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Abstract: This paper presents a comprehensive method for optimizing the controlling parameters of
a biomass boiler. The historical data are preprocessed and classified into different conditions with
the k-means clustering algorithm. The first-order derivative (FOD) method is used to compensate
for the lag of controlling parameters, the backpropagation (BP) neural network is used to map the
controlling parameters with the boiler efficiency and unit load, and the ant colony optimization
(ACO) algorithm is used to search the opening of air dampers. The results of the FOD-BP-ACO
model show an improvement in the boiler efficiency compared to the predicted values of FOD-BP
and the data compared to the historical true values were observed. The results suggest that this
FOD-BP-ACO method can also be used to search and optimize other controlling parameters.
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1. Introduction

As a renewable energy, biomass energy is drawing a lot of attention around the
world. The installed biomass power energy capacity has exceeded 120 GW (as shown in
Figure 1) [1].
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Figure 1. The total installed capacity of global biomass power generation from 2012 to 2021 [1].

To improve the efficiency of the plant, the big data analysis method was attempting
to optimize the operation of the boiler. Li et al. [2] proposed an artificial neural network
(ANN) and showed better regression accuracy and generalization ability with faster learn-
ing speed. Krzywanski et al. [3,4] built a feedforward ANN to predict SO2 emissions.
Gao et al. [5] proposed a method based on improved particle swarm (HPSO) and support
vector machine (SVM) algorithms for the prediction of the NOx concentration in flue gas.
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Li et al. [6] used the Lasso algorithm of machine learning to conduct a correlation analysis
of boiler control parameters and operating state parameters, and extracted highly correlated
control parameters and operating state parameters. A nonlinear combined deep confidence
network (NCDBN) was used to predict the exhaust gas’s boiler efficiency and NOx content.

L. D. Blackburn [7] proposed a constrained dynamic optimization using a recurrent
neural network model combined with a meta-heuristic optimizer. An improvement was
achieved for the simulated coal-fired boiler compared to the non-optimal situation. Yao
et al. [8] proposed an ANN model to improve the unit heat rate by optimizing the boiler
load, boiler excess oxygen (O2), fly ash unburned carbon, and descaling flow rate for
coal-fired boilers.

Wei Tian and Yu Cao proposed an innovative study where they optimized the back-
propagation (BP) neural network based on the firefly algorithm (FA). They also introduced
the sparrow search algorithm (SSA), altering the search mechanism of BP to address the
issue of local optima affecting traditional BP [9].

However, the above studies do not consider the large inertia of boiler parameters.
Delays in predicting parameters may hinder the ability to take timely corrective actions
and lead to suboptimal performance.

Hence, this study considers the effect of delay parameter compensation, and an FOD-
BP-ACO model is proposed. The individual steps for the optimization of control parameters
are summarized as follows:

Step I: Data cleaning with the PauTa criterion and classification with the k-means method.
Step II: Parameter selection with the average impact value (AIV) method.
Step III: Compensating the lag of controlling parameters with the first-order derivative

(FOD) method.
Step IV: Modeling with backpropagation (BP) neural networks and random forest.
Step V: Optimizing the opening of the air damper through the ant colony algorithm.
The biomass direct-fired 130 t/h (9.2 MPa and 540 ◦C) boiler structure diagram is

showed in Figure 2 and all the used data are collected from this power plant.
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Figure 2. Simplified diagram of the biomass boiler.

2. Materials and Methods
2.1. Data Processing and Analysis

Boiler operational data frequently exhibit anomalies due to various sources of in-
terference, such as noise, sensor malfunctions, abnormal operational conditions, system
instability, and other factors. It is necessary to assess the reliability of the measurement
data [10].
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(1) Data cleaning
The threshold of 3σ-based PauTa [11] criterion is used as the outlier detection method.

The standard deviation is calculated with Equation (1):

σ =

√
∑n

k=1
(
X(k)− X

)2

n
(1)

where n is the number of observations, X is the mean of the observations, and σ is the
standard deviation.

The residual error is calculated with Equation (2):

Rn(k) =
∣∣∣∣X(k)−

=
X
∣∣∣∣ (2)

where Rn is the residual, and
=
X is the estimated value of the observation.

When the residual error surpasses 3σ, it is categorized as a gross error and the data
are screened out; otherwise, it is deemed a random error and the data are kept. Thus, the
dataset is refined, reducing its size from 22,900 to 22,477 groups.

(2) Data classification
The operational status of the biomass boiler tends to vary with unit load. It is difficult

for a single model to accurately predict parameters for all operational scenarios. Therefore,
the k-means algorithm is employed to classify the pre-cleaning data and carried out as
follows [12–14]:

(1) Normalized raw data;
(2) Initialize k center points;
(3) Data partitioning.
Calculate the distance between each sample xi in the dataset D = {x1, x2, . . . , xm}

and k center points µj:

dij =
∥∥xi − µj

∥∥2
2 (3)

Divide each data sample xi into clusters uj corresponding to the shortest distance dij
from the center point.

(4) Update center point
Recalculate the center points of samples Cj(j = 1, 2, . . . , k) within each cluster:

∑ ui =
1
|Cj| ∑

x∈Cj

x (4)

Repeat Steps (3) and (4) until the iteration ends or the partitioning results remain
unchanged for each iteration.

The choice of the k value in k-means significantly impacts condition classification
accuracy. The elbow method helps determine the optimal k value as follows:

(a) Calculate the sum of squared errors (SSE) value:
Assume there are {n1, n2, . . . , nk} data samples in k clusters. The SSE is the sum of

squared distances from each data point to its cluster center, calculated using Equation (5):

SSE =
k

∑
j=1

n

∑
i=1

∥∥xij − uj
∥∥2

2 (5)

(b) Plot SSE values against different k values.
(c) The SSE vs. k graph typically resembles an elbow, and the k value at the “elbow

point” indicates the optimal cluster count for classification.
Three parameters (steam drum pressure, feedwater flow rate, and unit load) which

are strongly correlated with the boiler operational state are used as sample co-ordinates
for k-means classification. As shown in Figure 3, the k value corresponding to the elbow
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point is 2. Then, the experimental dataset is partitioned into two categories (condition 1
and condition 2), delineated by the boundaries of steam drum pressure, feedwater flow
rate, and unit load. The parameter ranges for each type of operating condition, along
with the quantity of data encompassed within each operational group, are itemized in
Table 1, respectively.
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Table 1. Parameter ranges of various operating conditions after classification.

Classification Drum Pressure
(MPa)

Feed Water
Flow (t/h)

Unit Load
(MW) Data Volume

Condition 1 5.79–9.67 56.52–118.16 14.91–26.20 4634
Condition 2 8.22–10.18 83.88–152.94 24.16–32.25 16,917

2.2. Parameter Extraction

To improve model accuracy and reduce modeling time, tens of thousands of measure-
ment points in the distributed control system (DCS) are screened. The average influence value
method based on the BP neural network is used to screen the characteristic parameters of
two output parameters, respectively:

(1) Construct samples

Convert the initialization dataset into an independent variable matrix X = {X1, X2, . . . , Xm}T

with l rows and m columns and a dependent variable matrix Y = {Y1, Y2, . . . , Ym}T with
m rows and 1 column, where l represents the number of data samples and m is the number
of feature parameters.

(2) Normalization processing

Normalized input parameters:

x(i, j) =
X(i, j)− Xmin(i, j)

Xmax(i, j)− Xmin(i, j)
(6)

Normalized output parameters:

y(i) =
Y(i)− Ymin

Ymax − Ymin
(7)

(3) Establish a model

Using the normalized data from the previous step as input and output parameters,
combined with the BP neural network algorithm, establish a prediction model for the
target parameters.

(4) Average impact value (AIV) analysis
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Enlarge and shrink each column of the input parameter matrix to 1.1 and 0.9 times the
original data to obtain the scaling matrices, as shown in Equations (8) and (9):

x1
j =


x11, x12, . . . , 1.1x1j, . . . , x1n
x21, x22, . . . , 1.1x2j, . . . , x2n

...
xm1, xm2, . . . , 1.1xmj, . . . , xmn

 (8)

x2
j =


x11, x12, . . . , 0.9x1j, . . . , x1n
x21, x22, . . . , 0.9x2j, . . . , x2n

...
xm1, xm2, . . . , 0.9xmj, . . . , xmn

 (9)

Place the scaled matrices x1
j and x2

j into the BP neural network model established in

step (3) for prediction, and obtain the prediction results y1
j and y2

j . The difference between

two squares of y1
j and y2

j is calculated to obtain the influence value IV of the corresponding
characteristic variable on the output parameter.

IVj =
(

y1
j

)2
−
(

y2
j

)2
(10)

(5) Calculate the average of each IV value to obtain the AIV:

AIVj =
1
m

m
∑

i=1
IVij (11)

(6) Calculate contribution rate:

ηj =

∣∣AIVj
∣∣

∑m
i=1|AIVi|

(12)

If the cumulative contribution rate of the set of feature variables reaches 80%, it is
considered that there is a significant connection between the set of feature parameters and
the output parameters, which are used as input parameters for the optimizing model.

2.3. Algorithm Optimization

In this study, the backpropagation neural network [9,15,16] with an input layer, a single
hidden layer, and an output layer is selected as the core algorithm. The activation function
for the hidden layer is set to sigmoid. At the same time, the random forest algorithm [17,18]
is employed for comparison.

In practical applications, using only the BP algorithm poses challenges due to the
asynchronous changes between input parameters, influenced by the control system and the
inertia of combustion within the furnace, and the corresponding output parameters. The
sampling process, indexed at the same time point, may compromise the model’s accuracy,
especially when dealing with terminal output parameters like unit load in DCS systems,
directly impacting the predictive model’s precision. Therefore, this study innovatively
combines first-order derivative (FOD) with the BP algorithm. Additionally, a search
mechanism based on ant colony optimization (ACO) is incorporated [19–21], enabling
the FOD-BP-ACO model to effectively enhance boiler thermal efficiency.

Assume that the probability of ant k (k = 1, 2, . . ., m) transitioning from location i to
location j at a certain moment is pk

ij. The calculation formula is as follows:

pk
ij =


τα

ij · η
β
ij

∑j−Jk(i) τα
ij · η

β
ij

, jε Jk(i)

0, otherwise

(13)
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In the equation, τα
ij represents the amount of pheromone between location i and loca-

tion j on the path at a certain moment, η
β
ij represents the expected level of ant transitioning

from i to j, Jk(i) is the set of accessible locations for the ant in the next step, α is the impor-
tance factor of pheromone, and β is the importance factor of heuristics. The operation of
ant colony optimization is shown in Figure 4.
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When m ants complete one iteration of path traversal, typically, the ACO model
is used to update the pheromone. The following formula can be used to update the
pheromone concentration:

τij(t + 1) = (1− ρ) · τij(t) + ∆τij(t) (14)

In this formula, ρ is the evaporation rate (a value between 0 and 1), and ∆τij represents
the amount of pheromone deposited by the ants on the path from i to j during the iteration.

This study does not aim to solve a path problem. Therefore, the two equations
mentioned above will be rewritten to solve the maximization of a specified function:

pi =

max
s∈[1,m]

τs(t)− τi(t)

max
s∈[1,m]

τs(t)
(15)

In this formula, τi(0) = F(X),τ0 represents the initialization of pheromone values for
the data. F(X) represents the specified objective function and the optimization problem
is transformed into a maximization problem; the formula for updating the pheromone
concentration can be modified as follows:

τi(t + 1) = (1− ρ)τi(t) + Q× F(X) (16)
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Q represents the total pheromone concentration released by the ants after completing
one iteration or cycle. As F(X) increases, it indicates a higher value of the objective function,
which, in turn, leads to a larger overall pheromone concentration at the location where the
ants are located.

The introduction of the ACO algorithm significantly enhances the local search capabil-
ity of the BP algorithm. Additionally, to improve the precision of the predictive model, this
study proposes the optimization of BP through the introduction of FOD. The FOD is used
to estimate the delay time of a particular parameter relative to another output parameter
within a given system or process, and the specific process is as follows:

Firstly, calculate the Pearson correlation coefficient of the unit load characteristic
parameters with Equation (17):

r =
∑n

i=1
(
XI − X

)(
Yi − Y

)√
∑n

i=1
(
XI − X

)2
√

∑n
i=1
(
Yi − Y

)2
(17)

Next, conduct a lag analysis by selecting representative parameters with a correlation
coefficient greater than 0.5 relative to the unit load from the input parameters. Subsequently,
the interpolation function is fitted to the scattered data points over a complete period, the
FOD of the fitted function is performed, and the estimation of the parameter relative to the
output parameter is obtained by comparing the time difference between adjacent extreme
points delay.

Assuming there are n hysteresis-compensated operating state parameters, for i =
{1, 2 . . . n}, define the latency tdi as shown in the following Equation (18):

P′
(
tp
)
= 0

P′
(
tp − ts

)
P′
(
tp + ts

)
< 0

B′i(tb) = 0

B′i(tbi − ts)B′i(tbi + ts) < 0

0 < tbi − tp < tdmax

tdi = tb − tp

(18)

where P is for unit load, Bi is the ith hysteresis-compensated operating state parameter,
tp is for the unit load interpolation function corresponding to the extreme value point,
tb represents the ith running parameter interpolating the extremum point corresponding
to the time, ts represents DCS sampling interval, tdi represents the latency for running
parameter Bi, and tdmax is for maximum lag time of biomass boiler unit load.

The FOD-BP algorithm corrects the weights and thresholds of hidden layer nodes by
propagating the error values generated after forward propagation back to the hidden layer,
distributing them across the nodes. This process is iteratively repeated until the iteration
reaches the minimum error value and concludes.

The FOD-BP model is a hybrid neural network based on the traditional BP algorithm.
To enhance the local search capability of the BP algorithm, the ACO algorithm is introduced
into the network’s weight-updating mechanism. The FOD algorithm adjusts the delay
time difference to provide accurate input parameters for the BP algorithm, improving
the model accuracy. By combining the FOD and ACO algorithms, it effectively obtains
more accurate input parameters, thereby enhancing the precision of the BP model and
maximizing thermal efficiency through control parameter adjustments.

3. Results and Discussion
3.1. FOD Compensation Result

As shown in Figure 5, there exists a certain linear correlation between the unit load
and furnace temperature. Moreover, it is observable that, when the time changes, the load
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changes exhibit a noticeable lag compared to the furnace temperature curve. Therefore, we
introduce the first derivative method to improve the model accuracy.
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Figure 5. Unit load–furnace temperature variation.

Thus, parameters whose Pearson correlation coefficients are greater than 0.50 with the
unit load are selected as compensation parameters in Table 2.

Table 2. Hysteresis analysis parameters.

Parameter Name Unit Correlation Coefficient

Feed water flow t/h 0.95
Feed water pump pressure MPa 0.94

Drum pressure MPa 0.94
Furnace temperature ◦C 0.52

The average lag time for each compensation parameter is shown in Table 3. The
compensation effect is verified using data from unit load operating condition 2, 70% of the
data are randomly selected as the training set, 30% of the data are used as the test set, and
the model prediction results before and after compensation are shown in Figure 6. The
mean relative error (MRE) is reduced by 15.64% after hysteresis compensation compared to
before hysteresis (as shown in Table 4). This indicates that FOD compensation can improve
forecasting accuracy to a certain extent.

Table 3. Lag time for compensation parameter.

Parameter Name Compensation Time (s)

Feed water flow 8 s
Feed pump outlet pressure 40 s

Drum pressure 40 s
Furnace temperature 56 s
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Table 4. Performance evaluation parameters of boiler thermal efficiency prediction model before and
after compensation.

Type of Data MAE (MW) MRE (%) RMSE (MW) R2

Before compensation 0.1992 0.69 0.2322 0.9788
After compensation 0.1683 0.58 0.2195 0.9811

Note: mean absolute error—MAE.

3.2. Unit Load and Boiler Efficiency Prediction

Predictive models for the unit load and boiler thermal efficiency under two different
operating conditions were established using the random forest algorithm and the BP neural
network algorithm, and a comparison of the predictive results between the two algorithms
was conducted.

3.2.1. Random Forest Model

We used grid-search–cross-validation-optimized hyperparameters for unit load fore-
casting using a dataset of operating condition 2, with R2 as the evaluation index. Similar
tuning was applied to other datasets, yielding optimal points as detailed in Table 5.

Table 5. Optimization results of random forest hyperparameters.

Parameter Name
Unit Load Boiler Thermal Efficiency

Condition 1 Condition 2 Condition 1 Condition 2

T 80 70 80 70
Max depth 8 8 6 7

It can be observed from Table 6 that, apart from the unit load condition 1, the relative
errors of the random forest predictive models for all operating conditions are below 1%,
with R2 values exceeding 0.95. Among them, the single model with the highest accuracy is
the boiler thermal efficiency predictive model 1, which has an average MRE of only 0.02%.
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Table 6. Evaluation metrics for random forest prediction models.

Evaluation Index
Unit Load Boiler Thermal Efficiency

Condition 1 Condition 2 Condition 1 Condition 2

MAE 0.2422 0.2076 0.0208 0.0690
MRE (%) 1.10 0.72 0.02 0.08

RMSE 0.3653 0.2929 0.0452 0.1061
R2 0.9854 0.9664 0.9997 0.9980

3.2.2. BP Neural Network

BP neural network models were developed using the PyCharm Community edition
2023.2. The model parameters settings are presented in Table 7.

Table 7. Parameter settings for the BP neural network prediction model.

Parameter Number

Maximum iteration steps 1000
Learning rate 0.001

Batch size 16

Taking the unit load as an example, the number of input layer nodes was 38, and the
range of hidden layer nodes given according to different empirical formulae is l < 60, with
comprehensive consideration, and 11 numbers in the range of 5–55 were taken at intervals
of 5. Similarly, the hidden layer node selection was carried out for the thermal efficiency
of the boiler, and the BP neural network prediction model was established by using the
data after the division of operating conditions, and the root mean square error (RMSE)
corresponding to the number of nodes is shown in Table 8.

Table 8. The number of hidden layer nodes of operating condition 1 predictive model corresponds to
the RMSE.

The Number of
Hidden Layer Nodes

Unit Load
RMSE

The Number of
Hidden Layer Nodes

Boiler Thermal
Efficiency RMSE

5 0.3837 5 0.0651
10 0.3413 8 0.0760
15 0.3202 10 0.1127
20 0.2870 13 0.0416
25 0.2720 15 0.0385
30 0.2714 18 0.1171
35 0.2648 20 0.0382
40 0.2486 25 0.0255
45 0.2655 30 0.0195
50 0.2568 35 0.0223
55 0.2858 40 0.0163

The number of nodes corresponding to the lowest RMSE of the above two types of
operating conditions is shown in Table 9.

Table 9. The optimal number of hidden layer nodes in a BP neural network.

Evaluation Index
Unit Load Boiler Thermal Efficiency

Condition 1 Condition 2 Condition 1 Condition 1

The number of
hidden layer nodes 40 45 40 23

The results of BP neural network predictions are shown in Figure 7.
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results of unit load under condition 1; and (d) prediction results of unit load under condition 2.

From Table 10, it can be seen that the mean relative error of the BP neural network
predictive model under all operating conditions is within 1.5%, and the value of R2 is
above 0.94, among which the single model with the highest accuracy is the boiler thermal
efficiency prediction model under operating conditions 1, and its mean relative error is
only 0.04%. In summary, the BP neural network prediction model can accurately predict
the boiler thermal efficiency and unit load under all operating conditions.

Table 10. Evaluation metrics for BP neural network prediction models.

Evaluation Index
Unit Load Boiler Thermal Efficiency

Condition 1 Condition 2 Condition 1 Condition 2

MAE 0.1882 0.1671 0.0118 0.0169
MRE (%) 0.88 0.58 0.01 0.02

RMSE 0.2486 0.2157 0.0163 0.0222
R2 0.9932 0.9818 0.9995 0.9991

A detailed comparison is as follows:

(1) Unit load: For condition 1, the MRE of the random forest predictive model is 1.10%,
while the MRE of the BP neural network predictive model is 0.88%. This represents a
decrease of approximately 25% in the MRE compared to the random forest predictive
results. For condition 2, the random forest predictive model has an MRE of 0.72%,
while the BP neural network predictive model has an MRE of 0.58%. In this case, the
MRE of the BP neural network predictive model is approximately 24.1% lower than
that of the random forest.
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(2) Thermal efficiency: For condition 1, the MRE value of the BP neural network predictive
model decreased by approximately 100% compared to the random forest predictive
results. For condition 2, the decrease was approximately 300%.

The BP neural network algorithm maintains an MRE of within 1.5% in all predictive
models, indicating an overall superior predictive performance compared to random forest.
Taking into account both modeling accuracy and stability, the next section will proceed
with the optimization of control parameters using the model established by the BP neural
network algorithm.

3.3. Optimization of Boiler Efficiency Using Ant Colony Algorithm

One-hour datasets were randomly selected for each type of operating condition and
the ant colony algorithm was used to search for the corresponding damper positions that
maximize boiler efficiency. The hyperparameters of the ant colony algorithm are shown
in Table 11, and the variation range of the independent variable (high-side, center, and
low-side boiler grate air damper positions, as well as front and rear furnace wall secondary
air damper positions) of the objective function was specified to be 0.9–1.1 times of the
original value and the opening of the baffle was not higher than 100%. The FOD-BP neural
network models obtained were selected for the forward prediction model. The changes
of the high-side, center-side, and low-side exhaust air damper opening, the secondary air
damper opening of the front wall and the rear wall of the furnace, and boiler efficiency,
before and after optimization, are shown in Table 11. The FOD-BP forecast value is the
value obtained from the initial input parameters, and the FOD-BP-ACO forecast value is
the value obtained from the input parameters after optimization.

Table 11. Hyperparameter configuration for BP ant colony algorithm.

Parameter Number

Iterations 100
Ant population 100

Information evaporation coefficient 0.8
Cumulative information release 1

The results show that the thermal efficiency of the boiler increases by 0.002–0.04%
compared with the pre-optimization value. However, it is worth noting that, in certain
instances, such as at 2160 s, even with optimization, the thermal efficiency remains below
the actual values, albeit with a 0.02% improvement. This is primarily due to the initial
predictive model having some degree of error, resulting in significant deviations between
the predicted and actual values, even after optimization. Out of the 902 datasets analyzed,
95% of them demonstrated an improvement in boiler thermal efficiency by 0.01–0.06%
relative to the actual values when the unit load variation did not exceed 0.5 MW. The
performance data for different parameter types is summarized in Table 12.
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Table 12. Performance data for different parameter types.

Time(s) Parameter
Type

Front Wall
Secondary

Air Damper
Opening (%)

Rear Wall
Secondary

Air Damper
Opening (%)

High-Side
Boiler Grate
Air Damper
Opening (%)

Center Boiler
Grate Air
Damper

Opening (%)

Low-side
Boiler Grate
Air Damper
Opening (%)

Unit Load
(MW) Efficiency (%) E* − E (True)

E (FOD-BP-ACO)
− E (FOD-BP)

240

True value 100.00 100.00 54.91 25.98 26.34 31.860 86.602

FOD-BP 100.00 100.00 54.91 25.98 26.34 31.928 86.625 0.022

FOD-BP-ACO 97.30 92.25 56.43 24.92 25.41 31.955 86.638 0.036 0.013

480

True value 40.87 40.32 35.47 36.29 36.29 31.880 86.601

FOD-BP 40.87 40.32 35.47 36.29 36.29 31.626 86.600 -0.001

FOD-BP-ACO 42.47 41.91 34.31 34.91 33.90 31.674 86.614 0.012 0.013

720

True value 50.09 63.71 45.63 31.11 26.01 31.310 86.604

FOD-BP 50.09 63.71 45.63 31.11 26.01 31.590 86.634 0.030

FOD-BP-ACO 48.29 69.45 43.45 29.63 24.48 31.581 86.641 0.037 0.007

960

True value 72.31 76.40 54.95 26.43 26.31 30.750 86.606

FOD-BP 72.31 76.40 54.95 26.43 26.31 30.908 86.641 0.035

FOD-BP-ACO 67.89 82.51 53.59 24.89 24.81 30.901 86.647 0.041 0.006

1200

True value 76.43 76.53 54.82 26.37 26.37 30.470 86.678

FOD-BP 76.43 76.53 54.82 26.37 26.37 30.590 86.709 0.031

FOD-BP-ACO 70.81 82.11 53.95 25.04 24.80 30.589 86.715 0.037 0.006

1440

True value 76.34 76.74 54.85 27.59 26.31 30.480 86.679

FOD-BP 76.34 76.74 54.85 27.59 26.31 30.378 86.706 0.028

FOD-BP-ACO 73.76 83.78 54.15 26.30 25.97 30.339 86.711 0.033 0.005

1680

True value 76.83 76.37 54.95 26.01 26.37 31.610 86.678

FOD-BP 76.83 76.37 54.95 26.01 26.37 31.414 86.711 0.034

FOD-BP-ACO 78.33 81.39 55.73 24.65 24.97 31.415 86.716 0.038 0.005



Energies 2023, 16, 7783 14 of 16

Table 12. Cont.

Time(s) Parameter
Type

Front Wall
Secondary

Air Damper
Opening (%)

Rear Wall
Secondary

Air Damper
Opening (%)

High-Side
Boiler Grate
Air Damper
Opening (%)

Center Boiler
Grate Air
Damper

Opening (%)

Low-side
Boiler Grate
Air Damper
Opening (%)

Unit Load
(MW) Efficiency (%) E* − E (True)

E (FOD-BP-ACO)
− E (FOD-BP)

1920

True value 100.00 99.91 55.25 26.28 25.98 30.670 86.606

FOD-BP 100.00 99.91 55.25 26.28 25.98 30.399 86.625 0.019

FOD-BP-ACO 93.20 91.11 56.87 24.87 25.60 30.526 86.639 0.034 0.014

2160

True value 98.26 98.84 52.47 36.36 36.36 30.37 86.605

FOD-BP 98.26 98.84 52.47 36.36 36.36 30.418 86.568 −0.037

FOD-BP-ACO 100.00 89.70 54.01 33.83 34.85 30.459 86.592 −0.012 0.024

2400

True value 59.92 71.31 32.39 32.97 26.40 29.200 86.607

FOD-BP 59.92 71.31 32.39 32.97 26.40 28.983 86.617 0.010

FOD-BP-ACO 55.79 64.99 33.16 31.35 25.01 29.107 86.629 0.022 0.012

2640

True value 88.58 100.00 54.88 26.65 26.31 30.060 86.534

FOD-BP 88.58 100.00 54.88 26.65 26.31 30.107 86.558 0.024

FOD-BP-ACO 82.27 94.39 54.45 25.19 25.06 30.166 86.569 0.035 0.011

2880

True value 100.00 100.00 54.88 27.50 25.98 30.930 86.534

FOD-BP 100.00 100.00 54.88 27.50 25.98 30.896 86.550 0.016

FOD-BP-ACO 92.67 94.45 57.76 26.83 25.66 31.006 86.564 0.031 0.014

3120

True value 100.00 100.00 54.98 27.47 25.98 31.200 86.534

FOD-BP 100.00 100.00 54.98 27.47 25.98 31.262 86.551 0.017

FOD-BP-ACO 94.29 92.57 56.85 26.39 25.88 31.360 86.566 0.032 0.015

Note that E* represents the efficiency of this column.
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4. Conclusions

In this paper, a prediction model based on FOD-BP-ACO is proposed to optimize the
controlling parameter of the biomass boiler. The main conclusions are summarized below:

The k-means clustering method is introduced to categorize data into two distinct
operational states based on boundary parameters (steam drum pressure, feedwater flow
rate, and unit load). When the delay parameter compensation is used, the average relative
error of the model is reduced by 25.78%, which indicates that the delay compensation can
effectively improve the accuracy of the prediction. The ant colony algorithm is proposed
to optimize the air damper opening and show that the thermal efficiency of the boiler
increases by 0.002–0.04% (relative to the predicted value) and 95% of the data demonstrated
an improvement in boiler thermal efficiency by 0.01–0.06% relative to the actual values.
This improvement is limited, because the model was based on the data of optimized
operation condition and fixed biomass fuel. When the type of biomass fuel varies in a large
range, FOD-BP-ACO might show a good potential for boiler efficiency improvement and
providing a new reference for establishing the intelligent control system of biomass boilers.
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