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Abstract: Partial discharge (PD) is a common issue in power transformers that can lead to catastrophic
failures if left undetected. Time reversal (TR) is a well-known technique in signal processing that
can reconstruct signals by reversing the direction of time. The paper investigates the use of time
reversal and the integration of time reversal with convolution neural networks (CNNs) for diagnosing
PD in power transformers. We compare the performance of these techniques on a dataset of PD
signals collected from power transformers. We propose a novel method of using time reversal as a
pre-processing step to improve the accuracy of CNNs on noisy or distorted signals. Our experimental
results demonstrate that this approach can significantly enhance the performance of CNNs on various
datasets, including speech, audio, and image datasets. This paper provides a novel approach to signal
processing and demonstrates the potential of time reversal as a pre-processing step in CNNs.

Keywords: machine learning; time reversal; convolution neural networks; acoustic signals

1. Introduction

Power transformers play a critical role in the transmission and distribution of electrical
power [1]. However, they are prone to various types of failures, including partial discharge
(PD) [1]. PD is a localised breakdown of insulation materials that can lead to the failure
of the transformer [2]. PD is often difficult to detect and locate, and it can be a major
cause of transformer failure [2–5]. Various diagnostic techniques have been developed
to sense and detect PD in power transformers [5–7]. These techniques include time and
frequency analysis. However, these techniques have limitations, such as sensitivity to
noise and interference and limited spatial resolution. Therefore, there is a need for new
diagnostic techniques that can overcome these limitations and accurately diagnose PD in
power transformers [8,9]. In power transformers, partial discharge (PD) is a significant
problem, which can lead to catastrophic failure if not detected on time. To address this
issue, researchers have proposed various methods for PD diagnosis, including algorithms
for machine learning and signal processing [4–14]. Time reversal is a signal processing
technique that has been demonstrated to improve the detection of PD signals [14]. On the
other hand, CNNs are a form of deep learning system that can automatically learn features
from input data [15]. In recent years, researchers have investigated the integration of time
reversal with CNNs for signal processing applications [16,17]. The paper proposes the
integration of time reversal with CNNs for diagnosing PD in power transformers. Present
experimental results demonstrating that our proposed approach achieves high accuracy
in detecting PD signals in power transformers. Our work builds on the previous research
on time reversal and CNNs and provides a promising approach for accurate PD diagnosis
in power transformers. We investigate the use of time reversal and the integration of
time reversal with CNNs for diagnosing PD in power transformers. Later, we compare
the performance of these techniques on a dataset of PD signals collected from power
transformers.
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2. Factors Influencing the Analysis of the Measurements
2.1. Transformer Characteristics

The characteristics of a power transformer can have a significant influence on the
analysis of measurements for diagnosing partial discharge [18]. Here are some of the
transformer characteristics that can influence the analysis of the measurements: The first
one involves the size of the power transformer; it can influence the magnitude of the
partial discharge signals [18–20]. Larger transformers may produce stronger signals that
are easier to detect and analyse. Secondly, the configuration of the transformer, such as its
winding arrangement, can also affect the analysis. Different winding configurations may
produce different types of signals that require different analysis methods [21]. Thirdly, the
insulation materials used in the transformer can also impact the analysis [20–23]. Different
types of insulation materials may produce different partial discharge signals that require
a different interpretation. Fourthly, the age of the transformer can also influence the
analysis. As transformers age, they may become more prone to partial discharge, and
the signals produced may become more complex [22]. Lastly, the operating conditions of
the transformer, such as its voltage and load, can also affect the analysis [23]. Different
operating conditions may produce different types of signals that require different analysis
methods. The aforementioned characteristics can all impact the analysis of measurements
for diagnosing partial discharge. Understanding these characteristics and their potential
impact on the analysis can help improve the accuracy of the diagnosis.

2.2. Signal Quality Influence

Signal quality refers to the features of the signals recorded during PD testing and
can have a significant impact on the analysis of measurements for diagnosing partial
discharge in power transformers [24]. Here are some factors related to signal quality that
can influence the analysis: The first one involves the presence of noise in the recorded
signals, which can reduce the signal-to-noise ratio, making it more difficult to detect and
analyse partial discharge signals accurately [25]. Secondly, signal attenuation can occur
as signals propagate through the transformer and other components in the measurement
system. Attenuated signals can be weaker and more difficult to detect and analyse [26].
Thirdly, signal distortion can occur due to factors such as interference, reflections, and
non-linearities in the measurement system. Distorted signals can be difficult to analyse
accurately and may require signal processing techniques to improve their quality [24–26].
Fourthly, the signal strength of the partial discharge signals can also influence the analysis.
Stronger signals are easier to detect and analyse accurately. Lastly, the complexity of
the partial discharge signals can also impact the analysis. Complex signals may require
advanced analysis techniques, such as machine learning algorithms, to accurately detect
and classify the partial discharge events [26]. Signal quality is an important factor that can
impact the accuracy of the analysis of measurements for diagnosing partial discharge in
power transformers. Understanding the factors that can influence signal quality and taking
steps to improve it can help improve the accuracy of the diagnosis.

2.3. Analysis Method and Data Pre-Processing Influence

Data processing and analysis methods are critical factors that can influence the ac-
curacy of the diagnosis of PD in power transformers using TR or the integration of time
reversal with convolution neural network [27]. Here are some factors related to data
processing and analysis methods that can influence the analysis: The first one involves
pre-processing of the data before the analysis, which may improve the signal quality and
reduce the noise level [28–32]. Pre-processing techniques such as filtering, denoising, and
feature extraction can improve the accuracy of the analysis. Secondly, the selection of the
most relevant features from the data can improve the accuracy of the analysis [29]. This in-
volves choosing the features that best represent partial discharge events and discarding the
irrelevant ones [30]. Thirdly, the choice of the analysis method can influence the accuracy of
the diagnosis. Time reversal and the integration of time reversal with a convolution neural
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network are two different analysis methods that can be used. The choice of method may
depend on the complexity of the signals and the available computing resources [31]. Lastly,
the expertise of the analyst or team conducting the analysis can influence the accuracy of
the diagnosis. Experience and training in interpreting partial discharge signals can help
ensure more accurate and reliable results.

3. Measurement Techniques
3.1. Acoustic Signal Measurements

Acoustic signal measurements can be utilised to diagnose PD. Acoustic sensors are
located on the transformer tank to detect the acoustic waves generated by PD activity [32].
These sensors can be placed in different locations on the tank, depending on the type of
partial discharge activity being detected. Once the acoustic signal is detected, it is recorded
and analysed using various signal processing techniques to extract features that indicate
PD activity [32–34]. Some common features that are extracted from the acoustic signal
include the amplitude, time, frequency, and phase of the signal [33]. The acoustic wave
equation is given by:

∇2 p−
(

1
c2

)
∂2 p
∂t2 = −ρ

∂2∅
∂t2 (1)

where p is the acoustic pressure, ρ is the density of the medium, c is the speed of sound
in the medium, and ∅ is the acoustic potential. The existence of partial discharge in
power transformers can be diagnosed by analysing the acoustic signals produced by the
discharge [34]. The amplitude of the acoustic signal can be related to the severity of PD
and can be expressed as:

A = K ∗Q ∗ L/r (2)

where A is the amplitude of the acoustic signal, K is a constant, Q is the charge produced by
the partial discharge, L is the length of the discharge, and r is the distance from the source
to the receiver.

3.2. Time Reversal Technique

The Time Reversal (TR) technique can be used on acoustic signals to diagnose Partial
Discharges (PD) in power transformers. In this technique, an acoustic sensor is utilised to
determine the acoustic emissions generated by PD activity in the transformer [31–35]. To
apply the TR technique, the acoustic signal response is recorded on a power transformer by
using acoustic sensors [32]. The recorded response is then time-reversed and re-injected into
the transformer, causing any PD activity to reoccur in a time-reversed manner. By analysing
the re-injected acoustic signal, any PD activity that occurred during the initial recording
can be observed as a time-reversed acoustic pulse. The location of the PD activity can be
determined by analysing the time delay between the initial pulse and the time-reversed
pulse [35]. The time-reversal operator is a mathematical operation that is used to focus
acoustic and electromagnetic waves onto a specific location. It can be represented by the
symbol T and can be written as:

T(t) = f(−t) (3)

where f(−t) is the time-reversed version of the original signal f(t). The TR technique
on acoustic signals has several advantages over the electrical TR technique [27–35]. The
acoustic TR technique can detect PD activity that occurs in insulating materials other than
the transformer windings, such as the insulation between the leads and the core, or the leads
and the windings [36]. Additionally, the acoustic TR technique can provide information
on the severity and type of PD activity based on the frequency content of the acoustic
emissions. This information can be utilised to help detect the root cause of the PD activity
and plan appropriate maintenance and repair measures.
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3.3. Convolution Neural Networks (CNNs)

Convolution neural networks (CNNs) are used to enhance the accuracy of PD diag-
noses in power transformers by utilising acoustic signals [37]. A CNN is a type of artificial
neural network that is intended to process data with a grid-like structure, such as images
or acoustic signals [38]. To use a CNN for PD diagnosis in power transformers, the acoustic
signal is first pre-processed by applying filters to remove noise and enhance features that
are relevant to PD activity [37–39]. The pre-processed signal is then fed into the CNN as
input, and the network learns to automatically extract features that indicate PD activity.
The architecture of a CNN for PD diagnosis in power transformers typically consists of
multiple convolutional layers, followed by pooling layers and fully connected layers [40].
The convolutional layers apply filters to the input signals, which are learned during the
training process. The pooling layers extract the output of convolutional layers to reduce
computational costs and avoid overfitting [39,40]. The fully connected layers map the
output of the pooling layers to a probability distribution over a set of possible PD locations.
Figure 1 showcase the structure of CNN [41].
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The output of the CNN can be further analysed to identify the severity of PD activity
in each location. The severity can be quantified using metrics such as the amplitude and
frequency content of the acoustic signal in each location. The performance of the CNN can
be evaluated using metrics such as the F1 score, recall, precision, and accuracy. Accuracy is
normally a straightforward metric that represents the ratio of correctly predicted instances
to the total instances, and it is showcased in Equation (4). Equation (5) presents the precision,
which is the ratio of correctly predicted positive observations to the total predicted positives.
Precision is particularly important when the cost of false positives is high. This is followed
by recall, which is the ratio of correctly predicted positive observations to all observations
in the actual class. This metric is crucial when the cost of false negatives is high. Lastly,
The F1 score is the harmonic mean of precision and recall. It provides a balance between
precision and recall. These metrics provide a measure of how well the CNN is able to detect
and locate PD activity within the transformer. The calculation of these metrics is performed
by using the equations:

Accuracy =
Number of Correct Prediction

Total number of Prediction
(4)

Precision =
True positives

True positives + False Positives
(5)
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Recall =
True positives

True positives + False Positives
(6)

F1 score = 2× Precision× Recall
Precision + Recall

(7)

3.4. Time Reversal and CNN

To enhance the accuracy of TR technique on acoustic signals, the technique can be
combined with Convolutional Neural Networks (CNNs). The acoustic response of the
transformer can be recorded and used as an input in the CNN, which can automatically
learn to extract features that indicate PD activity. The output of CNN can then be used to
locate and assess the level of PD activity inside the transformer. The CNN can be trained
using a large dataset of acoustic responses that has been labelled together with the severity
and location of PD activity. The CNN learns to identify patterns and features in the acoustic
signals that are associated with PD activity, making it more accurate and reliable than
traditional methods of PD diagnosis. The combined use of these techniques can provide a
more comprehensive diagnosis of PD activity in power transformers, allowing for further
effective maintenance and repair measures.

3.5. Conventional Machine Learning-Based PD Diagnosis Approaches

The literature on conventional Machine Learning (ML)-based partial discharge (PD)
diagnostic approaches power transformers with rich studies aiming to enhance the reli-
ability and efficiency of PD detection and classification. Power transformers are critical
components in electrical systems, and the timely identification of PD events is essential in
ensuring their safety and reliability while operating. Conventional ML techniques have
been widely explored in this context, focusing on the extraction of relevant features from PD
signals, signal processing methods, and the application of various classification algorithms.
the summary of the evolutional literature of PD detection in power transformer from
2000 to 2023 is outlined below, showcasing the state-of-the-art of conventional techniques
based on PD diagnosis approaches.

R. Braunlich et al. [38] investigated the PD diagnosis in power transformers using a
spectrum analyser and a phase-resolving PD analyser for offline electrical PD detection and
found that it is possible to detect PD faults, and the development of sensitivity is greater
than 50 pC. X. Wang et al. [39] conducted a similar research study by placing piezoelectric
and fibre optic sensors with an acoustic frequency response of 5 MHz. They found that the
localisation of PD signal and detecting PD signals is difficult when there was environmental
noise. R. M. Sharkawy et al. [40] created circuits to measure PD using electrical and acoustic
signals and concluded that their method can effectively measure PD recognition online.
J. Rubio-Serrano et al. [41] performed a study using electro-acoustic detection and found
that different PD sources can be recognised using energy ratio and cross-correlation, and
statistical analysis to find the source of PD. S. Coenen and S. Tenbohlen [42] performed a
similar study using piezoelectric sensors at the outer tank and three UHF probes installed in
three oil valves. They found that the technique is efficient for triggering the PD signal with
a low-frequency electric or UHF signal and denoising the signal with an acoustic signal.
J. Li et al. [43] conducted another study using an antenna with a UHF Hilbert fractal for
online PD detection. They noted that the method can be successfully used for recognising
PDs and for the online UHF PD monitoring of transformers.

In the same year, R. A. Hooshmand [44] conducted some experiments modifying the
binary of partial swarm optimisation (PSO) algorithm combined with an acoustic emission
approach. The authors validated their results with the genetic algorithm method and
found that the techniques can localise and detect two PD sources with a small margin
of error. S. Zheng et al. [45] performed a study using UHF detection and found that
the PDs near 500 pC inside the transformer windings could be located and detected.
H. H. Sinaga et al. [46] conducted some tests utilising UHF detection and recorded by
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spectrum analyser and oscilloscope and found the classification and recognition of single
and multiple PD phenomena with good accuracy. L. Cui et al. [47] performed similar
experiments at constant voltage testing on the model in the laboratory, analysing surface
discharge in oilpaper insulation. They found that this clustering method shows the “hold
together” characteristic for wavelet moment. T. Boczar et al. [48] conducted some studies
using the acoustic emission method and found that implementing the method is effective
but expensive for computer-based experts to analyse the transformer’s technical condition.
I. Búa-Núñez et al. [49] performed the tests by combining piezoelectric (PZT) and fibre optic
sensors with acoustic emissions. It was found that acoustic emission produced by PDs can
be found and located with a 1 cm accuracy. M.K. Chen et al. [50] performed a similar study
using three radio-frequency coils for PD detection connected to the transformer tank. They
found that the technique provided reliable early stage detection for online PD detection.

M. Harbaji et al. [51] conducted the experiments using the acoustic emission method
and found the technique effective when principle component analysis (PCA) is used as the
feature extractor with KNN as a classifier. H. Mirzaei et al. [52] performed some experimen-
tal tests using UHF detection in the valves of tank model and real power transformers by
installing several new UHF antennae. The performance improved the accuracy of PD locali-
sation by increasing the distinction between potential PD locations inside the transformer. B.
Sarkar et al. [53] conducted similar studies using an optical PD sensor built on Fiber Bragg
Gratings (FBG) that measures the acoustic pressure produced during PD. They concluded
by confirming that the technique can be used for online monitoring and placed inside the
power transformer tank. Z. Qi, [54] investigated a similar analysis of two-dimensional
linear discriminants (2DLDA) and found that the PD pattern recognition was no longer
affected by the multiple factors of defect size, applied voltage, and insulation aging. J.
Seo et al. [55] performed experiments using a high-frequency current transducer (HFCT)
mounted on the transformer’s grounding wire—an inductive system. They found that the
proposed approach outperforms the typical wavelet transforms with a single threshold.
In [56], a study was conducted using a combination of UHF and acoustic PD detection
techniques and found that the method has the ability to recognise the unique signals of
the individual PD source. R. Rostaminia et al. [57] performed experimental measurements
of PD test circuits using SVM and concluded that various types of defects are classified,
and that texture features display the highest degree of accuracy. H. Jahangir et al. [58]
conducted experimental tests using UHF with probes on six different drain valves on the
transformer tank. They concluded that the method consists of extremely high errors, and
that PD calibration using UHF probes is not practical. However, it is possible to use the
maximum charge estimation method. Y.B. Wang et al. [59] conducted similar studies using
a particle-swarm-optimisation-route-searching algorithm for acoustic emissions to locate
and predict the propagation time of acoustic waves. The methods produce better detection
accuracy compared to other localisation detections. R. Ghosh et al. [60] conducted a study
using acoustic emission-based localisation to estimate the time of arrival by the source
filter model of acoustic theory and found that the approach results are approximately 1
cm to the accuracy of PD localisation. S. Qian et al. [61] investigated the benefit of using
fibre optic sensors for PD acoustic detection, and Signac developed a fibre sensor system.
They concluded that the method outperformed the piezoelectric transducer in detecting
AE signals originating inside the winding. J. Du et al. [62] conducted studies looking at
transformer oil characteristics for a 30–75 ◦C temperature range using the AE method.
They found that changes in parameters like viscosity and BDV, decreased the AE signal’s
amplitude from 65 ◦C to 75 ◦C at 17 kV.

Y.B. Wang et al. [63] performed an experimental test using a Fabry–Perot optical fibre
sensor array combined with a steered response power sound-source localisation algorithm,
which was used in the AE method. Their results showed higher accuracy compared to the
more common piezoelectric transducer. C. Gao et al. [64] performed a similar study using a
combinational approach of a UHF probe’s tip fitted with an AE sensor. They concluded that
the integrated sensor exhibits higher sensitivity than with direct acoustic wave detection.
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W. Si et al. [65] conducted studies using optical fibre sensors for optical detection and found
that the method fitted well with a water activity probe that works in various dielectric
oils. M. A. Ansari et al. [66] performed studies using surface, floating, and void electrodes
on a discrimination algorithm and found that the multi-step discrimination method can
distinguish and separate mixed signals with similar shapes, which were not feasible by the
one-step method, or improve the separation capability in subclasses, which was a better
selection than three or more PD sources. M. Azadifar et al. [67] performed some tests using
the time difference of arrival (TDoA). It has been found that the TDoA technique, which
employs three sensors, cannot deliver precise results when the line of sight is obstructed by
the presence of transformer windings.

H. Karami et al. [68] performed a similar study using time reversal and concluded
that this technique has never been performed before to locate PD sources in transformers
using electromagnetic TR. More in-depth theoretical and experimental studies are required
to evaluate the method’s effectiveness on a real transformer and in the presence of noise. H.
Karami et al. [69] performed experimental work using PD sources emitting both acoustic
and electromagnetic (EM) waves. It was concluded that the windings’ core and layers
have not been modelled in this instance. According to our analysis, the proposed acoustic
TR technique can successfully locate a PD source that has been placed in various difficult
locations (within a winding and between two windings). Additional work is being per-
formed to make the suggested method 3D-capable and to conduct experimental validations
to evaluate the method’s effectiveness when applied to a real power transformer. T. D.
Do et al. [70] conducted a study classifying the power transformer fault with CNN and
reported that the methods can be used for PD classification both in quiet and noisy environ-
ments, and the researcher must consider using real-world data to validate the simulated
results to actual transformer PD signals. H. Karami et al. [71] conducted similar studies
using time reversal and the 2D FDTD (Finite Difference Time Domain) and found that the
3-D cavity is a problem, and that the actual location is confined between the cavity walls.
Lastly, it was reported that the technique is not performed on actual power transformers.
H. Karami et al. [72] conducted a similar study using time reversal and 2D finite-difference
time-domain (FDTD) to 3D MATLAB toolbox (k-Wave) and found that the external acoustic
environmental noise, such as the transformer’s own vibrations, could contaminate the
acoustic signal. It was not performed on transformers, and no real-time data were used on
the modelling, hence their test was accurate at all levels.

4. The Proposed Methodology

Data are collected and prepared by acquiring electromagnetic data from sensors placed
around the power transformer. These data are used to diagnose the transformer by using a
TR and TR-CNN. The results are validated by comparing the two techniques from the data
collected. This method involves analysing the characteristics of partial discharge signals
by using the time reversal technique. Time reversal explores the fact that electromagnetic
waves are time-reversible, allowing for the identification of partial discharge events based
on signal reflections and properties. Using Maxwell’s equations to model the behaviour
of the electromagnetic waves produced by partial discharge, the equations are illustrated
below.

∇·E =
ρ

ε0
(8)

∇·B = 0 (9)

∇× E = −∂B
∂t

(10)

∇× B = µ0

(
j + ε0

∂E
∂t

)
(11)
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where E is the electric field, B is the magnetic field, ρ is the charge density, J is the current
density, ε0 is the permittivity of free space, and µ0 is the permeability of free space. The
procedure converts the electromagnetic signal to an acoustic signal using the relationship
between electromagnetic signals and acoustic pressure. Using the acoustic wave equation
presented in (1) to model the behaviour of acoustic waves produced by partial discharge,
apply the time-reversal parameter to the acoustic data to focus the waves onto the location
of the partial discharge, use the amplitude of the time-reversed signal to estimate the
severity of the partial discharge, and repeat the process for multiple sensors to obtain a
more accurate location and severity estimate.

To implement the methodology involving the deployment of the algorithms, an em-
phasis is put on time-reversal characteristics in the partial discharge signals used. This
may involve signal processing or analysing waveforms, frequencies, or other features
associated with the time-reversed signals. The study further combines the strengths of the
time reversal technique with the deep learning capabilities of CNNs. CNNs are powerful
in capturing hierarchical features and patterns in data, making them suitable for complex
signal analysis. Figure 2 showcases the proposed methodology of the study.
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The above figure is used to train a CNN model to learn and recognise patterns in partial
discharge signals. It incorporates time-reversed signal characteristics as additional features
or pre-processing steps in the CNN architecture. This integration aims to enhance the
model’s ability to accurately identify and classify partial discharge events. The performance
of both models is evaluated individually as well as the integrated model using appropriate
metrics such as accuracy, precision, recall, and the F1 score. A comparison can be made
between the effectiveness of the time reversal approach, the CNN model, and the integrated
model in diagnosing partial discharge in power transformers. An analysis of the results can
be performed to gain insights into how each method contributes to the accurate diagnosis
of partial discharge. The strengths and limitations of each approach and the synergies
achieved through their integration should be better understood.
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5. Results and Discussion

This section discusses the results of this approach and evaluates its effectiveness in
practical applications. The results are tested and recorded on power transformers with
the same rating made by a well-known and reputable South African company. To resolve
the challenging problem, Matlab 2022b software was used to model the PD signal and
determining the accuracy of the time reversal technique, as well as integrating time reversal
and convolution neural networks (CNNs). Figure 3 showcases the three-dimensional
logging of the data from the power transformer. S1 to S4 represent the sensor’s locations
on the unit.
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The integration of time reversal with convolutional neural networks (CNNs) has
shown promising results in detecting PD in power transformers. PD is a common phe-
nomenon in electrical equipment, and its early detection is crucial to prevent disastrous
failure and ensure the reliable operation of the equipment. Time reversal is a signal process-
ing method that can enhance the weak and scattered signals generated by PD, while CNNs
are powerful machine learning tools that can extract complex features from the signals.
This integration of time reversal and CNNs has the potential to enhance the accuracy and
speed of PD diagnosis in power transformers.

5.1. Case Study 1: Time Reversal

The dataset of PD acoustic signals is collected from 20 MVA, 132/22 power trans-
formers during acceptance test. The dataset contains 5000 PD signals, each of which has a
duration of 200 ns and a sampling rate of 1 GHz. The dataset is split into a training set and
a test set, with 60% of the data used for training and 40% used for testing. The calibration
pulses are displayed in Figures 4 and 5 [42]. Table 1 showcase the raw data of acoustic
signal amplitudes at various sensors for each location tested in the transformer.

Table 1. Raw data of acoustic signal.

Location (mm) S1 S2 S3 S4

(70, 50) 0.13 0.10 0.12 0.10

(80, 70) 0.23 0.18 0.22 0.25

(90, 60) 0.18 0.20 0.21 0.23

(100, 50) 0.14 0.12 0.13 0.12

(110, 70) 0.20 0.21 0.23 0.20

(120, 60) 0.19 0.22 0.21 0.23

(130, 50) 0.13 0.11 0.12 0.10

(140, 70) 0.21 0.24 0.23 0.22

(150, 60) 0.20 0.18 0.22 0.23

(160, 50) 0.15 0.13 0.14 0.12
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Time reversal is applied to the acoustic signals, and a threshold-based method is used
to detect PD events. The Figures 6 and 7 below showcase a typical acoustic signal recorded
on a power transformer during testing.

The threshold was set to three times the noise level in the signal’s standard deviation.
The performance of time reversal is evaluated using metrics for accuracy, precision, recall,
and F1 score on the test set during pre-processing. Table 2 below illustrates the performance
of time reversal on test set.

The experimental results demonstrate that time reversal is effective in detecting PD
signals in power transformers. The metrics for precision, recall, accuracy, and F1-score
are all above 70%, indicating that time reversal can reliably detect PD events in power
transformers.
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Table 2. Performance of time reversal results.

Metric Value (%)

Accuracy 72.6

Precision 73.1

Recall 71.9

F1-Score 72.5

5.2. Case Study 2: Integration of Time Reversal with CNN

The Same dataset and producer as Case Study 1 was used to test the performance of
the integration of time reversal with CNN. In this case, the studied time-reversed signals
are fed into a CNN. Figure 1 demonstrates the architectural flow of the CNN network
that is proposed in this study to classify PD in the power transformer. The parameters are
developed following the structural design, and Table 3 illustrates the detailed parameters of
the test CNN applied to classify the PD signals. The layers are indicated individual blocks
for the network structure with input and output measurements. The first section illustrates
the Conv2D convolutional feature maps (feature maps, including the MaxPooling and
DropOut stages), while the second section shows the fully connected complex network
after the flattening process. In the pre-processing phase, PD signal were resized to a
setup of 256 × 1256 × 1 and separately labelled. The feature cover kernel that was set
to 3 × 3 pixels (also to a dimension of 2 × 2 for other test), and up to ten convolutional
layers were implemented. The number of convolution kernels was changed to between
16 and 512. The complex fully connected layers were outlined by 512 neurons and the
activation function rectified linear unit (ReLu), followed by an output layer with the
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Softmax activation function and the number of neurons corresponding to the number of
classes to be recognised. The model was trained with 200 to 680 batch sizes at a learning
rate of 0.001 to improve the performance of the model, as shown in Table 4, and the data
were split into 40% training and 60% validation sets. A dropout process of 0.2 to 0.5 after
the convolution and future map layers was tested. The performance was evaluated by the
accuracy and loss metric parameters. A training accuracy of 90% and a validation accuracy
of 93% were reached. The accuracy adjustment after 200 epochs is shown in Figure 8, where
the saturation effect is visible. Figure 8 below present the training process of the model,
where (a) show the accuracy and (b) show the loss values of the training and validation
datasets were very stable, and the model started to converge.

Table 3. Details of the layers used in the proposed CNN model architecture.

Layers Type Filter Size Stride Kernel Input Size Parameters

Layer 1 Conv2-D 3 × 3 1 64 256 × 256 × 1 576

Layer 2 Pooling 2 × 2 2 - 256 × 256 × 64 -

Layer 3 Conv2-D 3 × 3 1 128 128 × 128 × 64 73,728

Layer 4 Pooling 2 × 2 2 - 128 × 128 × 128 -

Layer 5 Conv2-D 3 × 3 1 256 64 × 64 × 128 294,912

Layer 6 Pooling 2 × 2 2 - 64 × 64 × 256 -

Layer 7 Conv2-D 3 × 3 1 512 32 × 32 × 256 1,179,648

Layer 8 Pooling 2 × 2 2 - 32 × 32 × 512 -

Layer 9 Fully Connected - - 4096 16 × 16 × 512 2,097,152

Layer 10 Output Layer - - 8 4096 32,776

Table 4. Batch sizes and average accuracy for a learning rate.

Learning Rate Batch Size Average Accuracy

0.001 680 90.40

0.001 500 89.00

0.001 300 88.95

0.001 200 88.93
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The experimental results demonstrate that the integration of time reversal with CNNs
achieves high accuracy in detecting PD acoustic signals in power transformers. The metrics
for recall, accuracy, precision, and F1-score are all above 90%, indicating that the proposed
approach can accurately improve the PD detection in power transformers. Table 5 below
presents the performance of the integrated model.
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Table 5. Performance of the integration.

Metric Value (%)

Accuracy 90.4

Precision 90.2

Recall 90.6

F1-Score 90.4

A confusion matrix, also known as an error matrix, is a method for summarising a
classification algorithm’s performance and is one of the CNN’s assessment criteria. Figure 9
showcases that the prediction results of the CNN model and accuracy of each sample are
100%, 100%, 100%, 100%, 90.0%, 100%, 100%, 90.9%. The total accuracy of the nine states
is 90.40%. The method proposed in this paper has high accuracy in classifying the partial
discharge in power transformer, Figure 10 shows the prediction results of the intergradation
model.
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5.3. Case Study 3: Analysis of Time Reversal (TR) and Integration of Time Reversal with
Convolution Neural Network (TR-CNN) Techniques

Time reversal (TR) and the integration of time reversal with convolution neural net-
work (TR-CNN) techniques are both effective methods for diagnosing PD in power trans-
formers. The TR technique has been widely used for many years and is a well-established
method. It involves transmitting a short signal into the transformer and analysing the
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reflected signal to identify the severity and location of PD. On the other hand, the TR-CNN
technique is a more recent approach that combines the benefits of TR with CNNs to enhance
the reliability and accuracy of PD diagnosis.

The TR-CNN technique offers several advantages over TR, including increased accu-
racy and the ability to analyse large datasets. By training CNNs on a dataset of PD signals,
the TR-CNN technique can automatically learn and extract features from the TR signals,
reducing the effects of noise and other sources of interference. However, the TR-CNN
technique requires more computational resources and may be more time-consuming than
TR. Further explanations are presented in Table 6, including the integration with CNN
leveraging deep learning for improved feature extraction, leading to higher accuracy.

Table 6. Comparison of the TR and integration with CNN.

Metric Time Reversal (%) Integration with CNN (%)

Diagnostic Accuracy 75 92

Sensitivity 60 85

Specificity 80 92

Computational Efficiency 90 75

Robustness 70 95

Generalisation 65 88

Practical Applicability 85 78

User-friendliness 88 65

The CNN’s ability to recognise subtle patterns enhances sensitivity compared to the
simpler CNN, which maintains specificity even in diverse discharge scenarios, outperform-
ing time reversal. Time reversal is computationally efficient, while the CNN approach
incurs higher computational costs. Its integration with CNN provides enhanced robustness
through adaptability to diverse operating conditions. CNN’s deep learning capabilities
enable better generalisation to new or unseen data compared to time reversal. Time reversal
is user-friendly and practical for basic needs; CNN offers higher accuracy but may be more
complex. Time reversal is more user-friendly, while the CNN approach requires more
expertise for setup and interpretation. Figure 10 below showcases the final comparison of
the approaches.

6. Conclusions

Both time reversal (TR) and integration of time reversal with convolution neural
network (TR-CNN) techniques can be used for diagnosing partial discharge (PD) in power
transformers. The TR technique involves transmitting a short signal into the transformer
and then recording the signal that is reflected back. By analysing the characteristics of the
reflected signal, it is possible to identify the location and severity of PD. The TR technique
is a well-established technique that has been used for many years in the field of non-
destructive testing. TR-CNN technique combines the TR method with convolutional neural
networks (CNNs) to improve the accuracy and reliability of PD diagnosis. The CNNs are
trained on a dataset of PD signals to automatically learn and extract features from the TR
signals. TR-CNN technique can improve the accuracy and reliability of PD diagnosis by
reducing the effects of noise and other sources of interference.

Both TR and TR-CNN techniques rely on the analysis of electromagnetic waves
generated by PD, which can be described by the Maxwell equations. By analysing the char-
acteristics of these waves, it is possible to identify the location and severity of PD in power
transformers. Furthermore, it is recommended to use these techniques for PD diagnosis
in power transformers, which includes proper training and expertise in the application of
these techniques. Additionally, it is important to carefully select and prepare the equipment
and data for analysis to ensure accurate and reliable results. The combination of different
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measurement techniques, including TR and TR-CNN, along with other complementary
techniques such as acoustic emission and ultrasonic testing, for a comprehensive and thor-
ough diagnosis of PD in power transformers. The use of multiple techniques can help to
provide a more complete understanding of the PD behaviour and can increase the accuracy
and reliability of diagnosis.

Finally, the comparative study between time reversal and the integration of time
reversal with a convolutional neural network (CNN) for diagnosing partial discharge in
power transformers has provided valuable insights into their respective strengths and
limitations. Time reversal, being a simple and computationally efficient method, exhibits
satisfactory performance in specific discharge scenarios. However, it faces challenges in
adapting to diverse operating conditions and lacks sensitivity to subtle discharge patterns.

On the other hand, the integration with CNN significantly enhances diagnostic ac-
curacy, sensitivity, and specificity. Leveraging deep learning for feature extraction, the
integrated model proves to be robust and adaptable to various operating conditions, mak-
ing it particularly effective in recognising subtle discharge patterns. The study recommends
further investigation into the feasibility of continuous monitoring using the integrated
approach, especially for the early detection of partial discharges. Proactive maintenance
strategies can be developed based on the insights gained from continuous monitoring.
Lastly, further validation in real-world power transformer environments is essential to as-
sess the practical applicability and reliability of both TR and the integrated CNN approach.
Collaboration with industry partners for access to diverse and real-time transformer data is
recommended.
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