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Abstract: This paper presents the mathematical basis and related procedures for the regression
of the upper bound of the dynamic error produced by charge-mode accelerometers. The integral-
square error obtained in response to simulation signals with one constraint appearing at the input
of the accelerometer is considered. Physical models of accelerometers are presented with related
equations and mathematical formulae that make it possible to obtain the error and the corresponding
constrained signal. Examples of the regression for predefined values of the accelerometer parameters
are also discussed. The solutions presented in this paper may contribute to increasing the accuracy of
the charge-mode accelerometers commonly used in energy systems. Development of the functions
approximating the integral-square error for the given ranges of accelerometer parameters constitutes
the original contribution of this paper.
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1. Introduction

Assessment of the accuracy of charge-mode accelerometers is extremely important
in areas such as mechanical science [1], navigation [2], medicine [3] and geotechnics [4],
particularly because they can be used over a wide temperature range [5]. In everyday engi-
neering practice, the accuracy of this type of accelerometer is assessed by way of calibration,
by comparing its charge sensitivity with the corresponding reference values [6,7]. During a
measurement experiment of this type, the operating range of the sensor is verified. The
accuracy of a charge-mode accelerometer is also assessed on the basis of comparability tests,
through repeated measurements of acceleration and determining the standard deviation of
the obtained results [8]. It should be noted that the lower the value of this deviation is, the
higher is the accuracy of the accelerometer. From the point of view of assessing the accuracy
of this type of sensor, it is also important to determine the influences of temperature and
electromagnetic interference on the results for the corresponding charge sensitivity [9,10].

However, the abovementioned research procedures do not provide specific numerical
indicators that allow for the assessment of the dynamic accuracy of charge-mode accelerom-
eters in a way similar to the accuracy class used in static measurements [11,12]. It is possible
to obtain such an indicator through simulations, by determining the upper bound of the
dynamic error for an error functional assumed in advance, e.g., the integral-square error
commonly used in measurements [13]. In this case, the upper bound of the dynamic error
is determined as a response to a previously determined input signal with magnitude and
time constraints [14]. This signal has a rectangular shape, and the number of switches
depends on the rate of change of the accelerometer impulse response [13,15]. The basis for
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determining such a signal is a mathematical model of the accelerometer, which may be pre-
sented in the form of a transfer function or a state-space representation [16,17]. This model
is determined by parametric identification of the accelerometer (a practical experiment),
which is usually carried out by measuring only the corresponding amplitude response
or by simultaneous measurement of both frequency responses, i.e., the amplitude and
phase [18–20]. In turn, the upper bound of the dynamic error and the constrained signal for
the integral-square error are determined using a simulation experiment, by applying an iter-
ative procedure with a predetermined number of iterations [21,22]. In this aspect, the trace
alignment procedure [23], which can improve the subsequent side-channel analysis against
the trace and the chromatic plasmonic-polarizer-based synapse for all-optical convolutional
neural network [24], can also be used. These procedures can be evaluated by seeking higher
absolute values of the accuracy and lower values for bias, in addition to reduced cognitive
load by means of self-assessment by rubric and the accuracy service with a software-defined
receiver for location [25,26]. The simulation procedure requires the development of an
appropriate computational procedure using dedicated mathematical and computational
software (e.g., MathCad 15 or MATLAB R2023b) [27,28]. It is also time-consuming, as the
average calculation time may range from several minutes to even an hour, depending on
the accuracy of the calculations and the assumed number of iterations [29]. In addition,
these calculation procedures need to be repeated for each accelerometer tested.

In view of these difficulties in implementing simulation procedures, this paper presents
a method involving multivariate regression [30,31] of the results of the upper bound of the
dynamic error, which is determined for pre-established ranges of variability for two of the
four parameters associated with the mathematical accelerometer model. The quantification
steps referring to these two parameters are also assumed for these intervals. The sensitivity
of the accelerometer and the natural frequencies of undamped vibrations are assumed as
constant values. As a result of the multivariate regression, the approximating functions can
be obtained [32] on the basis of which it is possible to determine the upper bound of the
dynamic error using only the results of parametric identification [33,34], without the need
to carry out simulation procedures. Of course, these approximation functions only reflect
the error for previously assumed ranges of variability for the accelerometer parameters.
These functions may therefore constitute a proposal for a mathematical computational tool
dedicated to engineering applications. On this basis, an additional comparative criterion
is obtained that fully reflects the dynamic properties of the charge-mode accelerometer
under consideration. It should also be emphasised that the lower the numerical value of
this comparative indicator is, the higher is the accuracy of the considered accelerometer.

The method presented in this paper can be used to compare accelerometers that are
from different manufacturers but have similar levels of sensitivity and similar natural
frequencies of undamped vibrations. Using this tool, it may be possible to select accelerom-
eters based on their dynamic accuracy, which would certainly improve the reliability of
many technological processes, and, in particular, the reliability of solutions used in the
broader energy industry.

2. Materials and Methods

Let the transfer function of a charge-mode accelerometer connected with a voltage
amplifier and cable be denoted by KQe(s). We can then write

KQe(s) =
V(s)

s2X(s) =
sτSmSq(2βω0s+ω2

0)
(sτ+1)(s2+2βω0s+ω2

0)

= SV
τ(2βω0s2+ω2

0s)
τs3+(2τβω0+1)s2+(τω2

0+2βω0)s+ω2
0
,

(1)

where Sq = kp/Ct [V/N] and SV = SmSq
[
V/
(
ms−2)] are the charge and voltage

sensitivities, respectively [15,16]. This transfer function is a third-order equation with
four parameters: SV, τ = RtCt, β and ω0 = 2π f0 [35].
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The observer canonical form of the state-space representation of Equation (1) is

KQe(s) = CQe(sI−AQe)
−1BQe, (2)

where I is the identity matrix, and AQe, BQe and CQe are represented by

AQe =

 −(2τβω0)/τ 1 0
−
(
τω2

0 + 2βω0
)
/τ 0 1

−ω2
0/τ 0 0

, BQe =
[
2βω0 ω2

0 0
]T ,

CQe =
[
1 0 0

]
.

(3)

Here, AQe ∈ Rql , BQe ∈ Rqm and CQe ∈ Rpn, are the state, input, and output matrices,
and l, m, p and q are the denominator order, numerator order, number of inputs and
number of outputs, respectively. The above state-space representation is in many cases
an alternative to Equation (1), as it enables easier implementation of the algorithm for
determining the upper bound of the dynamic error.

The parameters included in the mathematical models defined by Equations (1) and (2)
are listed in Table 1.

Table 1. Parameters included in the mathematical models of a charge-mode accelerometer.

Parameter Unit of Measure Description

kp C/N Piezoelectric constant
Rt Ω Total resistance of accelerometer, cable and voltage Amplifier
Ct F Total capacitance of accelerometer, cable and voltage amplifier
Sq V/N Charge sensitivity
SV V/

(
ms−2) Voltage sensitivity

Sm kg Mechanical sensitivity
τ s Time constant
β − Damping ratio

ω0 rad/s Pulsation of undamped natural vibrations
f0 Hz Frequency of undamped natural vibrations

AQe − State matrix
BQe − Input matrix
CQe − Output matrix

The integral-square error at the output y of the accelerometer is defined by the follow-
ing equation:

EIy =
∫ T

0
[y(t)]2dt (4)

And, with use of Parseval’s theorem, it has the following form:

EIy =
1

2π
∫ ∞
−∞|Y(ω)|2dω =

1
2π
∫ ∞
−∞|X(ω)Kd(ω)|2dω

=
1

2π
∫ ∞
−∞|X(ω)X∗(ω)||Kd(ω)|2dω,

(5)

where

X(ω) =
∫ T

0
x(t)e−jωtdt, X∗(ω) =

∫ T

0
x(t)ejωtdt, Kd(ω) =

∫ T

0
kd(t)e−jωtdt, (6)

and kd(t) represents the difference between the impulse response of the accelerometer and
the reference while the sign * denotes the conjugate operator. The reference is a low-pass
filter (analogue or digital) with a cut-off frequency corresponding to the accelerometer’s
operating range. The order of this filter should be higher (by about a factor of two) than the
order of the accelerometer (in our case, this row is equal to three).
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The impulse response kd(t) is determined based on the following relations:

kd(t) = L−1[KQe(s)− Kr(s)] (7)

for the transfer function defined by Equation (1), where Kr(s) is the transfer function of the
reference, and

kd(t) = [CQe −Cr]e[AQe−Ar]·t[BQe − Br] (8)

for the transfer function defined by Equation (12), below, where Ar, Br and Cr are the state,
input, and output matrices associated with the state-space of the reference. The symbol
L−1 in Equation (7) denotes the inverse Laplace transformation.

A combination of Equations (5) and (6) gives the error

EIy =
∫ T

0

∫ T

0
x(τ)[x(ξ)Φ(ξ − τ)]dξdτ, (9)

where

Φ(t) =
∫ ∞

−∞
|Kd(ω)|2ejωtdω =

∫ T

0
kd(τ)kd

∗(t− τ)dτ. (10)

Taking into account Equation (10) and the following relation,

kd
∗(t) = kd(−t), (11)

we have

Φ(t) =
∫ T

0
kd(τ)kd(t + τ)dτ. (12)

Equation (12) represents a special function determined based on the impulse response
kd(t) [21,22]. This special function forms the basis for implementing the algorithm used to
determine the upper bound of the dynamic error.

Performing analogous transformations for the system input gives the error, EIx. After
determining the difference EIx − EIy, we have

∫ T

0
y(τ)

[∫ T

0
x(ξ)Φ(ξ − τ)dξ − x(τ)

]
dτ = 0. (13)

The above equation is fulfilled when

x(τ) =
∫ T

0
x(ξ)Φ(ξ − τ)dξ. (14)

Considering that the input signal is constrained to a magnitude denoted below by a,
and after substituting t→ τ [15,16], we have

x(t) = a·sign
[∫ T

0
x(ξ)Φ(ξ − t)dξ

]
. (15)

Determination of the signal x0(t) that maximises the integral-square error requires the
implementation of an iterative algorithm to process the previously determined signal in
successive steps. It is suggested that the initial signal be determined based on Equation (10),
as follows:

x0(t) = a·sign[Φ(t)]. (16)

Hence, the kernel of the iterative procedure is

xi+1(t) = a·sign
[∫ T

0
xi(ξ)Φ(ξ − t)dξ

]
, for i = 0, 1, 2, . . . . (17)
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The stop condition, which refers to Equation (17), results from an assessment of the
integral-square error value obtained during successive iterations. This stop condition is
applied if, during the assumed number of iterations, the error does not increase with the
assumed accuracy. Based on the signal x0(t) that fulfils Equation (17), it is possible to
calculate the integral-square error as follows:

EI(x0) =
∫ T

0

[∫ t

0
kd(t− τ)x0(τ)dτ

]2
dt. (18)

Equation (18) uses the convolution integral (the expression in square brackets) with
the variable τ.

The signal yd(t) is represented by the following formula:

yd(t) =
∫ t

0
kd(t− τ)x0(τ)dτ, (19)

where yd(t) denotes the difference between the signal at the output of the accelerometer
and corresponding reference signal.

Let the vector of errors be

E =
[

E(x0)0, E(x0)1, . . . , E(x0)J−1

]T
. (20)

The regression equation of order α that approximates the measurement points is then

ri(z) = g0 + g1zi + g2zi
2 + · · ·+ gαzi

α + εi, i = 0, 1, . . . , J − 1, (21)

where g0, g1, . . . , gJ−1 are the equation coefficients; α, ε and J are the regression order,
regression error and number of approximated points, respectively; and z0, z1, . . . , zJ−1 are
the abscissas corresponding to the approximated points.

The accuracy of approximation is given in [26,27] as follows:

Λ[r(z)] =

√√√√∑J−1
j=0

[
ε
(

g0, g1, . . . , gα, zj
)
− E(x0)j

]2

J − α− 1
. (22)

When larger numbers of selected parameters are associated with the considered
accelerometer change in the assumed range, an analogous procedure is applied. This case
involves a multivariate regression, which in the case of three parameters is known as a
three-dimensional regression. In this case, the optimal regression order is obtained by
means of a neural network; this can efficiently be accomplished using a MATLAB toolbox
called Neural Net Fitting.

3. Results and Discussion

The results of calculations of the integral-square error, an example involving maximis-
ing signals, and the regression functions for the charge-mode accelerometer are presented
and discussed below. The most important notations are as follows: E(T) denotes the
relationship between the error and the time T for the accelerometer under study, and EI(x0)
is the error determined for the maximising signal x0 that excites the accelerometer input.

Values of the integral-square error EI(x0) in relation to time T obtained for
SV = 1 V/

(
ms−2), β = 0.01, f0 = 1 kHz and τ = 0.1 ms are presented in Table 2. The

values of the error EI(x0) were determined with an accuracy of two decimal places. These
errors were determined in relation to the reference signal, an eighth-order analogue low-
pass Butterworth filter.
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Table 2. Values of the integral-square error EI(x0) vs. time T.

T [ms] 0 10 20 30 40 50 60 70 80
EI (x0)

[
mVs2

]
0 0.49 2.64 6.29 10.90 16.02 21.53 27.74 33.65

The values above correspond to the dotted line in the chart in Figure 1a. Above a time
T = 24 ms, this chart becomes linear, and is described by the function

EI(T) = a0 + a1·T = −13.7 + 0.59·T (23)

with a regression accuracy Λ[EI(T)] equal to 0.21.
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Figure 1. (a) Integral-square error EI vs. time T; (b) signal x0(t) obtained for T = 80 ms.

Figure 1b shows the maximised signal x0(t), which has regular time-switchings. This
should be considered a characteristic property of the integral-square criterion.

Figure 1a shows that in order to determine the error EI for any time greater than
0.05 ms, the coefficients a0 and a1 of the linear equation must be determined. The integral-
square error EI starts to increase linearly after the time at which the impulse response kd(t)
achieves a value of zero. The nonlinear part of the characteristic EI = f (T) is neglected
in the analysis of the integral-square error, due to the short time T = (0–24 ms) . If it is
necessary to consider the upper bound of the dynamic error at a time T of less than 24 ms,
then a nonlinear approximation tool (such as polynomial regression) should be used.

Figure 2 shows the relationship between the signal yd(t) defined by Equation (19) and
the time T.
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Based on the shape of the signal yd(t), it can be concluded that in the initial moments,
the magnitude of this signal increases in an oscillating manner and then reaches an ap-
proximately constant value. The regular and oscillatory shape of this error results from the
regular switching of the signal x0(t) shown in Figure 1b.

Figure 3 shows the relationship between the error EI (x0) and the number of itera-
tions i of the iterative algorithm described by Equations (16)–(18). This relationship was
determined for a time T = 80 ms, i.e., for the maximum time value included in Table 2.
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Figure 3 shows that over approximately 25 iterations, the iterative algorithm converges,
and the error EI (x0) is equal to 33.65 with an accuracy of two decimal places. Tests with
other values of time T confirmed that a maximum number of iterations of 50 was sufficient
to achieve full convergence of the algorithm.

The discussion now turns to the relationship between the coefficients of the linear
equation describing the error and two parameters of an accelerometer, i.e., the damping
ratio and the time constant. The values of the coefficients a0 and a1 for constant values
of both the voltage sensitivity SV = 1 V/

(
ms−2) and the non-damped natural frequency

f0 = 1 kHz are shown in Table 3.

Table 3. Matrix of values for coefficients a0 and a1.

a0
τ [ms]

0.100 0.350 0.600 0.850 1.10

β

0.01 −12.8 −37.5 −41.6 −43.6 −45.2
0.02 −1.80 −4.90 −5.90 −5.90 −6.20
0.03 −0.530 −1.30 −1.50 −3.30 −1.90
0.04 −0.230 −0.650 −0.730 −0.740 −0.770
0.05 −0.0500 −0.330 −0.320 −0.320 −0.310

a1
τ [ms]

0.100 0.350 0.600 0.850 1.10

β

0.01 0.580 1.69 1.90 1.97 2.02
0.02 0.150 0.430 0.490 0.505 0.515
0.03 0.0670 0.190 0.215 0.245 0.230
0.04 0.0380 0.109 0.123 0.127 0.129
0.05 0.0235 0.0700 0.0780 0.0805 0.0815

Figure 4 shows the relationship between the coefficient a0 and: (a) the time constant
for values of SV = 1 V/

(
ms−2), f0 = 1 kHz and τ = 0.10; and (b) the damping ratio for

values of SV = 1 V/
(
ms−2), f0 = 1 kHz and β = 0.010.
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Figure 4. (a) Coefficient a0 vs. τ; (b) coefficient a0 vs. β.

The regression functions corresponding to Figure 4 are

a0(τ) = 10.2− 28.3·τ + 587·τ2 − 583·τ3 + 179·τ4, (24)

and
a0(β) = −23.4 + 131·β− 277·β2 + 254·β3 − 84.4·β4, (25)

while the regression accuracy values were obtained for the four-order polynomial and
were Λ[a0(τ)] = 2.86·10−3 and Λ[a0(β)] = 5.70·10−9, respectively. This is the polynomial
structure that gives the highest value of the regression accuracy. Figure 4 shows that the
function a0(τ) decreases exponentially, but the function a0(β) increases exponentially.

Figure 5 shows a two-dimensional regression of the coefficient a1, where the results
were obtained by the same method as the regression in Figure 4.
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Figure 5. (a) Coefficient a1 vs. τ; (b) coefficient a1 vs. β.

The regression functions corresponding to Figure 5 are

a1(τ) = −0.408 + 12.1·τ − 23.9·τ2 + 21.1·τ3 − 6.83·τ4, (26)

and
a1(β) = 0.963− 4.68·β + 9.30·β2 − 8.26·β3 + 2.70·β4, (27)

while the regression accuracies were obtained from a fourth-order polynomial, and were
Λ[a1(τ)] = 1.25·10−9 and Λ[a1(β)] = 1.88·10−10, respectively. Figure 5 shows that the
functions a1(τ) and a1(β), respectively, increase and decrease exponentially. Figure 6a,b
show the three-dimensional relationship between the coefficients a0 and a1 and the param-
eters τ and β. These figures were created using the Curve Fitting toolbox built into the
MATLAB software.
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Figure 6. Three-dimensional relationship between the coefficients a0 : subfigure (a) and a1 : subfig-
ure (b) and the parameters τ and β.

Figure 6 shows that the three-dimensional planes are stable functions in terms of
variability, which significantly affects the value of the approximation accuracy of these
planes and hence the value of the upper bound of the dynamic error obtained on this basis.
The regression functions are fourth-order expressions, and in relation to the coefficients a0
and a1 are

a0(β, τ) = −65.5 + 1.16·104·β− 3.00·105·τ − 6.21·105·β2 + 1.52·107·β·τ

+3.54·108·τ2 + 1.34·107·β3 − 2.77·108·β2·τ − 9.33·109·β·τ2

−2.12·1011·τ3 − 1.02·108·β4 + 1.77·109·β3·τ + 6.92·1010·β2·τ2

+2.23·1012·β·τ3 + 5.14·1013·τ4,

(28)
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and
a1(β, τ) = 1.69− 392·β + 1.96·104·τ + 2.23·104·β2 − 7.69·105·β·τ

−3.38·107·τ2 − 4.88·105·β3 + 9.87·106·β2·τ + 7.33·108·β·τ2

+2.73·1010·τ3 + 3.70·106·β4 − 3.66·107·β3·τ − 3.99·109·β2·τ2

−2.53·1011·β·τ3 − 8.31·1012·τ4

(29)

The corresponding accuracies are Λ[a0(β, τ)] = 1.85 and Λ[a1(β, τ)] = 0.124, and the
function that corresponds to the integral-square error is

EI(β, τ) = a0(β, τ) + a1(β, τ)·T, (30)

which includes the functions defined by Equations (28) and (29).
Equation (30) allows for a quick and easy assessment of the accuracy of a charge-mode

accelerometer, with the values of the parameters β and τ taken from the ranges specified
in Table 3 and constant values for the parameters SV and f0 of 1 V/

(
ms−2) and 1 kHz,

respectively. Most importantly, this avoids the need to implement complex algorithms to
determine the upper bound of the dynamic error. To determine this error, the parameters β
and τ, which were obtained by parametric identification (practical experiment), should be
substituted into Equations (28)–(30).

4. Conclusions

This paper presents a theoretical basis for and examples of regression for the maxi-
mum dynamic errors produced by charge-mode accelerometers. These theoretical solutions
refer to the integral-square error denoted here by EI(β, τ). Both the graphical and func-
tional relationships between the error and selected parameters τ and β of the considered
accelerometer are determined. The results presented here relate to three-dimensional regres-
sion, whereas neural networks are used as criteria for the selection of the optimal regression
order. For all of the examples presented in this paper, a fourth-order polynomial was
obtained as the optimal choice, i.e., as generating the highest possible regression accuracy
denoted by Λ[a0(β, τ)] and Λ[a1(β, τ)].

The solutions presented in this paper can be successfully applied for the needs of the
multivariate regression. However, this requires the execution of a number of calculations of
the error value, which is the product of the error number determined for particular param-
eters. In this way, it is possible to determine the error as the function of four parameters for
a charge-mode accelerometer.

The functions that represent the regression are determined in such a way as to make
it possible to calculate error values for any parameters of the mathematical model de-
scribing the selected accelerometer. This avoids the need to implement procedures for
error determination.

The solutions presented in this paper can also be applied to other types of physical
systems for which it is possible to determine a description by related mathematical models.
However, this modelling should be implemented in accordance with the legal regulations
applicable to these systems. The limitation of the proposed procedure is in the possibility
of its practical application for the analysis of the charge-mode accelerometers with the
parameters of the corresponding mathematical model included in the ranges for which
the multivariate regression was determined. In such a case, it would be necessary to
re-perform the research procedure discussed in the paper for the ranges covering both the
accelerometer parameters and the uncertainties of the identification procedure related to
these parameters.
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