forecast the daily peak and peak-valley times from the electric history-
load data. This research carried out scenario forecasting based on the load and weather
characteristics of the previous two years, provided the forecasted results of the minimum
and maximum daily loads and arrival times for the next 300 days, and analyzed the
forecasting accuracy.

The experiment adapted the Python language with the sklearn packages to forecast
results and with the Matplotlib packages to visualize the results. The experimental results
are shown in Figures 8 and 9.
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Figure 8. Forecast results of minimum and maximum daily loads. (a) Forecast results of minimum
daily load. (b) Forecast results of maximum daily load.

In Figure 8, the forecast results of the minimum daily load are approximately the
true minimum daily load in the 300 days. The forecast results of the maximum daily load
were approximately the true maximum daily load in the 300 days. Relatively speaking, the
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maximum daily load was more approximate than the true minimum daily load with the
true daily load.

In Figure 9 is a perfect loss curve graph. At the beginning of the training, the loss
value decreased significantly, indicating that the learning rate was appropriate, and the
gradient decline process was carried out. After learning to a certain stage, the loss curve
tended to be stable, and the loss change was not as obvious as it was at the beginning. At
the beginning of training, the loss value decreased rapidly, proving that the learning rate
was appropriate. As the epoch increased, the learning rate gradually flattened out. The
burrs in the curve were due to the relationship between batch sizes. The larger the batch
size setting, the smaller the burrs.
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3.5. Forecast Results of Daily Load with Different Algorithms and Steps

The LSTM network achieved the best performance by optimizing the super parameters
through the SSA and RF. The MAPE, RMSE, and MSE of the forecasted values in the last
two months of 2019 were accuracy and stability, respectively, which verified the accuracy
and stability of the linear regression fitting ability of the model. See the annex for the results
of scenario forecasting in Table 2.

Table 2. The results of daily minimum and maximum load test.

Type IMAPE IRMSE IMAE

Daily minimum load test 0.07398 17.0495 11.9473
Daily maximum load test 0.02889 10.3133 6.9687

The collected data were experimented with these five models: LSTM, RF-BP, RF-
LSTM, RF-PSO-LSTM, and RF-SSA-LSTM. The error comparison of the different forecasting
models with 60 days is shown in Figure 10 and Table 3.

Table 3. Error comparison of different forecasting models.

Model IMAE IRMSE IR2

LSTM 6.5170 7.2762 0.874
RF-BP 8.1534 10.2251 0.812

RF-LSTM 4.9633 6.0156 0.903
RF-PSO-LSTM 3.1224 3.9218 0.945
RF-SSA-LSTM 2.8122 3.4574 0.988
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From the results of the experiment, the smaller the result of IMAE, the better the
forecasting effect; the smaller the result of IRMSE, the better the forecasting effect; and the
greater the result of IR2, the better the forecasting effect. From the error comparison of
the forecasting models, the effect of the RF-SSA-LSTM model was better than those of the
LSTM, RF-BP, RF-LSTM, RF-PSO-LSTM, and RF-SSA-LSTM models.

The collected data were experimented with every 60 days, at 60 days, 120 days,
180 days, 240 days, and 300 days. The error comparison of the different forecasting times is
shown in Figure 11 and Table 4.
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Figure 11. Error comparison of different forecasting times with RF-SSA-LSTM model.

From the results of experiment, the smaller the result of IMAE, the better the forecasting
effect; the smaller the result of IRMSE, the better forecasting effect; and the greater the result
of IR2, the better forecasting effect. From the error comparison of the different forecasting
times, the best forecasting result was 60 days forecasting; as time goes by, it becomes lower
and lower.

From the experimental results shown in Figure 12 and Table 5—the IMAE, IRMSE, and
IR2 comparisons of different forecasting models—the effect of the RF-SSA-LSTM model was
better than those of the RF-LSTM and RF-PSO-LSTM models, which were experimented
with every 60 days, 120 days, 180 days, 240 days, and 300 days. From the error comparison
of the different forecasting times, the best forecasting result was 60 days forecasting; as
time goes by, the effect becomes worse and worse.
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Table 4. Error comparison of different forecasting times with RF-SSA-LSTM model.

Days IMAE IRMSE IR2

60 2.8122 3.4574 0.988
120 5.9842 6.8036 0.925
180 8.6243 9.4825 0.873
240 12.7084 14.0486 0.762
300 19.3338 21.2838 0.605

Table 5. Error comparison of different forecasting times between RF-SSA-LSTM, RF-PSO-LSTM and
RF-LSTM models.

IMAE IRMSE IR2

Days RF-SSA-LSTM RF-PSO-LSTM RF-LSTM RF-SSA-LSTM RF-PSO-LSTM RF-LSTM RF-SSA-LSTM RF-PSO-LSTM RF-LSTM

60 2.8122 3.1224 4.9633 3.4574 3.9218 6.0156 0.988 0.945 0.903

120 5.9842 6.3487 7.8911 6.8036 7.5406 8.8230 0.925 0.901 0.880

180 8.6243 9.7812 11.1254 9.4825 11.7121 13.1145 0.873 0.827 0.771

240 12.7084 14.7510 17.6821 14.0486 16.5261 20.1820 0.762 0.696 0.613

300 19.3338 22.9527 27.3310 21.2838 23.5617 28.0108 0.605 0.512 0.458

3.6. Forecast Evaluation of Minimum and Maximum Daily Load in the Future

This research used the historical load data in 2018 to forecast the future 90 days
minimum and maximum daily loads. The future 90 day minimum and maximum daily
loads are shown in Figure 13.

Energies 2023, 16, x FOR PEER REVIEW 18 of 22 
 

 

  
(a) (b) 

Figure 13. The minimum and maximum of load forecast in the future 90 days in 2018. (a) Mini-
mum load forecast in the future 90 days. (b) Maximum load forecast in the future 90 days. 

This research used the historical load data in 2019 to forecast the future 90 day mini-
mum and maximum daily loads. The future 90 day minimum and maximum daily loads 
are shown in Figure 14. 

  
(a) (b) 

Figure 14. The minimum and maximum of load forecast in the future 90 days in 2019. (a) Mini-
mum load forecast in the future 90 days. (b) Maximum load forecast in the future 90 days. 

3.7. Forecast Evaluation of Minimum and Maximum Daily Load in Great Industry 
Generally speaking, the classification of industries for electric-load forecasting by 

electricity-consumption characteristics includes great industries, non-general industries, 
general industries, and commerce. The trends of electric-load forecasting in different in-
dustries are different. This research proposes specific measures to forecast the evaluation 
of the future 90 days minimum and maximum daily load in a large industry. 

In Figures 15 and 16, the forecast results show the real value, the forecast result, the 
15% upper limit, and the 15% lower limit. As shown in the forecast results, the holiday 
period had an important effect on the forecast results. During the holiday period in Octo-
ber, the forecast curve deviated from the original curve. 

Figure 13. The minimum and maximum of load forecast in the future 90 days in 2018. (a) Minimum
load forecast in the future 90 days. (b) Maximum load forecast in the future 90 days.

This research used the historical load data in 2019 to forecast the future 90 day mini-
mum and maximum daily loads. The future 90 day minimum and maximum daily loads
are shown in Figure 14.
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3.7. Forecast Evaluation of Minimum and Maximum Daily Load in Great Industry

Generally speaking, the classification of industries for electric-load forecasting by
electricity-consumption characteristics includes great industries, non-general industries,
general industries, and commerce. The trends of electric-load forecasting in different
industries are different. This research proposes specific measures to forecast the evaluation
of the future 90 days minimum and maximum daily load in a large industry.

In Figures 15 and 16, the forecast results show the real value, the forecast result, the
15% upper limit, and the 15% lower limit. As shown in the forecast results, the holiday
period had an important effect on the forecast results. During the holiday period in October,
the forecast curve deviated from the original curve.
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The forecast results are approximately the real value of minimum and maximum daily
load in a great-industry load forecast in the future 90 days. The forecast results prove the
effectiveness of the forecasting.

4. Discussion

This research first used Pearson correlation coefficient and random forest model to
select features; Then, this research proposed the RF-SSA-LSTM daily peak-valley forecast-
ing model. The model took the target value, the climate characteristics, the time series
characteristics, and the historical trend characteristics as input to the LSTM network to
obtain the daily-load peak and valley values. The super parameters of the LSTM network
were optimized by the SSA algorithm and the global optimal solution was obtained.



Energies 2023, 16, 7964 19 of 21

This research provides a daily peak-valley electric-load forecasting based on RF, the
SSA, and LSTM. This research shows that the forecasting outcomes of the RF-SSA-LSTM al-
gorithm provide a considerable improvement, as shown in Figures 10 and 11 and Tables 2–4.
Additionally, the accuracy of daily peak-valley electric-load forecasting were compared
with the fitness curves between RF-SSA-LSTM and RF-PSO-LSTM, as shown in Figure 8,
and the fitness curves of LSTM, RF-BP, RF-LSTM, RF-PSO-LSTM, and RF-SSA-LSTM were
compared. The forecast evaluation of the future 90 days with minimum and maximum daily
loads was determined. In this research, the RF-SSA-LSTM algorithm was used to update
the displacement forecasting model. It was demonstrated that the RF-SSA-LSTM algorithm
has higher accuracy and greater stability than the other algorithms, such as RF-PSO-LSTM.
The SSA algorithm can research the global optimal solutions better than the PSO algorithm.
The RF-SSA-LSTM algorithm has greater accuracy than the other algorithms.

As the forecasting time step increases, the deviation between the electric-load forecast-
ing results and the real values becomes more and more obvious, and the overall forecasting
effect becomes worse. The forecasting results of 300 days were far inferior to those of
60 days, 120 days, 180 days, and 240 days. The longer the forecasting time, the poorer the
forecasting of MAE, RMSE, and R2. However, the forecasting accuracy of this algorithm can
also be further improved—for example, by using more precise data collection techniques to
improve the accuracy of model forecasting.

Finally, the forecasting peak and valley values were also input into the random forest,
as features to obtain the output of peak-valley time. The MAPE value of the SSA-LSTM-RF
forecasting model was 1.5%, and the fitting ability was also good.

5. Conclusions

In summary, this research optimizes the LSTM displacement forecasting model using
the SSA and RF algorithms to establish a preliminary displacement forecasting model for
electric-load forecasting. The conclusions are as follows:

The environmental variables in electric-load forecasting are complex and nonlinear.
This paper used the RF algorithm to weigh the environmental characteristic variables that
affect electric-load forecasting. This research, analyzing and selecting feature variables
with higher weights, reduced the computational power of the forecasting model, which
was beneficial for improving the accuracy of the forecasting model. We searched for the
optimal parameters of the LSTM model using the SSA search algorithm. Compared with
commonly used grid search methods and PSO algorithms, the sparrow search algorithm
has a simple structure and a high convergence rate, with both the global optimization
ability of grid search and the local search ability of pattern search, forming complementary
advantages. Through experimental comparison, it can be seen that the electric-load forecast-
ing model based on RF-SSA-LSTM proposed in this article has higher forecasting accuracy
and provides ideal performance for electric-load forecasting with different time steps.

With the development of deep-learning methods, this research should replace the
RF method with deep-learning methods, such as XGBOOST and TCN. In addition to
short-term and medium-term electric-load forecasting in a region, the medium-term and
long-term electric-load forecasting focus on industry is extremely important for power-
system planning and operation. The above research points should be the basis for future
research recommendations.
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Nomenclature

LSTM Long short-term memory
SSA Sparrow search algorithm
RF Random forest
PSO Particle swarm optimization
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean squared error
RMSE Root mean squared error
R2 Coefficient of determination
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