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Abstract: Rotating machines are key components in energy generation processes, and faults can lead
to shutdowns or catastrophes encompassing economic and social losses. Structural Health Monitoring
(SHM) of structures in operation is successfully performed via Operational Modal Analysis (OMA),
which has advantages over traditional methods. In OMA, white noise inputs lead to the accurate
extraction of modal parameters without taking the system out of operation. However, this excitation
condition is not easy to attain for rotating machines used in power generation, and OMA can provide
inaccurate information. This research investigates the applicability of machine learning as a pre-stage
of OMA to differentiate adequate from inadequate excitations and prevent inaccurate extraction of
modal parameters. Data from a rotor system was collected under different conditions and OMA was
applied. In a training stage, measurements were characterized by statistical features and K-means
was used to determine which features provided information about the excitation condition, that is,
which excitation was adequate to extract the rotor’s modal parameters via OMA. In a testing stage,
data were successfully classified as adequate or not adequate for OMA, achieving 100% accuracy and
revealing the technique’s potential to support SHM of rotating machines. The technique is extendable
to other monitoring systems based on OMA.

Keywords: K-means clustering; operational modal analysis; structural health monitoring; rotating
machines; system identification

1. Introduction

During operation, structures and machines must function correctly to ensure efficiency
and process safety. However, problems such as inadequate maintenance, accidents, or natu-
ral disasters can compromise these systems, leading to financial losses or even catastrophes
that endanger the environment and operators. To ensure the efficient and safe operation of
these systems, engineers work tirelessly to create and improve monitoring and maintenance
techniques. As an example, there is Structural Health Monitoring (SHM), defined by [1]
as the process of implementing a damage identification strategy for engineering systems,
which has been used in recent decades to improve lifetime and safety. According to [2],
SHM can be divided into damage detection, prognosis, and risk assessment, the first step
being the one that collects the system responses over extended periods, normalizes the
data to analysis, extracts damage sensitive features, and implements a robust method for
damage detection.

There are many techniques for applying SHM to machines and structures. Among
them is the use of the system’s modal parameters as damage sensitive features, since
changes in the structure due to faults or failures usually alter the system’s modal parameters.
The modal parameters can be extracted using only the measured outputs of the system
by a modal testing known as Operational Modal Analysis (OMA). OMA’s premise is that
the environmental loads acting upon the system (such as wind, vehicle traffic, and the
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operation of machines) excite it with an approximate white noise signal. Therefore, the
system does not need to be excited by specific equipment and does not need to be taken
out of operation to enable modal parameter identification. Since the idea of SHM involves
the constant monitoring of the structure, OMA becomes an alternative to monitoring while
in operation.

In the past decades, OMA has been successfully applied to civil structures, such as
bridges, buildings, and wind turbines. Its application in rotating machines is more recent
and still in development because these systems are more complex, making it more difficult
to apply OMA. However, the interest in extracting modal parameters of rotating machines
via OMA has been constant and growing.

Regarding the challenges of applying OMA to rotating machines, it is important to
mention that, depending on the installation location, some rotating machines may not
be excited with a white noise signal and can be subjected to periodic excitations arising
from their operation or from the operation of machines in their surroundings. All these
conditions conflict with OMA’s main premise, making the application of OMA to rotating
machines challenging. The presence of periodic excitations imposed by rotating parts can
pose challenges to the identification, either by masking modes or by being mistaken for
them. This subject has already been addressed by many authors, who proposed techniques
to identify the modal parameters even in the presence of harmonic excitation, such as
the work presented by [3]. However, research carried out by [4] demonstrated that the
white noise excitation is determinant in the identification of the rotating machines’ modal
parameters through OMA, an identification that is impossible in cases when, for example,
the machine is operating without sufficient white noise excitation.

Since the excitation conditions are not always adequate for extracting modal param-
eters from rotating machines, continuous monitoring systems based on OMA may not
always be effective. In cases where the excitation condition is not similar to a white noise
excitation, modal parameters that do not describe the physics of the system will be identi-
fied, as will identified changes in modal parameters be mistaken for a structural change or
a fault in the system, giving a false alarm. In addition to causing false alarms, leading to
unnecessary downtime and maintenance, these monitoring systems can fail to alert when
the structure is in fact compromised, bringing several risks to the machine’s operation.
Furthermore, field tests can also be impacted by the presence of inappropriate excitation
conditions. The authors were in contact with engineers who apply OMA’s techniques to
rotating machines in operation. These engineers reported that they would often go to the
field and collect a series of measurements to take back to the office and apply OMA, but
were frequently unable to extract the modal parameters of interest because the excitation
conditions, and therefore the collected vibration signals, were inadequate for OMA. In
these situations, they would have to go back to the field and collect another series of
measurements to apply OMA once again.

In addition to promoting unnecessary expense and wasted time, these circumstances
could generate the idea that OMA is not suitable for extracting the modal parameters
of rotating machines. However, it was demonstrated by [4] that OMA is a promising
tool when the excitation conditions are adequate, extracting values very close to those
obtained with well-established Experimental Modal Analysis (EMA) methods, and having
the advantages of dismissing the use of excitation equipment, not taking the machine out of
operation, reducing costs, and enabling continuous monitoring. More recent studies carried
out by [5] showed that even the turbulent gas flow within the seals of a turbomachine can
be used to excite the system and identify the modal parameters via OMA, demonstrating
OMA’s potential for condition monitoring. Moreover, in [6] it was verified that a hybrid
approach based on both OMA and EMA was able to diagnose a vibration problem in a large
rotating machine used in the power generation industry. It is important to highlight that
OMA was used to identify that a resonance frequency was causing the problem. EMA, on
the other hand, was unable to identify the problem, most likely because of the insufficient
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input excitation when the system was out of operation, and was used to confirm that the
problem was coming from the foundation rather than the machine itself.

The automation of OMA techniques has also become a relevant and very active field
of research since 2005 [7]. In this context, machine learning techniques were used to solve
challenges of automation, with emphasis on the works of [8,9], who used unsupervised
learning to automatically interpret the results of the Stochastic Subspace Identification
(SSI) technique. More recently, the matter has been addressed by [10–18], and existing
approaches were already in use in [19,20] for condition monitoring of wind turbines,
highlighting the relevance of the subject to current research.

Seeking to avoid problems with inadequate excitation conditions and considering
the promising application of machine learning to overcome the challenges of OMA, a
methodology that classifies vibration signals as adequate or inadequate for extracting
modal parameters of rotating machines through OMA is proposed based on the K-means
clustering algorithm. The purpose and main challenge addressed by this research is to
provide an easy-to-adjust and easy-to-use tool with low computational cost that reveals the
quality of measurements in terms of the ability to extract modal parameters via OMA. This
obviates the need to apply OMA to find out whether accurate modal parameters can be
extracted from the collected vibration signals. To the authors’ knowledge, there is no other
research that addresses this subject. The contribution of such a tool is to make monitoring
systems more reliable and enable the evaluation of measurements during field tests.

The methodology was inspired by studies that use statistical features to identify faults
in rotating machines. In [21], statistical features were extracted from the vibration signals
of a rotating machine with faults in the rolling bearing. The authors found that a certain
combination of features enabled the identification of faults through clustering techniques,
achieving up to 100% accuracy. More recently, similar studies were carried out by [22].
Since it was proved that statistical features can provide important information about the
health state of rotating machines, the idea behind this research is to evaluate whether there
are combinations of these features that provide information regarding OMA. Therefore, the
methodology proposed in this paper evaluates the vibration signals in terms of statistical
features (such as the ones employed by [21]) in the context of OMA. Since these features are
easy to extract and the computational cost to extract them is lower than the computational
cost for OMA, they meet the aforementioned requirements for this methodology. Moreover,
the results are easy to interpret, making it possible to apply and obtain information about
the measurements in the field. Since related works were not applied in the context of OMA,
the results obtained with the methodology cannot be directly compared with others in the
literature. However, the accuracy during a testing stage is evaluated, just as performed
by [21].

To test the proposed methodology, OMA was performed using the Stochastic Subspace
Identification (SSI) technique and an automatic identification algorithm was employed
to automatically interpret the stabilization diagram obtained by the SSI technique and
to identify the global modes of the system under analysis. A dataset with the response
measurements of a test rig with a rotor supported by hydrodynamic bearings, obtained
using different operating and excitation conditions, was employed to test the algorithm.

2. Materials and Methods

From systems under operational conditions, operational modal analysis extracts the
modal parameters that can be used to evaluate the system’s health condition because faults
and failures lead to changes in the modal parameters. Experimental Modal Analysis (EMA)
is a traditional and accurate method to extract these parameters from systems, based on
known inputs and outputs of the system. OMA, on the other hand, is more recent and
is based only on the outputs of the system, working if the unknown input is similar to
white noise. OMA has the advantages of not taking the system out of operation, not
requiring highly controlled excitation conditions, reducing costs, taking modal parameters
during operation, and enabling constant monitoring. As mentioned in the introduction,
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the automation of OMA has been a subject of interest in the past few decades. To meet the
current trends, this research applied the automated version of OMA proposed by [15] that
is briefly presented in Section 2.1.

In the context of this research, EMA was applied to the system, which provided
reference values for the modal parameters of the system, as will be presented in Section 2.2.
OMA, on the other hand, was applied to a set of measurements taken under different
conditions that simulate the real operating conditions of a rotating machine, as will also be
presented in Section 2.2. If the simulated excitation condition is adequate for OMA, the
modal parameters extracted would be close to the EMA reference. Therefore, the modal
parameters extracted from OMA were compared to the EMA reference. This evaluation
was performed for all signals presented in Section 2.2, in a way that it was possible to
classify each signal, and therefore the excitation condition, as adequate or inadequate for
OMA. The results of this comparison were used to evaluate the features that could provide
the same information without the application of OMA, as will be presented in Section 3.

The idea behind the proposed methodology is to extract statistical features, such as
mean value, RMS, and kurtosis, from vibration signals based on known equations, and then
use them as entry values in the K-means clustering technique, a simple and well-established
machine learning technique, to classify the signals. The methodology does not propose any
modification to the K-means technique or to the feature extraction. A brief explanation
of the K-means clustering technique is presented in Section 2.3 and the equations for the
statistical feature extraction can be found in [21].

2.1. Automatic Algorithm

An algorithm that automatically extracts global modes from the stabilization diagram
of a signal was developed [15]. Each step of this algorithm was chosen considering the
different characteristics of rotating machines, such as the presence of harmonics, outliers,
the gyroscopic effect, and the complexity of the mode shapes. Its effectiveness was proved
by its application to the same dataset used in this paper. In summary, the automatic
identification algorithm was divided into the following steps:

1. Create the stabilization diagram using SSI and classify each pole based on stabi-
lization criteria (frequency deviation, damping factor deviation, and MAC). Further
explanations about the SSI method can be found in [23].

2. Clear the stabilization diagram based on damping factors and complex conjugated pairs.
3. Group poles representing the same mode with agglomerative hierarchical clustering,

manually selecting the limit for the similarity measure.
4. Remove from each cluster poles of repeated orders, so that only one pole of this

order remains.
5. Eliminate small clusters, which generally represent clusters of spurious poles.
6. Perform an outlier detection based on the boxplot method.
7. Describe the global modes by the clusters’ mean frequency, mean damping, and mean

mode shape.

2.2. Description of Dataset

The data set used in this work was taken from a test rig with a rotor supported by
hydrodynamic bearings, displayed in Figure 1.

The system basically comprises a rotating steel shaft (15 mm in diameter and 719 mm
in length) supported by two hydrodynamic bearings (31 mm diameter, 18 mm length,
90 µm of radial clearance, using ISO VG32 oil at ambient temperature as the working fluid)
connected to an electric motor through a flexible coupling. In addition, the system has a
hard disk and an electromagnetic actuator. The experiments were carried out with the rotor
operating at an angular frequency of 75 Hz. The natural frequencies of interest were in the
frequency range of 0 to 300 Hz. Therefore, the sampling frequency was chosen to be at least
3 times the Nyquist frequency (600 Hz). Four Brüel & Kjær™ type 4384 accelerometers,
installed in both bearings (two accelerometers for each bearing), were used to collect the
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vibrations in the Y and Z directions. Moreover, two filters were used, one for removing the
static gain and the other as an anti-aliasing low-pass analog filter.
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Figure 1. Test rig.

As already mentioned, rotating machines can be subjected to different types of exci-
tation conditions that can facilitate or hinder the application of OMA. Hence, more than
one test condition was used, with variation of inputs, excitation directions, sampling
frequencies, and periods of time, resulting in the tests displayed in Table 1. Altogether,
106 measurements were collected.

Table 1. Test conditions.

Test fs [Hz] Time [s] Measures Excitation Direction Excitation

1 2048 240 30 Y/Z White Noise (WN)—Medium Intensity
2 2048 300 2 - No excitation
3 2048 300 4 - Tapping 1 along the rotor
4 2048 240/300 6 - Tapping in the bearing housing
5 2048 300 8 Y/Z Pink Noise
6 2048 300 8 Y/Z Blue Noise
7 2048 300 8 Y/Z WN and tapping
8 2048 240 8 Y/Z WN—Low Intensity
9 2048 240 8 Y/Z WN—High Intensity

10 2048 10 8 Y/Z WN—Medium Intensity
11 2048 120 8 Y/Z WN—Medium Intensity
12 2048 480 8 Y/Z WN—Medium Intensity

1 Tapping is an excitation technique in which small impulses, randomly distributed with respect to time and
space, are applied through the rotor’s structure. The impulse’s amplitude is much higher than the amplitudes
of background noise when the system is solely rotating. The idea behind tapping is that the applied random
impulses randomly excite the natural modes of the system so that they can be identified by OMA.

An EMA analysis was also carried out to determine the modal parameters of the
analyzed rotor, so that their correct values were known for further validation of the OMA’s
results. Five measurements were collected to compute mean values and diminish random
errors. The results are displayed in Table 2. It is important to emphasize that the motion
of a rotor is composed of two rotations: the rotor spin, that is its rotation around itself;
and the rotor precession, that is the rotation of the deflected shaft around its undeflected
configuration. The precession motion has two components: the forward one, which occurs
in the same direction as the rotor spin; and the backward one, which occurs in the opposite
direction of the rotor spin. Each precession motion is related to a mode of the system,
the forward and backward modes, which vary with the rotating frequency of the rotor.
The EMA tests were carried out at the rotating frequency of 75 Hz, yielding two pairs of
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forward and backward modes. The electricity supply frequency was 60 Hz, so that the
modes identified around 50 Hz are not related to the electricity supply. Moreover, the
identified damping ratios were higher than would be expected for harmonic frequencies,
which have much lower damping ratios.

Table 2. Modal parameters of the rotor.

Mode
Backward Forward

Freq. [Hz] Damp. [%] Freq. [Hz] Damp. [%]

First 52.8 4.26 53,1 4.25
Second 212.6 2.45 212,2 2.48

2.3. K-Means Clustering

Machine learning is the ability of artificial intelligence to acquire knowledge by ex-
tracting patterns from raw data [24], unsupervised learning being one of its segments. The
data input space is structured in such a way that a certain pattern occurs more often than
others and the aim of unsupervised learning is to find these regularities [25]. This task can
be accomplished by clustering techniques, whose goal, considering a set of N unlabeled
D-dimensional samples X = {x1, x2, . . . , xN}, is to group similar samples forming clusters.

One of the most popular clustering algorithms is K-means, which is explained here
based on [26]. The objective of K-means is to separate the set of samples X into K clusters,
assuming the value of K is given. One can see the cluster as a group of samples whose
distances from each other are small compared to the distances in relation to samples from
other clusters. It is formalized by introducing a set of D-dimensional vectors µk, where
k = 1, . . . , K, µk being a prototype associated with the kth cluster and representing its center,
so that the quadratic sum of the distances of each sample to its nearest µk vector is minimal.

For each sample xn, a set of binary indicator variables rnk ∈ {0, 1} is introduced,
describing to which of the K clusters the sample xn was assigned, so that if sample xn is
assigned to cluster k, then rnk = 1 and rnj = 0 ∀j 6= k. Therefore, it is possible to define
an objective function, given by Equation (1), which represents the quadratic sum of the
distances from each sample to the prototype µk assigned to it.

J =
N

∑
n=1

K

∑
k=1

rnk‖xn − µk‖2. (1)

The goal is to find values for rnk and µk to minimize J, which can be accomplished
through an iterative method in which each iteration involves two stages corresponding to
successive optimizations with respect to rnk and µk. This two-stage optimization is then
repeated until convergence or until the maximum number of iterations is reached.

Ref. [26] highlights that the convergence of the algorithm is guaranteed because at
each iteration the value of the objective function is reduced but can converge to a local
minimum instead of a global minimum. Ref. [27] points out that the K-means++ algorithm
was proposed, introducing a smarter initialization step that tends to initialize centroids far
from each other. Ref. [27] claims that this improvement made the K-means algorithm far
less likely to converge to a suboptimal solution.

2.4. Preprocessing

Initial tests showed that the use of signals with transient regime or with different sam-
pling frequencies is not adequate for the method to be proposed. Therefore, a preprocessing
stage was used to standardize the data and ensure that the acquisition process would not
influence the results.

First, the transient regime of the signals was removed. In view of the data standardiza-
tion and aiming to increase the amount of data, the resulting steady-state measurements
were divided so that they all had a length of 100 s, resulting in 196 measurements.
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The parameters of the SSI and automatic identification algorithms were also standard-
ized. Regarding the SSI method, the number of row blocks and the maximum order of
the stabilization diagram were fixed at a default value of 100. Regarding the automatic
identification algorithm, the stabilization limits were 0.2% for the frequency variation, 2%
for the damping ratio variation and 95% for the minimum MAC value; the damping ratio
limit was [0.3%, 10%] and the limit for the similarity measure was 0.01.

The automatic identification algorithm identified representative modal parameters for
most of the measurements. Measurements that were classified as inadequate had at least
one of the following results:

• Non-identification of one of the rotor’s modes;
• Frequencies of the rotor’s modal parameters outside the ranges [50 Hz, 55 Hz] to the

first mode and [210 Hz, 215 Hz] to the second mode;
• Damping factors identified outside a variation limit of 33.3% in relation to the refer-

ences of Table 2.

The measurements from which it was not possible to extract representative modal
parameters for the rotor’s modes were obtained through tests 2 and 4 and partially through
tests 3 and 8. Thus, 23 measurements were labeled as not adequate to the extraction of the
rotor’s modal parameters, while the others (173 measurements) were labeled as adequate.

2.5. Proposed Methodology

This section presents the algorithm that uses K-means to identify features that provide
information about the quality of measurements regarding the ability to extract the rotor’s
modal parameters through OMA.

Figure 2 illustrates the expected results. From a given subset of features (represented
in Figure 2 by attributes i and j, although a subset with different number of elements is also
possible), the purpose is to determine the centroids of classes 1 and 0, which respectively
represent signals from which the extraction of the rotor’s modal parameters through OMA
is possible and signals from which the extraction is not possible, so that a new measurement
can be correctly assigned to any of these classes from the Euclidean distance between the
centroids’ features and the features of the signal that represents the measurement. The
boundary illustrated in Figure 2 represents the points equidistant from the two centroids.
Therefore, new measurements that fell to the class 1 side of the boundary (pink dots) are
classified as adequate to extract the rotor’s modal parameters and the measurements that
fell to the class 0 side of the boundary (orange dots) are classified as not adequate to extract
the rotor’s modal parameters.
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3.1. Select and Extract Features from the Vibration Signals

Since clustering methods are based on a set of unlabeled samples to cluster similar
samples, the purpose of this step is to perform a literature review that assembles character-
istic features of vibration signals from rotating machines and applies them into the tests
from Table 1 to extract these features from the vibration signals under study.

3.2. Split Data into Training and Testing

The samples are divided into training and testing datasets to enable the validation
of results. While the training dataset is used to cluster the data considering various
combinations of features and select the most adequate combinations to define the centroids
of each class (adequate and not adequate to extract the rotor’s modal parameters), the
testing dataset is used to verify if new signals (that were not used to define the centroids)
can be assigned to these classes based on the obtained centroids.

3.3. Apply K-Means Clustering to the Training Dataset

K-means is applied to the training data, taking as input various combinations of the
selected features. The accuracy is then computed based on the labels already defined for
each vibration measurement.

Figure 3 presents a flowchart that illustrates the methodology. The first matrix rep-
resents the training data, described through D features previously selected and extracted
from the vibration measurements. The first step of this methodology (I) is to create a list
of subsets of features, generated from combinations without repetition of d elements of
the feature set. The number of elements in the combinations (d) can range from 1 to D;
however, a maximum limit is established since the use of high-dimension input spaces
increases the computational cost of clustering and can lead to problems such as information
redundancy. The next step (II) is to describe the training data with features of the first subset
of the obtained list. Then, the clustering is performed with the training data described by
the subset features. K-means is used with the known number of clusters (2). It is worth
mentioning that the clustering does not classify the data, that is, no cluster receives specific
labels, but applies numerical labels whose sequence is based on the centroid initialization.
In addition to the numerical labels obtained with K-means, the original labels of the data
are also known, which makes it possible to organize the confusion matrix, of size n× n,
in which n represents the number of classes in the dataset. In this matrix, an element in
the position (i, j) represents the number of samples from class i that were assigned to the
cluster j. In order to find the relation between the numerical and the original labels that
maximizes the clustering accuracy, a procedure that reorganizes the confusion matrix is
performed so that the sum of the principal diagonal components is maximized. In step
(IV), the centroid-based labels are replaced by the original ones. Finally, the accuracy is
computed by dividing the sum of the principal diagonal components by the total number
of samples. Steps (II) to (V) are repeated until the accuracy of all subsets of the list has
been computed. This methodology can be repeated for several numbers of elements in
the combinations.
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3.4. Select the Most Accurate Feature Combinations

Here, the feature subsets that led to the highest accuracies in the previous step are
selected. For each of them, the centroids obtained through K-means and described by a
d-dimensional vector, in which d represents the number of elements in the subset, are stored
for the next step.

3.5. Test the Centroids with the Testing Data

With the testing data and for each subset of feature selected in the previous step, the
test samples are defined by a d-dimensional vector. The distances between each sample and
the centroids of classes 0 and 1 are computed based on the Euclidian distance, and each
sample is assigned to the nearest class. Moreover, the accuracy of each subset is computed
by dividing the number of test samples assigned to the correct class by the total number of
test samples.

3.6. Algorithm’s Results

The proposed algorithm is applied to a dataset with the response measurements of
a test rig with a rotor supported by hydrodynamic bearings. All algorithms and OMA
methods were implemented in Python™ 3.8.5.

As already mentioned, an extensive bibliographic review (see [21] for more details)
showed that several authors employed statistical features of vibration signals in the time
and frequency domains to characterize the degradation process of rotating machines and
identify faults using clustering algorithms. The review showed that the main statistical
features comprised 12 time-domain (TF) and 9 frequency-domain (FF) features:

• Mean (TF1);
• Standard deviation (TF2);
• Root Mean Square—RMS (TF3);
• Peak value (TF4);
• Skewness (TF5);
• Kurtosis (TF6);
• Crest factor (TF7);
• Clearance factor or latitude factor (TF8);
• Shape factor (TF9);
• Impulse factor (TF10);
• Upper bound value of histogram (TF11);
• Lower bound value of histogram (TF12);
• Mean frequency (FF1);
• Frequency center (FF2);
• RMS frequency (FF3);
• Standard deviation frequency (FF4);
• Average frequency (FF5);
• Stabilization factor of wave shape (FF6);
• Coefficient of variability (FF7);
• Frequency domain skewness (FF8);
• Frequency domain kurtosis (FF9).

Considering the ease of extracting these features and their capacity to carry the most
varied information about the machine, it was decided to use them in investigations to deter-
mine which subset of features can provide information about the quality of measurements.

As mentioned, the number of measurements available for the study is 196, of which
173 are classified as adequate to extract the rotor’s modal parameters (label 1) and 23 as not
adequate (label 0).

For each measurement, four vibration signals were available: the vibration signals in
the Y and Z directions for bearings 1 and 2. To characterize each measurement as a single
sample of maximum dimension 21, the Singular Value Decomposition (SVD) was applied
to the four vibration signals so that each measurement would be described by only one
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vibration signal (the most significant from the decomposition). Next, the features were
extracted from each vibration signal obtained though SVD.

In addition, it is worth noting that the spectrum (one-sided) of these signals has
frequencies of up to 1024 Hz. Since the frequencies of interest are in much lower frequency
ranges, the frequency domain features were extracted considering the spectrum up to the
frequency of 400 Hz.

With the 21 features, it was possible to describe each sample as a vector of dimension
21. These samples were divided into two groups: the training and the testing datasets, cov-
ering respectively 70% and 30% of the samples. Although the assignment was performed
randomly, the proportion between the labels 1 and 0 remained between the training and
testing groups. Thus, the number of training samples was 137, with 16 samples labeled
as not adequate, while the number of testing samples was 59, with 7 samples labeled as
not adequate.

Having the training and testing data, the methodology followed to determine the
subsets of features to be evaluated. For that, combinations without repetition of the
21 features were created. The number of elements in these combinations ranged from
1 to 3. The maximum value of 3 was chosen because it was found to be sufficient to
achieve good results, preserving the low dimensionality of the input space, reducing
computational cost, and avoiding information redundancy problems when compared to
combinations with greater number of elements. Subsets containing all 21 features, all
features in the time domain, and all features in the frequency domain were also added to
the list. Table 3 presents the obtained list, where each feature combination in parenthesis
represents one subset.

Table 3. List of subsets of features.

Number of Elements Subsets of Features

1 (TF1), (TF2), . . ., (FF8), (FF9)
2 (TF1, TF2), (TF1, TF3), . . ., (FF7, FF8), (FF8, FF9)
3 (TF1, TF2, TF3), (TF1, TF2, TF4), . . ., (FF6, FF8, FF9), (FF7, FF8, FF9)
9 (FF1, FF2, . . ., FF8, FF9)
12 (TF1, TF2, . . ., TF11, TF12)
21 (TF1, TF2, . . ., FF8, FF9)

Clustering was applied to the signals considering each subset in Table 3. The K-
means++ algorithm was employed with the known number of clusters (2). Since the
centroid initialization influences the results of the algorithm, the clustering was performed
100 times for each feature subset. For each subset and each repetition, the confusion matrix
was organized, the relation between numerical and original labels was found, each sample
was once again labeled according to the classes 0 and 1 under study, and the accuracy was
computed. The centroids in each repetition and the mean and standard deviations of the
accuracies were obtained.

Table 4 presents the features subsets with the best results, that is, the ones that achieved
mean accuracies above 99%, which is a high value for accuracy. For most cases, the accuracy
was 99.27%, indicating that only one vibration signal was misclassified.

From Table 4, one can see that seven of the eight subsets had zero standard deviation,
indicating that, for all repetitions, the clustering results were the same. For the eighth
subset, the standard deviation was 0.16% because in five of the repetitions the obtained
accuracy was 98.54%, while in the others it was 99.27%. Additionally, it was verified that
for the first seven subsets the same centroid was obtained in each of the 100 repetitions,
while for the eighth subset different centroids were obtained in 10 of the 100 repetitions.

Therefore, the precision observed in the first seven subsets makes them the most
adequate ones to carry information about the quality of measurements regarding the
application of OMA. To synthesize the results of the test step, only the subsets with the
greatest diversity with respect to features and number of elements are evaluated: subsets 1,
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2, 5, and 7. Subset 1 was chosen because it presents a different number of elements, while
subsets 2, 5, and 7 were chosen because they present the greater diversity of features.

Table 4. Best subsets accuracies.

Subset Features Mean Standard Deviation

1 TF1, TF6 99.27% 0.00%
2 TF1, TF3, TF5 99.27% 0.00%
3 TF1, TF3, FF8 99.27% 0.00%
4 TF1, TF6, FF8 99.27% 0.00%
5 TF2, TF3, FF8 99.27% 0.00%
6 TF3, TF6, FF3 99.27% 0.00%
7 TF3, FF3, FF9 99.27% 0.00%
8 TF3, FF4, FF8 99.23% 0.16%

Defining these feature subsets from the training dataset, composed of 137 vibration
signals collected at the rotating frequency of 75 Hz, of which 16 were labeled as not adequate
for OMA, the next step was to classify the testing data considering the obtained centroids.
The number of testing vibration signals collected at the rotating frequency of 75 Hz was
59, with seven samples labeled as not adequate. Since the centroids of the 100 repetitions
of each subset were the same, no extra step was required to choose the best centroid. The
centroids of the best subsets were then employed to classify the testing data. Figure 4
displays the feature space graphs of each subset. Each graph presents the centroids of the
subset and the testing data, identified with the original labels through the data format
(diamonds for samples belonging to class 0 and circles for samples belonging to class 1)
and with the labels assigned through the centroid analysis through the color (orange for
samples assigned to class 0 and pink to samples assigned to class 1). One can verify that
subsets 1 and 2 correctly classified all test samples, reaching 100% accuracy and indicating
that all 59 vibration signals from the testing dataset were correctly classified as adequate or
not adequate for OMA. The subsets 5 and 7, on the other hand, classified one of the samples
from class 1 (adequate) as belonging to class 0 (not adequate), reaching 98.31% accuracy.

These results indicate that, if the subsets of features TF1 (mean), TF3 (RMS), TF5
(skewness), and TF6 (kurtosis) are extracted from vibration signals and compared with
the reference values of the centroids, they can be successfully classified as adequate or
not adequate for OMA. If they are classified as not adequate, this is an indication that the
excitation condition is not adequate for modal parameter extraction via OMA, and new
measurements are needed with excitation conditions that are more similar to white noise
excitation, which can be achieved through complementary excitation, such as tapping. If
measurements are classified as adequate, OMA results will be reliable. Moreover, the fact
that the methodology was able to achieve 100% accuracy in the test stage indicates that the
methodology is indeed a promising tool.
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4. Conclusions

In this paper, a new method that combines a machine learning algorithm with OMA is
proposed to enable the monitoring of rotating machines. This method consists of a novel al-
gorithm based on K-means and developed with the purpose of classifying vibration signals
with respect to OMA. For OMA, white noise inputs lead to accurate extraction of modal
parameters. However, this excitation condition is not easy to attain for rotating machines
and, in the case of an inadequate excitation condition, the modal parameters identified by
OMA can be inaccurate. Therefore, this research investigates the applicability of K-means
as a pre-stage of OMA to differentiate adequate from inadequate excitations and prevent
the inaccurate extraction of modal parameters. The algorithm was applied to vibration
signals of a test rig with a rotor supported by hydrodynamic bearings, generated under
different excitation conditions, such as white noise, blue noise, pink noise, and tapping.

To develop the method that classifies vibration signals as adequate or not adequate
for the extraction of modal parameters, the system under analysis was investigated via
traditional EMA analysis, and reference values were extracted for the modal parameters.
An OMA algorithm that automatically extracts modal parameters of measurements was
also employed. Comparing the automatic algorithm’s results with the reference values
from EMA, each measurement was labeled as adequate or not adequate for the extraction of
parameters. Based on this classification and on the vibration signals taken under different
excitation conditions, the proposed methodology was developed.

A literature review was carried out to gather features that comprise information about
the vibration signals, resulting in a set of statistical features in the time and frequency
domains. From the K-means algorithm and a training dataset, it was possible to determine
subsets, that is, combinations of features, that comprised information about the quality of
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the measurements. From them, it was possible to determine the centroids of the two desired
classes, adequate and not adequate, to extract modal parameters. The subsets’ centroids
were evaluated using a testing dataset and it was proved that most of them were indeed
able to correctly separate the data between the two classes, achieving up to 100% accuracy.

One of the limitations of the proposed methodology is the fact that it needs an initial
dataset of vibration signals of the machine in operation, with both adequate and inadequate
measurements for OMA. This is required to find the K-means centroids of the two desired
classes. The more data in different operating and excitation conditions, the better it is
for the proposed methodology. However, depending on the machine, these data can be
difficult to obtain.

Nevertheless, the results proved that the method can evaluate vibration signals from
rotating machines regarding the ability to extract the rotor’s modal parameters via OMA.
The method can also be expanded to other systems, becoming a promising tool to verify
whether the excitation conditions are adequate for the extraction of modal parameters,
improving continuous monitoring systems based on OMA, and enabling field evaluations
of not only rotating machines but also other complex dynamic systems.
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