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Abstract: This paper presents a novel reference current calculation method for harmonics mitigation
and reactive power compensation in power systems. This method was applied to a unique hybrid
power filter topology. The motivation for this study comes from the increasing power quality issues,
such as harmonic distortion and resonances, caused by the widespread integration of converter-
interfaced generation (CIG) and modern nonlinear loads into the power system in recent years.
The goal of this study is to propose a cost-effective and practical solution for current harmonics
filtering and power factor correction by combining the advantages of passive and active filters into a
hybrid solution. The developed reference current calculation method, which is based on customer
current harmonic emissions, enables effective reference current calculation. Theoretical analyses
along with simulation results obtained from a medium-voltage benchmark model in PSCAD verify
the effectiveness of the proposed solution in harmonics filtering and show a substantial reduction in
filter current ratings across various harmonic components. In addition, the simulation results were
evaluated by comparison with the results obtained from a real-time simulator.

Keywords: reference current calculation method; harmonic filtering; hybrid filter topology; nonlinear
loads; power factor correction; power quality

1. Introduction

The growing presence of power electronic-based equipment in modern power systems,
driven by the widespread integration of modern nonlinear loads (e.g., electric vehicles,
heat pumps) and converter-interfaced generation (CIG) units, has elevated the significance
of the following two power quality parameters in particular: power factor correction and
harmonic filtering. To ensure that the power quality levels stay within the limits defined
by the standards [1], developing effective solutions for power quality improvement is
nowadays gaining importance [1–4].

Hybrid power filters (HPFs) have emerged as promising solutions to address power
quality challenges in recent years. By combining the advantages of active and passive
filters, hybrid filters provide good harmonic filtering capabilities and mitigate drawbacks
associated with standalone filter types—e.g., resonance problems, non-flexibility, cost-
effectiveness. The integration of active and passive elements enables better control over
harmonic filtering performance, reduced voltage and current ratings, and improved effi-
ciency [5–8].

In the extensive literature on power factor correction compensators and current har-
monic filtering, numerous different hybrid filter connection topologies have been proposed.
The two most common variants are the series connection of an active and passive part (series
HPF [9–12] and the parallel configuration of both passive and active parts [13–15]. In the
first case, the nominal voltage required for the converter is low since most of the voltage
drop occurs across the capacitor of the passive part; however, unless a coupling transformer
is used, the entire fundamental component of the nominal current flows through the active
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filter. In the second case, with the parallel combination, only the filtered harmonic current
flows through the converter (and a very small fundamental component for DC-voltage
regulation), but it needs to be rated for the full nominal voltage. An extensive overview of
some other topologies can be found in [16–20].

The proposed hybrid filter topology consists of a three-phase, three-level voltage-
source converter connected in parallel with the inductor of the passive part. The main
advantage of this topology is that the voltage across the converter is relatively small (a few
percent of the nominal supply voltage) due to the (fundamental component) voltage drop
across the capacitor of the passive part. Additionally, the fundamental component of the
current through the converter is also small due to the parallel inductor.

As the topology presented consists only of single-tuned elements, the control system
must ensure effective filtering of current harmonics also at other harmonic frequencies.
Thus, the design of the controller is both an important and challenging task given its
influence on the system’s performance and stability. The control strategies for various HPF
structures, as discussed in the literature, are predominantly wideband. The proportional
(P) control approach is most frequently used, typically in the synchronous reference frame
(SRF) [9,14,21]. However, the high proportional constant required for effective filtering
makes this control structure unsuitable for the topology proposed in this paper since it
shows poor transient performance, as noted in [22]. Due to their good selectivity and
improved transient performance, some authors have used a proportional-resonant current
controller within the SRF [23–29]. Since our focus in developing the controller was on the
HPF reference current calculation method that considers the customer’s contribution to the
total harmonic distortion (THD) at the point of common coupling (PCC) and not primarily
on control system performance, conventional vector controllers in the DQ coordinate
system were used [30–32], which represent an established (current) control principle.

The upgraded algorithm, building on the algorithm introduced by the authors in [33],
allows for the differentiation of harmonic distortions caused by nonlinear loads on the
one hand and (impedance) resonance amplifications of the distortion on the other hand.
This differentiation additionally reduces the need for an oversized active part of the HPF.
In doing so, the algorithm relies on the reference harmonic impedances since the actual
harmonic impedances are usually unavailable in practice [34].

For the evaluation of the proposed HPF topology and reference current calculation
method, extensive simulations were conducted using PSCAD v. 4.6.0 software. Addition-
ally, controller-in-the-loop (CIL) testing with a real-time digital simulator was performed
to validate the PSCAD results. These simulations demonstrate the reduction in the current
ratings of the active part and the good filtering performance of the HPF, validating the
improved performance achieved by the proposed approach.

The novel contributions of this paper are as follows: First, we propose a novel HPF
reference current calculation method, which advances the state-of-the-art of harmonic
distortion mitigation by focusing on the customer’s contribution to the harmonic distortion
at the PCC. This new approach allows for a more targeted application of the HPFs in
both industrial and distribution power networks. In addition, this paper demonstrates
the effectiveness of the presented HPF topology in reducing active part power ratings,
improving its cost-effectiveness and practical value.

The structure of this paper is as follows: In Section 2, we provide an overview of the
proposed HPF topology, illustrating its design and functionality. Additionally, the dimen-
sions of the proposed HPF topology are compared with other common filter topologies,
highlighting its efficiency and smaller size relative to conventional solutions. Section 3
defines the harmonic impedances that were used to determine the reference current for
the HPF. In Section 4, we introduce the method for calculating the HPF’s reference cur-
rent, focusing on detailing the calculation process with phasor diagrams and a flowchart.
Section 5 describes the control algorithm and its implementation in simulation software.
Finally, Section 6 presents simulation results, demonstrating the effectiveness of the new
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approach in reducing the power requirements of the active part of the HPF. We conclude
with a summary of the contributions and potential future directions in Section 7.

2. Hybrid Power Filter Topology

Figure 1 shows a simplified single-line diagram of the proposed HPF topology. In this
topology, a customer is supplied by a balanced voltage source and filtered by the proposed
HPF. A simple ripple filter (inductance) is used to reduce the high-frequency harmonic
currents injected into the network.
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Figure 1. The diagram of the proposed topology of HPF.

In Figure 2, a simplified (equivalent) single-line circuit of the proposed topology is
shown. It serves as a schematic from which the detailed calculations in Section 3, Section 4.1,
and Section 4.2 are derived. The symbols used in the figures are as follows: UPCC,h
represents the point-of-common-coupling harmonic voltage, ZS,h denotes the network
harmonic impedance, which includes the short-circuit impedance and impedance of the
power supply transformer in series, ZC,h represents the customer’s harmonic impedance,
and IC,h the customer’s harmonic current. C stands for the capacitance of the passive filter,
while R and L indicate the resistance and inductance of the passive filter. The current of the
active part of the filter is represented with IAF-source,h. SABC are switching signals for the
semiconductor switches of the active part, and uDC is the DC-side voltage of the converter.
The active part of the HPF is presented with an ideal current source, while the load is
represented with a Noorthon source ZC,h and IC,h, injecting into the network harmonic
components IC,h.
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Figure 3 shows the power ratings of the active part of the HPF per unit (p.u.) as a func-
tion of the tuning frequency (f r) of the passive part from 160 to 360 Hz. These calculations
were performed for a hypothetical case to illustrate the required rating. The parameters
used in the calculation are given in the figure.
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Figure 3. The required power of the active part of the hybrid filter as a function of the tuning
frequency of the passive part [20]—case parameters (in p.u.): Usupply,1 = 1; ILoad,1 = 1; ILoad,5 = 0.2;
ILoad,7 = 0.14; ft = 200 Hz.

As evident, the power is strongly dependent on the tuning frequency. Therefore,
the proposed topology of the hybrid filter is most suitable for single-tuned passive filters
where the tuning frequency does not deviate significantly from the harmonic frequency
to be filtered. If we are filtering multiple harmonics simultaneously with a single-tuned
filter, the optimal tuning frequency lies somewhere between these harmonics. However,
when tuning the passive part, it is essential to consider parallel resonance between the filter
and the network.

In [20], a more detailed analysis of the dimensions of the active part of the proposed
filter topology was conducted, comparing them with the dimensions of the commonly
used series hybrid filter and a regular active filter. As it has been shown, the dimensions
of the proposed topology are approximately 1–2% of the power of the compensated load.
Furthermore, the dimensions of the active part in the proposed HPF are approximately
four times smaller than in a series connection and as much as forty times smaller than in a
typical active filter used as a stand-alone filter.

In addition to the detailed analysis of the active part’s dimensions in the proposed
HPF topology (as presented in [20]), we also evaluated the ratings of other common
HPF topologies, which are graphically shown in Figure 4. While the conventional active
filter typically has the largest dimensions, our proposed topology exhibits the smallest
dimensions among those compared. However, it is important to note that the dimensions
related to voltage and current in any HPF topology are influenced by various factors.
These include, but are not limited to, the tuning frequency of the passive part (as shown
in Figure 3), the required dynamic characteristics of the device, the type of load, and the
voltage level of the network. Such factors play a significant role in determining the practical
feasibility and performance of the HPF.
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Figure 4. Representation of theoretically minimal required ratings of voltage converters for the most
commonly used topologies [20]—case parameters (in p.u.): Usupply,1 = 1; ILoad,1 = 1; ILoad,5 = 0.2;
ILoad,7 = 0.14; ft = 200 Hz.

3. Reference Harmonic Impedances

In this section, the role of harmonic impedances in the HPF reference current calcula-
tion is described, using a mixed equivalent circuit in Figure 5. In this figure, the contribution
of the HPF is included in the fictive harmonic distortion (UPCC-f,h and IPCC-f,h), denoted
with the index ‘f’. It is also important to note that the presented reference current calcula-
tion method is designed for shunt-connected devices and considers the (potential) passive
reactive power compensators at the customer’s location [33].
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Figure 5. Equivalent network of the single-line model used for defining reference harmonic
impedances, utilizing fictive voltages and currents.

The customer’s harmonic current emission serves as the basis for calculating the HPF
reference. It can be determined using the network fictive harmonic current at the PCC
(IPCC-f,h) and the quotient of the fictive harmonic voltage at the PCC (UPCC-f,h) divided by
the impedance of the HPF filter ZC,h, as follows:

IC,h = IPCC−f,h −
UPCC−f,h

ZC,h
. (1)

Based on this, the projection of the total harmonic distortion at the PCC is the following:

IC−p,h =
∣∣IC,h

∣∣·cos
(
ϕIPCC−f,h −ϕIC,h

)
. (2)

The fictive harmonic distortion shows what the harmonic distortion would be if the
HPF did not operate. It will be described in detail in Section 4.1.
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The HPF reference is calculated by considering the phase angle of harmonic distortion
and the projected value of the customer’s current harmonics emission.

As it is evident from the above Equation (1), the calculation of the HPF reference
current is also dependent on the harmonic impedances. Calculating these impedances can
represent a challenge. Namely, the actual harmonic impedances can only be calculated
for a certain operating point, which changes during the normal operation of the system.
To address this variability, reference harmonic impedances are introduced below.

First, harmonic impedances are divided into those on the customer side and those
on the system side. The system-side reference harmonic impedances (ZS,h) are calculated
from the short-circuit impedances and other potential equivalent impedances of the system
side. Another way of calculating these impedances (used in the paper) is simply by just
considering the actual harmonic impedances of the fundamental component as:

ZS,h = RS + jωLS·h. (3)

On the other hand, the reference harmonic impedances on the customer’s side are
based on the active power at 50 Hz (fundamental component). Since the consumer should
compensate for all reactive power and is also responsible for the harmonic distortion that
arises due to resonance on the customer’s side, a reference scenario is assumed in which
all customers behave as pure resistive loads (perfect compensation of reactive power) [35].
The customer’s reference harmonic impedances can be expressed by:

ZC,h = RC =
|U1|

2

P1
=

|U1|
|I1|·cos(ϕ1)

. (4)

It is very important to note a further benefit of using reference impedances, which is
their inherent capability to account for resonances.

4. Reference Current Determination

Building on the basic approach detailed in [34], this upgraded method focuses on
accurately determining the reference current for the active part of the HPF based on the
customer’s harmonic currents emissions. The overall objective of this approach is to isolate
and filter harmonic currents originating from the customer’s devices at the PCC. Through
such separation, the active component of the HPF becomes optimally sized, thus also
economical, to address the harmonic distortion of the customer.

Figure 2 above presents a single-line diagram of the proposed topology, including
the system’s contribution through a harmonic voltage source. Such representation of
the background distortion is typical since the customer side is typically represented by a
harmonic current source.

4.1. Harmonic Distortion without Hybrid Power Filter

To determine the potential harmonic distortion at the PCC without the effects of the
HPF, we employ the concept of ‘hypothetical’ or ‘fictive’ (index ‘f’) harmonic distortion
for the voltage and current. This approach considers the harmonic current produced by
the hybrid filter, giving an insight into what the harmonic distortion at the PCC would be
without the HPF’s contribution. The calculations for this fictive harmonic are represented
by the equations below.

IPCC−f,h = IPCC,h − IAF−S,h, (5)

UPCC−f,h = UPCC,h − IAF−S,h·ZS,h, (6)

where IAF−S,h represents the harmonic current flowing through the system impedance due
to the HPF. This harmonic current is determined based on the ratio between the system
harmonic impedance and the customer harmonic impedance as follows:
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IAF−S,h = IAF,h·
ZS,h

ZC,h + ZS,h
, (7)

where IAF,h denotes the harmonic current flowing into the PCC from the HPF. This harmonic
current is influenced not only by the system and customer harmonic impedances but also
by the harmonic impedance of the passive elements within the hybrid filter (Zimp,spec.,h).

IAF,h = IAF−source,h·Zimp.spec.,h. (8)

The fictive harmonic distortion at the PCC can be classified as follows: The first
component represents the harmonic current resulting from the background distortion,
and the second component represents the harmonic current caused by the customer’s
harmonic current emissions.

The second component, corresponding to the customer’s emission, requires filtering
by the HPF.

4.2. Customer Harmonics Emissions and Hybrid Filter Current Reference
4.2.1. Hybrid Power Filter Current Reference

The reference for the HPF current is based on the customer’s harmonic current emis-
sions at the PCC. These emissions are determined using the principle of superposition.
They are given by:

IC−SP,h = IPCC−f,h·
ZC,h

ZC,h + ZS,h
−

UPCC− f ,h

ZC,h + ZS,h
. (9)

To optimize the hybrid filter’s efficiency, the customer emissions are projected to the
fictive harmonic distortion. This is represented by:

Iref−AF,h =
∣∣IC−SP,h

∣∣·cos
(
ϕIPCC−f,h −ϕIC−SP,h

)
. (10)

Finally, the harmonic current at the system side, corresponding to the portion of the
PCC harmonic current caused by the background distortion, takes the form:

Iref−S,h =
∣∣IPCC−f,h

∣∣− IC−p,h. (11)

Iref-S,h represents the residual harmonic current at the PCC. It is important to note
that the phase angle matches that of the fictive harmonic current at the PCC. Selecting
the appropriate phase angle is crucial because it affects the harmonic distortion, which
subsequently impacts the performance of the HPF.

4.2.2. Evaluating Filtering Requirements

Based on the (scalar) values of the HPF current reference, the filtering requirements
can differ as follows:

− When a scalar value Iref-AF,h is negative, the HPF needs to filter the entire harmonic
distortion at the PCC (IPCC-f,h).

− On the other hand, a scalar value that is larger than the fictive harmonic distortion
(IPCC-f,h) means that existing equipment, possibly from other customers, has already
mitigated the distortion. Thus, further filtering by the HPF becomes unnecessary.
This is mathematically represented by:

Iref−AF,h =

{∣∣IPCC−f,h
∣∣;

0;
Iref−AF,h < 0

Iref−AF,h >
∣∣IPCC−f,h

∣∣. (12)

The hybrid filter also has an impact on the harmonic voltage at the PCC depending
on the conditions in the network. It has the capability to either increase or decrease the
harmonic voltage, and the hybrid filter’s reference must account for the voltage harmonic
distortion at the PCC. Thus, in this mode of operation, the HPF assesses whether the
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voltage harmonic distortion will decrease or increase and will only operate when there is
a reduction in voltage harmonic distortion. Such conditions arise when the background
distortion exceeds the measured harmonic distortion. At this operating point, there is no
need for the HPF to further filter the harmonic distortion. Mathematically, such conditions
are given by:

Iref−AF,h =

{∣∣IPCC−f,h
∣∣;

Iref−AF,h;

∣∣US,h
∣∣ ≥ ∣∣UPCC−f,h

∣∣∣∣US,h
∣∣ < ∣∣UPCC−f,h

∣∣. (13)

4.3. Phasor Diagram of the Hybrid Power Filter Current Reference Calculation

For clarity, in Figure 6 a phasor diagram of the current reference calculation method is
shown. As can be seen from the figure, two cases are depicted: a theoretical (ideal) diagram
(b) and a more realistic diagram (c), both representing current conditions after the HPF
starts with the operation.
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The color scheme in the phasor diagram is as follows:

− Red: representation of the system;
− Blue: customer representation;
− Black: measured harmonic current at the PCC;
− Green: HPF current.

In the depicted ideal case (refer to Figure 6b), the phase angles of the currents remains
unchanged after filtering. The main change observed is the amplitude drop in the measured
current harmonic.

On the other hand, in the more realistic case (Figure 6c), we observe a more com-
plex situation. In addition to the potential amplitude change, the phase angles might
also experience shifts. These changes arise from variations in the PCC harmonic current.
For comparison, Figure 6a shows the conditions before the HPF starts with the operation.

4.4. Reference Calculation Flowchart

The flowchart shown in Figure 7 illustrates the HPF reference calculation process.
This calculation takes into account the impedances of passive elements, the reference
harmonic impedances, and the measured harmonic distortion at the PCC. In the next step,
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the fictive voltage and current harmonic distortions, as well as the customer’s reference
impedance, are determined. Based on these parameters, the system reference is established,
indicating the residual harmonic current at the PCC. Finally, the harmonic current that the
HPF needs to filter is determined.
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5. Hybrid Power Filter Control Algorithm

The proposed HPF reference is based on the active filter reference, as explained
in [34]. The conventional vector controller is used to individually regulate each harmonic
component. The control block diagram of the algorithm is shown in Figure 8. The active
part of the HPF is placed between the inductor and capacitor of the passive part to reduce
the fundamental component voltage and current ratings. The DQ-transformation is utilized
to extract each harmonic component. The proposed HPF control algorithm consists of two
main control loops. The first loop calculates the reference, while the second loop controls
the HPF current.
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5.1. Reference Control

The output of the reference controller is the reference for the HPF current. As depicted
in Figure 9, the inputs to this process are the impedances of the hybrid filter’s passive
elements and the DQ-components of the measured voltages and currents. The reference
is then adjusted by PI control law. The output values from the PI controller represent the
inputs for the main current control loop, shown in Figure 10.
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5.2. Main Current Control Block Diagram

Figure 10 shows the main current control loop, which first subtracts the regulated
filter current from the measured harmonic current, controlling the voltage drop over the
LCL filter. The voltage drop is estimated with the parameters of the LCL filter and is then
regulated with the PI regulator, ensuring that the current of the active part of the HPF
compensates for the customer’s portion of harmonic distortion at the PCC. A PI controller,
implemented in DQ-space, often also called a vector controller, represents a frequently used
controller in practice. It represents an effective controller for steady-state and dynamic
conditions, is simple and robust at the same time, and is versatile, widely researched,
and documented. When parameterizing the controller, we proceeded in the following way:

− Considering the purpose of use (filtering harmonics in a steady state), the speed of the
controller is not of primary importance. We set the initial values of the proportional
constant P and the integral constant I low.

− We modeled the controller in the simulation program PSCAD, along with the model
of the test system.

− With simulations, we analyzed the behavior of the device with the initial constants and
iteratively (trial-and-error approach) changed the constants in small steps to improve the
following metrics: reducing overshoot, improving settling time, and ensuring stability.

− For optimal stability, an extra step of measuring the voltage in the active part of the
hybrid filter was implemented.

More details about the controller, including all the parameter values, can be found
in [33].

6. Hybrid Power Filter Performance Evaluation
6.1. Introduction to the Test Environment

The medium-voltage benchmark model (MV BNM), specifically designed for harmonic
distortion analysis, was used to evaluate the HPF performance. Figure 11 illustrates the
MV BNM. The HPF is connected to the Customer 2 location (PCC2) since this customer has
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an existing passive compensation to which (potentially) the active part can be retrofitted.
To avoid resonances with the system, the inductance of the existing passive compensator
was adjusted from 0.215 mH to 0.615 mH. Further details of the used model can be found
in [36].
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Figure 11. MV benchmark model scheme [36]. Figure 11. MV benchmark model scheme [36].

The HPF performance was evaluated in two stages. First, the PSCAD software was
used, and the HPF was tested within a simulated environment. For this analysis, the MV
BNM and the HPF, including the control algorithm, were modeled in PSCAD in detail (as
presented in Section 5). Additionally, ideal harmonic sources were utilized to verify the
accuracy of the control algorithm in determining the reference. The analysis with ideal
harmonic sources is based on the harmonic impedances of the MV BNM.

The second evaluation employs a real-time digital simulator Typhoon HIL in com-
bination with a Digital signal processors (DSPs) development board in the loop. This
analysis demonstrates the functional performance of the hybrid filter’s control algorithm,
implemented on an actual controller. The purpose of CIL testing is mainly to validate
PSCAD simulation results.

It is important to note that the proposed HPF reference calculation method was com-
pared with the conventional control principle, where the filtered harmonics are regulated
to zero (ref. 0). The proposed reference calculation method was tested without (ref. imp)
and with voltage condition (ref. imp. (volt. cond.)), see Equation (13)).

6.2. PSCAD Simulation Results

The modeled system for the simulations considered only low-order harmonic, namely,
the 5th, 7th, 11th, and 13th harmonic components. These harmonic orders are generated in
the MV BNM (load 1 and load 2 in Figure 11) by the thyristor rectifier and the background
distortion. The simulation results for filtering performance evaluation are presented in
Section 6.2.1 (Figures 12–14). In Section 6.2.2, the simulation results for assessing the
reduction in the required current ratings are presented. Figure 15 shows a comparison of
the required average active filter current for the four simulated cases: ref. 0 (blue), ref. imp.
(red), ref. imp. (volt. cond., yellow), and without filter (purple). In Figure 16, the numerical
results of the comparison of the hybrid filter’s average current are presented.
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6.2.1. Filtering Performance Evaluation

Figure 12 shows the measured system current IPCC,h, which also represents the control
reference. Comparing the current values, it can be seen that the active filter reduces the
current harmonic distortion across all observed harmonic components. As expected, the use
of the proposed reference (ref. imp.) does not reduce the harmonic distortion to zero at all
phase angles of the background distortion. When the voltage condition (Equation (13)) is
met (ref. imp. (volt. cond.)), the active filter does not filter the current, and consequently,
the current harmonic distortions without the active filter (AF) (purple line) and with the
AF (yellow line) are the same.

Figure 13 shows the HPF current, which is (using the proposed reference) reduced at
certain angles of background distortion compared to the conventional approach (ref. 0).
Greater differences occur at the 11th and 13th harmonic components at positive angles of
background distortion. At certain angles of background distortion, the consumer improves
voltage harmonic distortion with passive elements, which is also evident from Figure 13.

Figure 14 shows the measured harmonic voltage. As can be seen from the figure,
the HPF affects voltage conditions. Voltage harmonic distortion increases at certain phase
angles with the use of the HPF in ref. imp. control mode (the purple curve is lower than the
red one). If the voltage condition (Equation (13)) is included, the hybrid filter recognizes
this, and the current of the active part of the hybrid filter is 0 (yellow curve).
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6.2.2. Assessing the Reduction in Required Current Ratings

Figure 15 presents the average harmonic currents that are required for efficient filtering
across all background phase angles. The results show that the proposed HPF reference
in ref. imp. control mode decreases the hybrid filter’s harmonic current. The reduction
becomes even more noticeable when the voltage condition is applied (ref. imp. (volt.
cond.)), as this leads to a decrease in voltage harmonic distortion at the PCC. A numerical
comparison of these results is also provided in Table 1.

Table 1. Numerical results of the comparison of the HPF’s average current.

Harm. Comp.
Results of Simulation Results of Analytical Calculation

Ref. 0 Ref.
Imp.

Ref. Imp.
(Volt. Cond.) Ref. 0 Ref.

Imp.
Ref. Imp.

(Volt. Cond.)

5th 92.34 9153 53.85 93.83 91.31 64.93
7th 39.04 30.55 11.16 33.57 30.27 13.35
11th 32.39 27.33 8.95 22.93 19.20 6.95
13th 20.43 13.63 1.23 21.84 18.16 6.33

Figure 16 shows simulation and analytical results (absolute and relative values) for
differences in the required harmonic HPF current. Two cases are analyzed: the proposed
ref. imp. and the ref. imp. with voltage condition. Both simulation results show that using
the proposed reference for the hybrid filter (blue color) leads to a decrease in filter currents.
The absolute difference remains roughly consistent across all harmonic components, aver-
aging around 5 A. The relative difference varies, as the average harmonic current decreases
with higher harmonic orders, ranging from 3% (for the 5th harmonic order) to 20% (for the
13th harmonic order). The reductions in the analytical results exceed that of the simulation,
which is expected using an ideal harmonic current source. Please note that the source does
not take into account the dynamic nature of the measured harmonic distortion at PCC.

When the voltage condition is applied, the filter current decreases substantially more
due to the partial filtering of voltage harmonic distortion by the customer’s passive ele-
ments. The reduction in the hybrid filter current ranges from approximately 35% (for the
5th harmonic order) to 70% (for the 13th harmonic order). In terms of absolute values,
the reduction amounts to roughly 30 A for the 5th harmonic current, 15 A for both the 11th
and 13th harmonic components, and around 20 A for the 7th harmonic component.

A numerical comparison of these results is also provided in Table 2 (absolute values)
and Table 3 (relative values).

Table 2. Numerical results (absolute values) of the differences in the average HPF current: simulation
results and analytical calculation.

Harm. Comp.
Results of Simulation Results of Analytical Calculation

Ref. Imp. Ref. Imp.
(Volt. Cond.) Ref. Imp. Ref. Imp.

(Volt. Cond.)

5th 2.52 A 28.90 A 0.80 A 38.48 A
7th 3.30 A 20.22 A 8.48 A 27.88 A

11th 3.73 A 15.96 A 5.06 A 23.44 A
13th 3.68 A 15.51 A 6.80 A 19.20 A

Table 3. Numerical results (relative values) of the differences in the average HPF current: simulation
results and analytical calculation.

Harm. Comp.
Results of Simulation Results of Analytical Calculation

Ref. Imp. Ref. Imp.
(Volt. Cond.) Ref. Imp. Ref. Imp.

(Volt. Cond.)

5th 2.69% 30.80% 0.87% 41.68%
7th 9.83% 60.23% 21.73% 71.41%

11th 16.26% 69.69% 15.63% 72.37%
13th 16.84% 71.02% 33.30% 94.00%
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6.3. Controller-in-the-Loop Testing Results

In the second phase of the analysis, the real-time digital simulator Typhoon HIL 604,
coupled with a DSP development board (Texas Instruments TMS320F28335), has been used.
Due to the simulator’s limitations in handling the full MV BNM model, we opted for a
simplified representation. In this model, the network was represented with the short-circuit
impedance data from the MV BNM, and the customer was modeled as a passive load and
current harmonic source (see Figure 2). The values of individual parameters are presented
in Table 4.

Table 4. Parameters of the simplified MV BNM model.

Grid Impedance HPF Passive
Components Equivalent Load LCL-Filter

Rgrid = 0.0004 Ω RC = 0.00405 Ω Iload,5 = 91.84 A LLCL,1 = 1.1 mH
Lgrid = 0.0372 mH LC = 0.615 mH

CC = 2358 µF
ϕload,5 = −162◦ LLCL,2 = 0.4 mH
Rload = 0.45 Ω RLCL,1 = 0.5 Ω
Lload = 3.8 mH RLCL,2 = 0.1 Ω

RLCL = 0.2 Ω
CLCL = 10 µF

Figure 17 illustrates the schematic overview of the testing set-up. Within the Typhoon
HIL simulator, a network model with the connected HPF was modeled. The measured
quantities required by the controller are fed into the analog output card (GTAO). The output
from the simulator is in the form of voltage signals, which are fed into the TMS 320F28335
controller. The TMS hardware converts the input signals and modifies (amplifies) them to
correspond to those in the original model. The presented control algorithm (Figure 8) was
coded in C language. The controller, in accordance with the presented control algorithm,
produces six firing pulses that are fed back to the Typhoon HIL simulator.
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Figure 17. Scheme of hardware connections between control hardware and Typhoon HIL.

It is worth noting that the CIL testing focused only on the fifth harmonic component
due to operational constraints with the DSPs.

Figure 18 presents the results for the fifth harmonic component as a comparison
between the results obtained through the CIL testing and those obtained analytically using
ideal harmonic sources. The harmonic current generated by the active filter is notably
reduced within the phase angles of the background distortion spanning from −70◦ to 120◦.
This reduction is primarily caused by the fact that the customer is not responsible for all
the harmonic distortion at these specific phase angles.
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The system reference serves as an indicator of the amount of harmonic current at
the PCC and is the same as the measured current when the hybrid filter is operational.
If the system reference is not filtered to zero (angles between −70◦ to 120◦), that means the
customer is not responsible for that harmonic distortion.

For easier interpretation, Figure 19 provides an overview of the average harmonic
current distortion across all background distortion phase angles. The application of the
proposed reference leads to a reduction in the harmonic current for 8.9 A when tested
with the CIL test set-up and 11 A in analytical calculations. This translates to a relative
reduction of 10% in the practical case (utilizing the real-time digital simulator) and 11.5%
in the analytical case.
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This comparison shows that the proposed reference is correctly calculated in the DSP
controller, which mimics the behavior of the proposed control algorithm in a real environment.

7. Conclusions

This paper presents an improved method to calculate the current reference for the
controller of an HPF by considering the customer’s harmonic emissions. This advanced
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approach differs from most of the existing methods where the harmonic distortion is usually
filtered to zero. The proposed approach proves to be especially beneficial in networks with
high background distortion, such as industrial networks or networks with high shares
of CIG. Clearly, in these environments, high harmonic distortions may be a consequence
of complex interactions between the customers’ equipment and adjacent devices or just
simply caused by harmonic sources elsewhere in the system. By only filtering the customers’
emissions, the required power rating of the active part of the HPF is reduced.

With the use of the proposed hybrid filter topology, the size of the active components
can be further reduced, subsequently also reducing the investment and operational costs
for the customer.

The method and the topology have been validated using both simulations and
controller-in-the-loop testing on a prototype implemented with DSP hardware. These
practical tests aligned with the theoretical predictions. Namely, the results indicated a
significant decrease in filter current across all harmonics when the voltage condition is used.
The simulated reduction varied from 35% to 70%, while the theoretical results showed
a slightly broader range of 40% to 90%. Without accounting for the voltage condition,
the reductions were more modest, ranging between 3% and 20%. Tests using a real-time
digital simulator reaffirmed these findings, consistently showing a 10% reduction in filter
current. In terms of absolute values, this translated to reductions of 9 A (simulated) and
11.5 A (calculated). Furthermore, the introduced hybrid filter methodology reduces the
need for customers to compensate for all harmonic currents at the PCC.

In line with the ongoing development and research, our involvement with the
CIGRE/CIRED JGW C4.42 working group focuses on the continuous assessment of a
consumer’s contribution to total harmonic distortion. The primary aim of this group is to
suggest methodologies for determining consumer responsibility, a concept we have incor-
porated and applied to an HPF in this study. The standardization of this approach could
enhance the practical application of the methodology discussed in this paper. The final
report from the working group is nearing completion and is expected to be published
shortly, framing a central aspect of our future research direction.

Furthermore, our future research work will focus on:

− Investigating some other control algorithms for the main current control loops of
the HPF in combination with the proposed method for current reference calculation.
Our initial focus will be on analyzing proportional-resonant (PR) controllers, which
promise potential advantages, such as improved selectivity and transient performance,
over the PI controllers currently in use.

− Extended HIL testing on a real-time simulator, aiming for more accurate modeling
of the HPF’s active part, currently modeled as an ideal source. Here, we were faced
with equipment limitations that needed to be upgraded. Testing will expand to cover
a wider range of harmonic distortions and various network topologies, including real
network models and devices (nonlinear loads).

− After HIL testing, our attention will move towards the development and laboratory
testing of a hardware prototype of the device.
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List of Acronyms
Abbreviation Definition
ADC Analog-to-digital converter
AF Active filter
CIG Converter interfaced generation
CIL Controller-in-the-loop
DSP Digital signal processors
GTAO Analog output card
GTDI Digital input card
HIL Hardware in the loop
HPF Hybrid power filter
MV BNM Medium-voltage benchmark model
PC Personal computer
PCC Point-of-common-coupling
PI Proportional integral
THD Total harmonic distortion
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