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Abstract: The increasing demand for energy and electricity and the depletion of fossil fuels are global
problems. In recent years, dye-sensitized solar cell (DSSC) technologies have gained notoriety for their
application in solar energy. DSSCs are considered a promising alternative renewable energy source
to both inorganic and organic photovoltaic (PV) cells. Many types of dyes are being investigated
to enhance the light-harvesting properties of DSSCs, but the actual realization of these absorbers in
cell structure requires optimum parameters. The main aim of this study was to simulate proposed
zinc phthalocyanine (ZnPC)-based structures to validate their design, assess their performance
for commercial implementation, and optimize the cell parameters for optimum efficiency. To that
end, Scaps-1D was employed to evaluate the performance of DSSCs to determine their optimum
parameters. We found that ZnPC and isopropoxy ZnPC molecules outperform others molecules
because of better optoelectronic properties. Several other parametric effects, such as photoactive layer
thicknesses, doping densities, trap densities, and charge carrier mobilities, were also evaluated to
observe their impact on device performance. The results show that moderate thickness, low defect
density, moderate doping, and charge carrier mobility are favorable for better device performance
due to low recombination losses, electrical losses, and better transport of charge carriers. The
utmost power conversion efficiency values found for ZnPC- and ZnPC: PC70BM-based DSSCs after
optimization were 9.50% and 9.81%. This paper also suggests a practical method for efficiently using
DSSC cells by modifying factors that are significantly reliant on DSSC performance and output.

Keywords: solar cell; dye-sensitized; electrical modeling; DSSC; PCE; zinc phthalocyanine

1. Introduction

Dye-sensitized solar cells (DSSCs) have emerged as the vanguard of the photovoltaic
(PV) industry, heralding a new era of more efficient and cost-effective solar energy. Due
to their impressive capacity for high efficiencies and use of readily available materials,
DSSCs have gained widespread acknowledgment as a viable substitute for traditional
silicon solar cells. They possess the inherent qualities necessary to supersede their first-
generation counterparts [1–3]. Over the past decade, the allure of DSSCs has captivated
the imagination of researchers and engineers alike, fueling an unprecedented surge of
interest. The multifaceted applications that can be derived from this innovative energy
source have been a driving force behind this fervor. DSSCs possess a unique adaptability
that allows them to be seamlessly integrated into various contexts, enabling the realization
of groundbreaking possibilities. The key benefits of these PV devices are their mechanical
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flexibility, lightweight design, low cost, high productivity, and the capacity to be made at
room temperature [4,5]. This type of solar cell has sparked considerable attention since
the first DSSC was released by Grätzel et al. [3] in 1991. DSSCs are made of low-cost
materials with high-efficiency potential and are abundant on the planet, making them a
viable alternative to other generations of solar cells [6].

Optimizing and maintaining the layers of a DSSC can lead to enhanced system per-
formance. In this type of solar cell, the dye undergoes oxidation, releasing electrons, and
the electrolyte replenishes these lost electrons to prevent dye oxidation. The widely used
liquid electrolyte in DSSCs is the iodide/triiodide (I/I3) redox couple [7]. However, liquid
electrolytes pose challenges such as solvent evaporation, low heat stability, and difficulty
in sealing the cell. To address these issues, researchers are exploring the use of solid-state
electrolytes in DSSCs [8], which offers advantages for future applications. A. Sevin et al.
examined the electrochemical and photovoltaic properties of solar cells using cobalt/zinc
phthalocyanine sensitizers. The study demonstrates that the cobalt(II) phthalocyanine
(Co-PC) derivative exhibits a PCE of 4.18%, while the zinc(II) phthalocyanine (Zn-PC)
derivatives yield a PCE of 2.99%. The use of sulfur atoms as linker atoms slightly improves
solar cell efficiency. The results suggest that a low-cost sensitizer made up of symmetrically
substituted phthalocyanine with an earth-abundant metal at the inner core can achieve high
solar cell efficiency [9]. B. Kadem et al. investigated the effects of adding Zn-PC hybrids
to a blend of P3HT: PCBM to improve the performance of organic solar cells [10]. The
hybrids, which are covalently and non-covalently functionalized with single-walled carbon
nanotubes and reduced graphene oxide, were found to enhance photon harvesting and
charge carrier transport in solar cells. The addition of these hybrids resulted in a significant
increase in electrical conductivity and improved charge collection efficiency, leading to
higher power conversion efficiency (PCE) and fill factor (FF) in solar cell devices. Their
best-performing device achieved a PCE of 5.3% and an FF of 68%. M. Stylianakis et al.
demonstrated the potential of incorporating ZnPc into ternary organic solar cells to achieve
PCEs [11]. They observed that the introduction of ZnPc into the active layer of the solar
cells serves as an electron cascade material, improving charge transfer and reducing exciton
recombination. This leads to enhanced energy level alignment between the polymeric
donor and the fullerene acceptor, resulting in improved photovoltaic performance. Their
fabricated ternary solar cells showed a PCE of 8.52%, which is a significant 15% increase
compared to the reference binary cell. The addition of ZnPc into the active layer of the solar
cells not only enhances the energy level alignment but also optimizes the morphology of
the ternary active layer. Y. Zheng et al. discuss the use of a binary solvent additive to en-
hance the efficiency of PTB7:PCBM polymer solar cells [12]. The authors achieved a power
conversion efficiency of over 9.5% by using a combination of diphenyl ether (DPE) and
1,8-diiodoctane (DIO) as the binary solvent additive. The addition of DPE improved the
crystallinity of the PTB7 donor, while DIO enhanced the dispersion of the PCBM acceptor.
This resulted in better donor/acceptor phase separation, increased light absorption, and
improved charge transport efficiency. A DSSC incorporating TiO2 as the electron extraction
layer and N719 as the photo-harvesting layer achieved a power conversion efficiency (PCE)
of 8.5% [13]. Y. Liu et al. employed a P3HT/ZnPc composite with tunable energy levels
to serve as a hole transport material (HTM) to improve the stability and charge carrier
transport at the interfaces [14]. This reduced the energy level difference and passivated
surface defect states in CsPbBr3, enhancing charge separation. Their solar cell configuration
achieved a notable power conversion efficiency of 10.03%, displaying improved stability
over 30 days in ambient conditions. The P3HT/ZnPc composite emerges as an effective
HTM for high-efficiency and stable carbon-based CsPbBr3 perovskite solar cells. Extensive
research is being conducted to improve DSSCs’ efficiency and make them viable for mass
production [15,16]. Recent studies have shown promising results, with DSSCs achieving
efficiency levels of around 11% or even higher [17,18].

In the realm of PV research, the SCAPS-1D software has emerged as a valuable tool
for investigating and analyzing different generations of solar devices. Researchers have
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utilized this simulation system to explore various aspects of thin-film solar cells, including
layer thickness determination and the impact of material characteristics and device designs
on PV performance. One noteworthy study by Farah J. and colleagues delved into the
performance evaluation of DSSCs with different hole transport layers (HTLs) using SCAPS-
1D. Among the HTLs tested, their optimized structure featuring CuI exhibited exceptional
outcomes [19]. This finding highlights the significance of HTL selection in enhancing
the efficiency of DSSCs. B.K. Korir et al. utilized SCAPS-1D to develop a solid-state
dye-sensitized solar cell (SSDSSC). They focused on optimizing the output of the electron
transport layer, resulting in a remarkable power conversion efficiency (PCE) of 5.38% [20].
This demonstrates the potential of simulation tools in optimizing material performance for
improved solar cell efficiency. In another study, by K.A. Ojotu et al., SCAPS was employed
to simulate solid-state DSSCs. Through meticulous device settings optimization, their solar
cell achieved an impressive efficiency (PCE) of 4.90% and a fill factor (FF) of 56.45% [21].
This research emphasizes the significance of precise parameter adjustments for enhancing
DSSC performance. Furthermore, N.S. Noorasid and collaborators explored SSDSSCs
utilizing CuI as a hole transport material. Their numerical modeling and analysis using
SCAPS-1D showcased the compelling nature of this combination. By adjusting various
parameters, the researchers revealed that SSDSSCs with back contacts outperformed those
without, mainly due to the benefits of reduced HTL thickness [22]. This study demonstrates
the importance of device architecture and contact configurations in enhancing solar cell
performance. A. Iqbal et al. aimed to improve the efficiency of a DSSC based on ZnPC:
PC70BM by analyzing various parameters [23]. They used a solar cell capacitance simulator
(SCAPS-1D) to estimate the performance of the DSSC with different photoactive layer
thicknesses, series and shunt resistances, and back metal work functions. The findings of
the study indicate that certain parameters significantly impact device performance, and
they obtained a maximum PCE of 10.30%. By employing the SCAPS-1D software, K.S.
Nithya produced an NFA-OSC, where CuI was utilized as an HTL, and the researchers
believe their structure is more effective than more conventional ones. Their system reached
a PCE of 15.68% while operating in ideal conditions [24]. In a notable study conducted
by W. Abdel Aziz and colleagues, it was discovered that the graded bulk heterojunction
(GBHJ) solar cell exhibited superior productivity compared to the bulk heterojunction
(BHJ) solar cell. By employing non-fullerenes as acceptors, they achieved an impressive
PCE of 12.39% [25]. This research demonstrated the potential of non-fullerene acceptors in
enhancing the performance of organic solar cells (OSCs). Another group of researchers, led
by B. Sharma, utilized the SCAPS-1D modeling tool to develop non-fullerene OSCs with
CuSCN as the HTL. Through careful adjustments to the simulation settings, they achieved
a remarkable PCE of 20.36% [26]. This achievement highlighted the efficacy of SCAPS-1D
in designing and analyzing high-performance PV devices.

SCAPS-1D, an advanced modeling tool, has been extensively utilized in the design and
study of various high-performance PV devices, including perovskite solar cells (PSCs) [27],
copper indium gallium selenide solar cells (CIGS) [28], cadmium telluride-based solar cells
(CdTe) [29], and OSCs [30]. This versatile tool has facilitated significant advancements
in the understanding and optimization of these technologies. These research findings
underscore the importance of exploring novel materials and employing sophisticated mod-
eling tools like SCAPS-1D to push the boundaries of solar cell efficiency. By continuously
improving our understanding and design capabilities, we can drive the development
of high-performance PV devices, paving the way for a more sustainable and renewable
energy future.

This study modeled suggested zinc phthalocyanine (ZnPC)-based structures to val-
idate their design and assess their performance for commercial implementation, as well
as optimize the cell parameters for optimum DSSC efficiency. It was found that these
molecules can replace traditional dyes which are associated stability, volatility, and pro-
ductivity concerns. In this study, we also investigated the behavior of devices with ZnPC
and ZnPC: PC70BM absorber layers for DSSCs. In addition, we looked at several DSSC
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properties (photoactive layer thickness, doping density, carrier mobility, and ETMs) that
contribute to device performance. Furthermore, our findings are compared to experimental
data provided in other published literature.

2. Device Configuration and Modeling
2.1. Approach and Design

To design and analyze the simulated cell in various segments, the researchers relied on
the powerful SCAPS software (version 3.3.07). This cutting-edge tool provided users with
access to a range of panels within the application, granting them the ability to fine-tune
settings and form insightful opinions on the outcomes. By harnessing the capabilities of
SCAPS, the researchers gained valuable insights into the performance and characteristics of
the simulated cell. This comprehensive software enabled them to explore various scenarios
and evaluate the impact of different settings on the system’s behavior. With its power-
ful simulation capabilities and robust mathematical foundation, SCAPS empowered the
researchers to delve deeper into the intricacies of their designs, fostering a better under-
standing of the underlying physics and facilitating advancements in PV technology [31].
Figure 1a illustrates the working procedure of SCAPS-1D.
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Figure 1. (a) Steps to initiate SCAPS-1D. (b) Diagrammatic representation of a ZnPC-based DSSC.
(c) Schematic representation of a ZnPC:PC70BM-based DSSC.

In this study, a heterojunction structure was employed to investigate the performance
of an SSDSSC. The cell structure comprised a single and bi-active layer, offering versatility
in design and functionality. Various components were integrated into the device, including
an absorber layer, an HTL consisting of PEDOT: PSS, an electron ETL comprised of PFN:Br,
a transparent conducting oxide (FTO), and a metal contact (Au). These elements are visually
depicted in Figure 1b,c, providing a clear representation of the cell’s architecture.

To comprehend the energy behavior within the proposed structures, energy band
diagrams were constructed. These diagrams, as shown in Figure 2a,b, illustrate the distribu-
tion of energy levels across the different layers. By examining the energy band alignment,
the researchers gained insights into the charge transfer and transport processes occurring
within the cell.
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ZnPC:PC70BM−based DSSC.

The incorporation of a solid-state design and the utilization of a heterojunction struc-
ture offered a promising platform for enhancing the efficiency and performance of the
DSSC. By carefully engineering the layers and optimizing the energy band alignment,
the researchers aimed to maximize light absorption, charge separation, and collection,
ultimately driving advancements in solar cell technology.

2.2. Device Simulation Parameters

The selection of simulation settings for the layers’ structure drew upon the research
presented in references [19,20,24–26,32–34]. The comprehensive list of parameters consid-
ered encompassed various material properties, such as donor and acceptor density, electron
and hole mobility, and more. It was crucial to account for the distinct characteristics of
each material in conjunction with the layout of the contact points. To facilitate a holistic
understanding, Table 1 provides an extensive overview of the essential simulation param-
eters employed in this study. Furthermore, several other material properties, including
the thermal velocity of electrons and holes, were adjusted to 107 cm/s to enhance realism
within the simulations. The back metal electron work function of gold was kept at 5.1 eV,
while the front TCO contact electron work function was defined as 4.4 eV [35,36]. Absorp-
tion profiles for all layers were obtained from relevant studies [33,34,37,38], facilitating
the simplification of the device modeling process. Absorption profiles are typically added
as layers in SCAPS-1D to incorporate the optical properties of the materials used in the
device. To achieve a more realistic representation of the device, the model incorporated
two interface defect layers denoted as IL1 (PFN:Br/photoactive layer) and IL2 (photoactive
layer/PEDOT:PSS). These layers accounted for imperfections at the interfaces and their
potential influence on device performance. In this study, IL1 and IL2 were assigned a value
of 2 × 1010 cm−2 [24].

The device modeling employed the AM1.5G spectrum and maintained an effective
temperature of 300 K, ensuring compatibility with real-world operating conditions. All
operating point settings and numerical factors were maintained at their actual values to
preserve accuracy and consistency. The scanning voltage range was set from 0 to 1 volt,
covering a broad spectrum of operating conditions. These parameters, meticulously chosen
and implemented, formed the foundation of the simulations conducted within this program.
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By utilizing these settings consistently throughout the simulations, the researchers could
confidently analyze and compare the performance of the device under different conditions,
driving advancements in DSSC technology.

Table 1. Parameters for different layers set in the simulation.

Parameters FTO [19,20,24] PFN:Br [25,26] PEDOT:PSS
[25,32]

PC70BM
[24,26,32]

ZnPC
[26,33,34]

Thickness (nm) 100 100 150 50 200

Acceptor Density (cm−3) 0 0 1018 0 0

Donor Density (cm−3) 1019 9 × 1018 0 0 0

Effective Density of states for
valence band (cm−3) 9.2 × 1018 1019 2.5 × 1021 1019 1019

Effective Density of states for
conduction band (cm−3) 1.8 × 1019 1019 1.7 × 1019 1019 1019

Bandgap (eV) 3.5 2.8 1.5 2 1.86

Relative Dielectric Permittivity 9 5 3 3 5

Mobility of Electron (cm2/Vs) 20 2 × 10−6 1.69 × 10−4 2.2 × 10−4 0.1963

Mobility of Hole (cm2/Vs) 10 1 × 10−4 1.69 × 10−4 2.5 × 10−4 0.0627

Electron Affinity (eV) 4 4 3.4 3.9 3.7

Defect Density (cm−3) 1015 1012 1015 1012 5 × 1013

3. Analysis and Discussion
3.1. Evaluation of Different Photo-Harvesting Layers

In this study, a range of zinc-phthalocyanine (ZnPC) groups, including isopropoxy,
cyano, fluoro, methoxycarbonyl, and dicyanomethyl, were investigated as potential ab-
sorber materials for DSSCs. These ZnPC groups exhibit distinct advantages over traditional
materials, as they demonstrate lower reorganization energy, improved charge transfer
characteristics, and higher optical conductivity. Consequently, their optoelectronic proper-
ties are more refined and promising for application in PV devices. The researchers found
that these ZnPC groups hold great potential as viable replacements for existing absorber
materials in DSSCs. Additionally, their noteworthy optoelectronic characteristics indicate
their potential as pivotal components in the advancement of next-generation DSSCs. All
of the simulations for the various groups of ZnPC were run at a thickness of 200 nm. The
current density–voltage (J-V) curves and the quantum efficiency (QE) curves resulting
from their differentiation are shown in Figure 3a,b, which make it clear that the Jsc and
Voc values shift depending on the ZnPC group. Electrical losses in the photoactive and
transport layers may be the origin of the small indentation shown in the J-V curve of ZnPC
molecules above 0.75 V. In the context of this study, the presence of series resistance (Rs)
was considered, representing the electrical resistance between the metal and the transparent
electrode. This is an important factor that influences the overall performance of the solar
cell. Among the various molecules investigated, ZnPC and isopropoxy ZnPC molecules
emerged as particularly promising options, displaying superior outcomes in terms of PCE
and short-circuit current density (Jsc). These molecules showcased exceptional optical and
transport properties, contributing to their enhanced performance. ZnPC and isopropoxy
ZnPC exhibited notable characteristics such as a high transport rate, a high absorption
coefficient, and potential dielectric properties. These attributes played a significant role in
achieving higher PCE values, with ZnPC demonstrating a PCE of 8.72% and isopropoxy
ZnPC exhibiting a PCE of 7.65%.
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Herein, a comprehensive numerical analysis was also conducted on DSSCs based on
ZnPC and ZnPC:PC70BM. The focus of the investigation was on DSSCs with a photoactive
layer thickness of 200 nm. The material parameters for all the designed layers are displayed
in Table 1. The J-V and QE graphs of their comparison are shown in Figure 4a,b, which
clearly illustrate that the outcomes of the ZnPC:PC70BM-based DSSC are significantly
higher than those of the ZnPC-based DSSC. When the photons are incident on photoactive
dye material, excitons are generated, which are bounded electron–hole pairs formed by
Columb interaction. These excitons are separated by utilizing two different materials with
correctly aligned band levels. These materials are called donors and acceptors. The junction
between these two materials dissociates the bounded electron–hole pair and transports
it toward the respective electrodes. Zn-PC is an efficient donor material despite having
some acceptor parts. But we need a better acceptor material for exciton separation. As a
result, we used PC70BM as an acceptor material in our simulation to enhance the device’s
performance and outcomes. The device output parameters Voc, Jsc, FF, and PCE for the
ZnPC- and ZnPC:PC70BM-based DSSCs at a thickness of 200 nm were 0.83 V and 0.85 V,
16 mA/cm2 and 18 mA/cm2, 57.65% and 51.52%, and 7.65% and 8.36%. It was observed
that ZnPC:PC70BM had a stronger interaction with the charge transporting layers than
ZnPC. So, when light was applied to the dye material, it resulted in effective extraction,
transport, and collection of charge carriers towards the relevant electrodes. Therefore, it
yielded better outcomes.
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The numerical analysis of the SSDSSC was compared to actual published data, as
shown in Table 2. It was observed that the simulation results are close to the experimental
findings presented in previously published studies. By leveraging the advantageous optical
and transport properties of these specific molecules, the researchers aimed to optimize the
performance of the solar cell and unlock its maximum efficiency. These findings provide
valuable insights into the potential of ZnPC and isopropoxy ZnPC as promising candidates
for enhancing the overall performance of DSSCs.

Table 2. Comparison of the simulated results with published experimental results.

Device Configuration PCE (%) Ref.

Experimental Published Results
FTO/dye & TiO2 (TNA)/Pt 8.34 [38]

FTO/TiO2/N719/modified CuSCN/carbon
past/Pt-FTO 4.24 [39]

4-HBa-ZnPc, 4-HBa-CoPc, 4-MKBa-CoPc 2.99, 3.70, 4.18 [9]
P3HT:PCBM:ZnPc–SWCNTs 5.30 [10]

ITO/PEDOT:PSS/PTB7:ZnPc:PC71BM/Ca 8.52 [11]
FTO/TiO2/CsPbBr3/P3HT:ZnPC/carbon 10.03 [14]

Simulation Results
FTO/PFN:Br/ZnPC/PEDOT:PSS/Au 7.65 This study

FTO/PFN:Br/ZnPC:PC70BM/PEDOT:PSS/Au 8.36 This study

3.2. Effect of Active Layer Thickness and Defect Density on Cell Performance

The photoactive layer of any PV cell is essential to its device’s operation and output.
PV cells can be more or less productive depending on their photoactive layer thickness. This
is because the thickness of the photoactive layer affects how well photons are absorbed and
charge carriers are extracted. As the photoactive layer gets thicker, the dye can absorb more
light, making the cell work better. Electron–hole pairs are generated when a dye absorbs
photons, which are further dissociated and transported toward the respective electrodes.
Meanwhile, DSSC performance suffered as a result of the thick photoactive layer. That
is because increased thickness makes the film more resistant to electrical charge transfer,
resulting in electron recombination and reducing solar cell performance. The thickness of
the photoactive layer was altered in this study between 100 and 700 nm. The impact of
this variation on device performance was studied by keeping all other parameters constant
throughout the experiment.

The data presented in Figure 5a–d reveal a clear correlation between the variation in
device performance and the depth of the active layer in the DSSCs. As the thickness of the
absorber layer is increased from 100 nm to 500 nm, there is a noticeable improvement in the
values of Jsc (short-circuit current), Voc (open-circuit voltage), and PCE. This enhancement
can be attributed to the increased concentration of electron–hole pairs generated within the
absorber layer due to the larger thickness [21,40–42]. However, when the photo-harvesting
layer thickness is further increased from 500 nm to 700 nm, a different trend emerges. The
longer distance for carriers to travel toward their respective electrodes leads to an increased
recombination rate, causing a decline in Voc. Consequently, the PCE also decreases because
the impact of the Voc reduction outweighs the negligible increase in Jsc. The highest
achieved values for Voc and PCE were 0.8318 V and 8.71%, respectively. The decline
in the fill factor from 63.65% to 42.43% with increasing layer thickness is an essential
observation. The fill factor indicates the device’s ability to deliver the full available power
to the electrical load. The decrease in fill factor is attributed to the relatively thick active
layer, which contributes to higher series resistance within the cell and a quicker depletion
of the cell’s internal power.
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The significance of the photoactive layer’s quality and structure in DSSCs’ perfor-
mance is highlighted. The photoactive layer has a pivotal function in light absorption,
and for optimal efficiency, it necessitates a low defect density. Subpar film quality and
unfavorable characteristics contribute to heightened defect states and increased recombina-
tion probability, detrimentally impacting the productivity of the device [26,43,44]. Energy
defects are classified into two types: shallow and deep. Long electron–hole scattering and
high Voc have resulted from the creation of shallow energy levels. However, the deep-
level defect is characterized by a high probability of creating energy defects, negatively
impacting charge carriers’ diffusion length. The increased efficiency of DSSCs at low defect
density is attributed to low recombination at photoactive layer interfaces. To achieve higher
performance in DSSCs, careful consideration and optimization of the photoactive layer’s
properties are essential. Ensuring a well-structured and defect-free photoactive layer is
crucial for enhancing the overall efficiency and effectiveness of these solar cells.

Figure 5e–h present a detailed analysis of the output device’s performance concerning
defect density (Nt) in the dye-sensitized solar cells (DSSCs). The variation in Nt directly
impacts the carrier lifetime, leading to changes in the recombination rate, which in turn
influences the overall output performance of the device. The results demonstrate that a low
defect density is beneficial for achieving improved device performance. A lower Nt value
indicates fewer traps present in the absorber layer, allowing for a higher generation rate of
electron–hole pairs. This translates to better carrier transport and reduced recombination,
ultimately leading to enhanced output parameters.

On the other hand, an excessive concentration of defects introduces additional recom-
bination centers and traps, leading to a degradation of the device’s overall performance.
Such high defect densities hinder efficient carrier movement and increase the chances of
electron–hole pair recombination, negatively affecting the output characteristics of the
DSSC. To optimize the device output, it is crucial to maintain a defect density below a
certain threshold, specifically below 1015 cm−3. This threshold ensures a higher current
density, which is a crucial factor for achieving improved solar cell efficiency. For instance,
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the specific device output parameters for the ZnPC-based DSSC, with a photoactive layer
thickness of 200 nm and a defect density of 5 × 1012 cm−3, exhibit promising results. The
values include a Jsc of 16.02 mA/cm2, Voc of 0.8364 V, FF of 60.75%, and PCE of 8.13%.
By carefully controlling and reducing the defect density in the absorber layer, researchers
can further enhance the performance of DSSCs. These findings offer valuable insights into
the optimization of defect-related properties, paving the way for more efficient and high-
performing solar cell devices. Such improvements are vital for advancing the practicality
and widespread adoption of DSSCs as a viable renewable energy technology.

3.3. Effect of Active Layer Mobility and Doping Density on Cell Performance

Charge carrier mobility is a crucial factor in enhancing the efficiency and performance
of DSSCs. It refers to the average ease with which charge carriers, namely electrons and
holes, move from one location to another within the solar cell without being trapped. A
specific relation describes this phenomenon. In the simulation conducted for DSSCs, two
distinct categories of charge carriers were considered: free charge carriers and trapped
charge carriers. Electrons and holes fall into these categories, each playing a vital role in the
functioning of the solar cell. Free charge carriers are mobile and contribute to the generation
of electric current, while trapped charge carriers are immobilized and unable to participate
in the current flow. The ability of charge carriers to move freely without getting trapped
directly influences the efficiency of charge transport within the DSSC. Higher charge carrier
mobility translates to more effective and rapid movement of electrons and holes, leading to
reduced recombination rates and increased overall device performance.

µe(n) =
µo

enfree
nfree + ntrap

(1)

In this study, the researchers explored the influence of charge carrier mobility on the
performance of DSSCs. They systematically varied the charge carrier mobility within a
range from 1 × 10−3 to 10 cm2/Vs to understand its impact on device efficiency. The find-
ings revealed a critical mobility range that led to optimal device performance. Specifically,
the saturation point for performance parameters was observed in the carrier mobility range
of 1 × 10−1 to 1 cm2/Vs. Within this range, the DSSC exhibited the best outcomes in terms
of various performance parameters. Figure 6a–d present the results, demonstrating the
relationship between charge carrier mobility and key performance metrics. As the carrier
mobility decreases, the Jsc also reduces due to a decrease in the dissociation probability.
This, in turn, negatively affects the overall efficiency and fill factor of the solar cell [29,44,45].
On the other hand, an increase in carrier mobility leads to higher short-circuit current den-
sity, potentially resulting in greater efficiency and fill factor. This indicates that efficient
charge carrier transport is crucial for improving the performance of DSSCs. Upon careful
evaluation, the researchers identified that the DSSC achieved the optimum values for Voc,
Jsc, FF, and PCE at a carrier mobility of 10 cm2/Vs. This suggests that at this specific
mobility value, the charge carriers’ movement is most favorable, resulting in improved
device performance.

Another essential factor influencing cell performance is doping. The doping density
must be appropriately set to produce good results. Doping affects the degree of semi-
conductor characteristics in two ways. The presence of doping atoms introduces motion
impedance, impeding the free movement of charge carriers and consequently limiting their
overall mobility within the material [18,46,47]. Dopants are classified into two types: donor
and acceptor. Donor energy levels are usually below the conduction band, requiring very
little energy to move from the donor level to the conduction band. In contrast, acceptor
energy levels behave conversely to donor energy levels.

The photoactive layer doping in this study was changed from 1014 to 1017 cm−3 to
observe how it affects cell output metrics. Figure 6e–h depict the performance metrics
of the photoactive layer at various doping densities. According to Figure 6e–h, it was
found that when doping density increases, the performance parameter swings because
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doping lessens the influence of the built-in electric field of the photoactive layer. There is a
considerable loss in performance characteristics as the PCE value drops from 7.36% to 7.18%
and Jsc drops from 15.46 mA cm−2 to 15.08 mA cm−2, which might be attributed to unequal
charge carrier mobilities. A slight decrease in Voc value may also be seen. Furthermore,
carrier diffusion length and lifespan decrease when doping density increases, affecting the
charge carrier conductivity and promoting the recombination of charge carriers. Ultimately,
this phenomenon results in inadequate carrier transport at interfaces, which lowers the
device’s performance.
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3.4. Influence of Different ETMs on Cell Performance

Electron transport materials (ETMs) play a pivotal role in facilitating the movement of
electrons away from an interface while impeding the flow of holes. As a result, they have
gained widespread adoption in DSSCs and PSCs due to their well-established development
and effectiveness.

The integration of an ETM layer contributes significantly to achieving favorable out-
comes in DSSCs. One essential property of an ETM is its lower electron affinity and lower
unoccupied molecular orbital (LUMO) energy compared to the photoactive layer. This
ensures proper band alignment and facilitates efficient electron extraction from the pho-
toactive layer. Additionally, the ETM should exhibit a higher highest occupied molecular
orbital (HOMO) energy level than the photoactive layer to prevent hole transport, en-
abling selective electron extraction. In addition to band alignment, an effective electron
transport material (ETM) should possess qualities such as affordability, robust relative
stability, and robust n-type conductivity. These attributes contribute to cost-effectiveness,
long-term durability, and the facilitation of efficient electron transport within the solar cell
structure [48–52].

Furthermore, an ideal ETM should possess a high bandgap and high transmittance
in the ultraviolet–visible (UV–vis) range. This allows the absorber layer to pass through
the ETM freely and ensures efficient light absorption by the photoactive layer. By enabling
the unrestricted flow of light while promoting electron transport, the ETM maximizes the
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overall performance and efficiency of the solar cell. So, there must be strong communication
between the ETM and the photoactive layer to improve performance. In this simulation,
we studied the influence of different ETM layers on double PSCs. All the main parameters
for the ETM layers were carefully selected from the published data [21,22,24,25,40,53–55]
listed in Table 3.

Table 3. Material parameters for different ETM layers set in the simulation.

Parameters PFN:Br
[22,24,54]

TiO2
[22,24,25,53,54]

ZnO
[21,22,24,40,55]

SnO2
[21,22,24,40,55]

Thickness (nm) 100 100 100 100
Acceptor Density (cm−3) 0 0 0 0
Donor Density (cm−3) 9 × 1018 9 × 1018 9 × 1018 9 × 1018

Effective Density of states for valence band (cm−3) 1019 1019 1019 1019

Effective Density of states for conduction band (cm−3) 1019 1019 1019 1019

Bandgap (eV) 2.8 3.2 3.4 3.6
Relative Dielectric Permittivity 5 9 10 9
Mobility of Electron (cm2/Vs) 2 × 10−6 20 20 100
Mobility of Hole (cm2/Vs) 1 × 10−4 10 10 25
Electron Affinity (eV) 4 3.9 4.3 4
Defect Density (cm−3) 1015 1015 1015 1015

Figures 7 and 8 show J-V curves and a comparison of performance parameters for
the realized DSSC with PFN:Br, TiO2, ZnO, and SnO2 as the ETM. The DSSC with the
ETM PFN:Br yields a power conversion efficiency of up to 7.65%. Moreover, ZnO and
SnO2 exhibit a higher PCE than PFN:Br. We also considered the performance of devices
without ETM. It was observed that ETM significantly impacts cell output parameters
comparatively to HTM because carrier transport is mainly due to electrons. TiO2 gives
the best performance with a PCE of 8.57%. That is because of its high n-type conductivity,
high transport properties, better band alignment, and better communication with the
photo-harvesting layer.
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3.5. Optimization of Parameters

Table 4 provides an overview of the adjusted device settings and additional informa-
tion on the optimized outcomes, and Figure 9 shows J-V curves for DSSC after optimizing
the parameters. After optimization, the performance of both the ZnPC- and ZnPC:PC70BM-
based DSSCs saw a substantial improvement; consequently, we produced a favorable result
with PCEs of 9.5% and 9.81%, respectively. It was clear from this that the output of the
DSSC may be improved by altering the parameters appropriately.

Table 4. Optimized numerical parameters and results.

Parameters ETL Absorber Layer HTL

Thickness (nm) — 300 —
Material TiO2 — —

Electron Mobility (cm2/Vs) — 1 × 100 —
Hole Mobility (cm2/Vs) — 1 × 100 —
Defect Density (cm−3) — 1 × 1013 1 × 1016

Device Configuration Voc (V) Jsc (mA/cm2) FF (%) PCE (%)
PFN:Br/ZnPC/PEDOT:PSS 0.9151 18.57 55.63 9.50

PFN:Br/ZnPC:PC70BM/PEDOT:PSS 0.9184 22.50 47.48 9.81

It is not surprising that the simulated efficiency of the DSSC after the final optimization
is significantly higher than the experimental efficiency of the device. The dye material’s
inherent instability may be the root cause of this disparity. It has been suggested that
several factors, including moisture, humidity, and the presence of water or solvents in a
DSSC can account for this behavior [56,57]. This seems even more likely, considering that
our lab has an unusually high humidity level (54%). For example, excessive humidity may
cause film pinholes to grow, which would eventually deteriorate the characteristics of the
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photoactive layer and result in low productivity. The experimental study that proved a
non-ideal shape makes this relatively evident. Fabricated PV cells suffer from numerous
power losses, including recombination and absorption loss, due to the device’s significant
degradation and instability. However, optical effects like reflection and recombination
losses were ignored during the simulation when analyzed with SCAPS-1D.
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The findings from our simulations indicate the following: (a) the optimal photoactive
layer thickness should be 300 nm; (b) the photoactive layer defects should be as low as
possible; (c) the mobility of the charge carrier should be moderate, around 1–10 cm2/Vs,
and (d) the amount of doping should be controlled to yield high productivity alongside
TiO2 as an electron transport medium. It is necessary to conduct more studies to examine
the effects of the oxygen level, which might lead to more efficient carrier transportation
and improve the performance of DSSCs. However, the final optimized simulation might
be employed to exemplify the prospective cell outcome and indicate the manufacturing
circumstances that need to be tuned to successfully increase the solar cell properties.

4. Conclusions

Different dyes are being researched to enhance the performance of DSSCs; however, the
actual implementation of these photoactive absorbers in the device structure needs suitable
parameters to obtain high productivity. In this work, several ZnPC-based dyes were used
as viable alternatives to traditional dyes for DSSC in a simulation-based study. In light
of our findings, ZnPC and Isopropoxy ZnPC stand out as outstanding compounds with
remarkable optoelectronic capabilities. This study also examined ZnPC and ZnPC:PC70BM-
based DSSCs; however, the ZnPC:PC70BM-based DSSC yielded the best results, with a PCE
of 9.81%. The effects of the absorber layer thickness on the device and its mobility, carrier
doping, and defect density were also examined. As revealed in this study, it is feasible
to increase the photovoltaic characteristics of a material by decreasing the defect density,
keeping a medium absorber layer thickness and carrier doping, and enhancing the charge
carrier mobility. Furthermore, the influence of several ETMs on the performance of the
DSSC was investigated, and the findings revealed that TiO2 outperformed the other ETMs
due to its appropriate optoelectronic characteristics. The discovery and development of
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superior absorber materials for high efficiency, greater stability, and low-cost manufacture
is the central issue for DSSC technology. This study proposes a framework for efficiently
using various absorbers, particularly ZnPC, in DSSC device designs. The possibility of
optimizing parameters is necessary to understand the physics of this technology.
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