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Abstract: Recently, data-based artificial intelligence technology has been developing dramatically,
and we are considering how to model, predict, and control complex systems. Energy system modeling
and control have been developed in conjunction with building technology. This study investigates
the use of an artificial neural network (ANN) for predicting indoor air temperature in a test room
with windows on an entire side. Multilayer perceptron (MLP) models were constructed and trained
using time series data obtained at one-second intervals. Several subsampling time steps of 1 s, 60 s,
300 s, 600 s, 900 s, 1800 s, and 3600 s were performed by considering the actual operation control
mode in which the time interval is important. The performance indices of the neural networks were
evaluated using various error metrics. Successful results were obtained and analyzed based on them.
It was found that as the multi-step time interval increases, performance degrades. For system control
designs, a shorter prediction horizon is suggested due to the increase in computational time, for
instance, the limited computing capacity in a microcontroller. The MLP structure proved useful for
short-term prediction of indoor air temperature, particularly when control horizons are set below 100.
Furthermore, highly reliable results were obtained at multi-step time intervals of 300 s or less. For
the multivariate model, both calculation time and data dispersion increased, resulting in worsened
performance compared to the univariate model.

Keywords: short-term prediction; unsteady state; indoor temperature control; artificial neural
network; deep learning; building window

1. Introduction

The increase in global energy consumption over the past few decades is a direct result
of economic growth and lifestyle changes. According to the International Energy Agency’s
energy report, operational energy use in buildings represents about 30% of global final
energy consumption. This share increases to 34% when including the final energy use
associated with the production of cement, steel, and aluminum for the construction of
buildings. During the past decade, energy demand in buildings has seen an average annual
growth of just over 1% [1]. Additionally, among various building elements, glass windows
are identified as the main source of energy loss, accounting for more than 30%. This figure is
increasing with increased urbanization and high-rise development [2]. Therefore, innovat-
ing and developing more efficient materials, components, and thermal system equipment
is paramount to mitigating global warming and reducing global energy consumption
with the goal of achieving net-zero carbon emissions. This approach not only promotes
sustainability but also contributes significantly to our common goal of a greener planet.

Heating, ventilation, and air conditioning (HVAC) systems contribute significantly to
the energy consumption of buildings, accounting for approximately half of total energy
use. In the face of escalating competition, it is of paramount importance to augment work
efficiency within a demanding environment. For better thermal comfort and energy-efficient
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operation, accurately the short-term forecasting the indoor temperature fluctuations under
precise control is one of the most critical factors. Along with the development of building
technology, various numerical modeling studies for building energy usage reduction are
being conducted, focusing on advanced control technology and the use of renewable
energy [3–5]. For effective system control, a suitable model that can accurately predict the
building’s response to operational and environmental changes must be developed.

Machine learning and deep learning technologies have been applied to dynamic sys-
tems, prediction and control of energy, and biomedical applications [6–9]. Although energy
modeling in the design phases is important for energy conservation, system identification
and AI control in the operation and maintenance phases are also very important. For energy
consumption estimates, long-term forecasts are used. For dynamic control, very short-term
predictions or forecasts in the control horizon are important. It should be noted that as
living standards improve, both occupant comfort conditions and energy consumption
requirements become more demanding.

Energy consumption is estimated in the planning and design stages. There are many
case studies related to overall energy prediction or estimates [10]. The use of artificial
neural networks in the field of energy management has been significantly increasing. Good
reviews have recently become available [11–15]. An artificial neural network (ANN) has
been utilized to predict the indoor temperature of an existing building, achieving good
results [16]. The long short-term memory (LSTM) model demonstrates that short-term
temperature is best predicted when a convolutional neural network (CNN) is applied to
data from multiple weather stations [17]. Furthermore, LSTM neural networks were exam-
ined for their ability to predict indoor air temperature in a public building over two time
horizons [18]. The performance of model is assessed based on its ability to predict indoor
air temperature, with the aim of identifying the inputs that most significantly contribute to
achieving a satisfactory level of accuracy [19–21]. The literature survey concludes that col-
lecting such a large dataset with acceptable quality levels (clean data, absence of time jumps,
absence of false measurements, etc.) is very important but complicated. Even though the
models are continuously improved, the application of artificial neural networks for indoor
air temperature prediction and energy management in buildings remains a challenge.

Neural networks, which have recently gained popularity, are data-driven methods
that can model the underlying patterns of a system by leveraging only specific inputs and
outputs. The forecasted outputs for short-term prediction of indoor air temperature can
also be used as target variables for control, similarly to those used in model predictive
control. To name a few in relation to this, long short-term memory networks were used to
investigate the effects of multistep time intervals on heat flux predictions using a measured
dataset [22]. An intelligent smart energy management system has been developed and
demonstrated, which is utilized for short-term and precise energy forecasting across a
variety of configurations [23]. Model predictive controls have been investigated for various
engineering applications, with a particular focus on tuning parameters, including sampling
time [24]. For instance, the sampling time ranges from 1 ms to 1 h, and the prediction
horizon is from 1 to 150.

Despite the numerous energy prediction models available, it remains challenging
to determine the speed and quantity of physical measurements required for accurate
predictions in a data-driven control system. Our objective is to find answers to these
questions. A significant portion of energy consumption in many buildings can be attributed
to heat loss through envelopes, with windows being one of the most thermally vulnerable
components. Addressing this issue is crucial for reducing energy losses in buildings. Hence,
providing a more accurate account of heat losses in the building is of great importance. In
this study, we conducted experiments in a room with multiple windows located within an
engineering building, measuring unsteady physical quantities. Utilizing these datasets, we
carried out a detailed examination of a data-driven artificial neural network, specifically
focusing on the effects of measurement time intervals and reliable control horizons. A
variety of error metrics have been calculated to evaluate network performance.
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2. Data Preparation and Methods
2.1. Data Preparation

For obtaining physical data related to energy consumption using data-driven tech-
nology, a room is prepared on an intermediate floor of the Engineering Building at Seoul
National University. The test room has a volume of 143.1 m3, with dimensions of 5.3 m
(width) × 10 m (length) × 2.7 m (height). The room features multi-glazed windows facing
north, with glass that is 50 mm thick and a metal frame that is 150 mm thick. Six tem-
perature sensors, two heat flux sensors, and one illuminance sensor were installed both
inside and outside the room. The data required for the training, validation, and testing
of the artificial neural networks were collected. Figure 1 shows a photograph (a) of the
multi-glazed windows with a north-facing facade and a schematic diagram (b) of the test
room. The ceiling heat pump was turned off during the test period. Our focus is on
predicting the indoor air temperature of the room using an artificial neural network.
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Figure 1. Photograph (a) and schematic (b) of the test room.

2.2. Multilayer Perceptron

A perceptron is an early, primitive neural network capable of learning. The structure of
a perceptron consists of an input layer and an output layer, with the input layer composed
of several neurons (nodes) and bias nodes. The multilayer perceptron (MLP) has many
research variants to date and has been considered one of the most important techniques
for generating predictive models in recent years. The enhanced feature approximation
ability using hidden layers has been successfully used in many applications, including
room temperature prediction problems [21]. In a multilayer perceptron (MLP), the hidden
layer is a layer that sits between the input and output layers. It contains unobservable
network nodes, also known as cell units. Each node is a function of the weighted sum of
the inputs. Weights in the activation function depend on the estimation algorithm. These
hidden layers allow the MLP to learn complex patterns by connecting together lots of
nodes or cells. The prediction equation (denoted as yp) of a single hidden layer multilayer
perceptron (MLP) can be defined as follows [4,16].

yp = δ2
(

H·W0 + b(h)

)
(1)

H = δ1
(
X·Wh + b(i)

)
(2)

where X is the feature matrix, Wh and Wo represent weights from the input layer to the
hidden layer, respectively, and Wo represents the weight from the hidden layer to the output
layer. δ1 and δ2 are the activation functions of the hidden and output layers, respectively.
Finally, b(i) and b(h) are biases for input and hidden layers.
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Modern neural networks, including deep learning, combine perceptrons into parallel
and sequential structures. A network with fewer than 3 layers (2 hidden layers) is called a
shallow MLP, and a network with more than 4 layers (3 hidden layers) is called a deep MLP
(DMLP). The primary objective of machine learning is to discover the optimal function that
accurately maps input data to observed output values. This process involves finding the
optimal parameters that minimize the discrepancy between the model’s output data and
the observed output values. To find parameters by applying an objective function, mean
square error (MSE) is mainly used in shallow multilayer perceptrons, and cross entropy or
log likelihood is often used in deep learning. In the autoregressive method using an MLP
for time series data, a feature matrix is created by considering the time delay of features. An
appropriate time step delay is used for each feature. The inclusion of lagged input vectors
in the model enables it to learn the various dynamics of the system that may occur over
different time periods. Selecting a lag that is too small could limit the comprehensiveness of
the learned dynamics, while unnecessarily increasing the number of lags could potentially
lead to overfitting.

As the typical architectural details of the MLP, this study used 3 hidden layers, used
60 time step delays for each feature, and set the prediction range to 40. The mathematical
model of a biological neuron, along with a simple MLP architecture, is depicted in Figure 2a.
Regarding the structural details of the MLP, it comprises three hidden layers with 15, 15,
and 10 neurons, respectively. The rectified linear unit (ReLU) activation function was
utilized. The maximum number of iterations is set to 100, and a dropout with a probability
of 0.5 is applied to the hidden layer to avoid overfitting. MSE is used as the error metrics for
model training, and an Adam optimizer (adaptive momentum optimizer) is used to update
the weights. In total, 80% of the dataset was used for training, with 10% for validation, and
10% for testing. The software package used is Matlab R2022b from Mathworks. Figure 2b
shows the MLP architecture used.

There are various ways to compare and evaluate the performance of deep learning
architectures, but in this study, error indicators of R2, RMSE, and MAE, and other abbrevia-
tions were used and defined as follows [6].

R2 = 1 −

∑n
i=1

(
y f orecasting,i − yobserved,i

)2

∑n
i=1

(
y f orecasting,i − yobserved,i

)2

 (3)

RMSE =

√
∑m

i=1(yi − ŷi)
2

m
(4)

MAE =
1
m

m

∑
i=1

(yi − ŷi)
2 (5)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣y f orecasting,i − yobserved,i

yobserved,i

∣∣∣∣∣× 100 (6)

MSE =
1
n

n

∑
i=1

(
y f orecasting,i − yobserved,i

)2

(7)

CVRMSE =
1

yobserved

√√√√ 1
n

n

∑
i=1

(
y f orecasting,i − yobserved,i

)2

× 100 (8)

MBE =
1
n

n

∑
i=1

(
y f orecasting,i − yobserved,i

)
(9)
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NMBE =

1
n

n
∑

i=1

(
y f orecasting,i − yobserved,i

)
yobserved

× 100 (10)

MRE =

∣∣∣∣∣y f orecasting,i − yobserved,i

yobserved,i

∣∣∣∣∣ (11)

where y f orecasting and yobserved are the model predicted and actual outputs, respectively, y is
the average of the outputs, and n is the number of samples.
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3. Results and Discussion
3.1. Data Analysis

Data on artificial neural networks were measured in a test room around mid-July of
this year. The measured data were integrated to construct a 432,000 × 8 feature matrix.
Detailed information on the measured variables and their statistics is summarized in Table 1.
The indoor air temperature of the dataset was used as the output variable of the model for
prediction. A visualization of these variables is shown in Figure 3.
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Table 1. Statistical summary of the dataset.

Minimum Maximum Mean Standard Dev.

T1 (Indoor temp.) 20.75 27.06 24.09 1.61

T2 (Outdoor temp.) 22.94 37 29.02 3.58

Heat_Flux (Heat flux) −5.12 −0.04 −1.64 1.04

T3_1 (FCU outlet temp.) 14.75 26.25 20.96 4.31

T3_2 (Pane inside temp.) 23.75 27.75 25.84 0.85

T3_3 (Pane outside temp.) 23 36 28.22 3.67

T3_4 (Indoor temp. 2) 20.5 26.25 23.81 1.59

Ev_Flex72 (Illuminance) 0.13 316.8 57.81 62.37
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Figure 4 shows the results obtained using wavelet transform to extract and visualize
the features from measurements. It is obtained using the analytic Morse wavelet with the
symmetry parameter, gamma (γ), equal to 3 and the time-bandwidth product equal to
60 [10,25]. Figure 4a,b show the results of applying wavelet transform on the measured
room temperature and heat flux to extract features, respectively. Comparing these two
scalograms, it can be observed that the room temperature has a peak at a very low fre-
quency. However, its change over time is quite gentle, and it almost lacks high-frequency
components. On the other hand, the heat flux shows significant fluctuations due to the
large number of peaks varying not only with time but also with frequency during the
weekdays. From these characteristics, useful information can be obtained for the design,
operation, and maintenance of control systems for heat load, and their behavior can be
easily understood. Using the wavelet transform, it is possible to find characteristics such as
indoor temperature, outdoor temperature, window temperature, FCU exit temperature,
and window heat flux, so it can be useful for selecting appropriate control variables.
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3.2. Artificial Neural Network

The neural network structure used in this study is a multilayer perceptron model and
was used to predict indoor temperature. This MLP artificial neural network is trained to
predict variables at the next time step using 60 time steps of past data. All performance
metrics were evaluated using a test dataset that was not used during training. When
multiple time-step predictions are required, the forecasting model iterates the one-step-
ahead prediction until the prediction horizon. In general, this process is a closed-loop
prediction mechanism that uses current outputs as inputs for predictions at future time
steps. A prediction horizon of 40 was used in this study.

Control monitoring time is critical in real plant operation applications. In order to
understand the effect of the sampling rate and the number of data, all data were measured
at 1 s intervals, and subsampling was used to focus on the effect of the step interval and
the number of data. For physical quantity measurement through sensors, 432,000 samples
(5 days) were collected for each sensor on weekdays, and multi-level time intervals for
subsampling data processing were 1 s, 60 s, 180 s, 300 s, 600 s, 900 s, 1800 s, and 3600 s.

Details of the measured variables and statistics are summarized in Table 1. For the
dataset, indoor temperature was used as the target and output variable of the model. The
remaining measurements were integrated to construct a 432,000 × 8 feature matrix. A
visualization of these remaining variables is shown in Figure 3.

Various error metrics such as R2, RMSE, MAE, and others were calculated for each
predicted room temperature. In order to understand the effect of the monitoring and
control time interval, modeling was performed according to the sampling rate, and error
metrics were compared and shown in Table 2.

Table 2. Calculated error metric for various multi-step time intervals in test data (Tindoor, MLP).

tmsi [s] R2 RMSE MAE MAPE MSE NRMSE CVRMSE SSE MBE NMBE

1 0.999907 0.015853 0.006926 0.028927 0.000251 0.000660 0.323356 21.709646 −0.000289 −0.001201

60 0.997692 0.079449 0.049032 0.215387 0.006312 0.003306 1.620667 9.013649 0.002019 0.008402

180 0.991236 0.155063 0.094141 0.409750 0.024044 0.006448 3.160925 11.252788 −0.017319 −0.071967

300 0.973576 0.261109 0.178304 0.768951 0.068178 0.010847 5.312462 18.817129 −0.085975 −0.355893

600 0.953170 0.353070 0.240478 1.021933 0.124658 0.014607 7.186175 16.454886 0.032537 0.134789

900 0.921878 0.463206 0.330218 1.414434 0.214560 0.019075 9.436804 18.023009 0.190081 0.788933

1800 0.479917 1.142341 0.987249 4.263700 1.304944 0.046210 23.447295 46.977975 0.984554 4.147949

3600 −1.312062 0.777090 0.384812 1.575031 0.603868 0.030344 15.458737 7.246419 0.340019 1.345580
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Figures 5–8 shows the results of training, validation, testing, and prediction for the
data subsampled at 180 s time intervals from the data measured by the experimental devices
in this study.
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Figure 5 shows the MSE error performance in the process of reaching the maximum
epoch 100 in the model using ANN. At the beginning of training, the error rapidly de-
creased, and when the epoch was 6 or more, the mean square error of the training data was
almost constant, and the mean square error of the test dataset was also almost constant,
showing a typically excellent predictive tendency [16]. Figure 6 shows the variation in state
parameters (gradient, mean, validation failure) according to epochs during the training
using ANN model, and the last graph shows that there are six checks that failed validation
among 720 validation data. Figure 7 shows the error histogram of the ANN model, and it
can be seen that the prediction was successful because there are many data with standard
errors close to 0. The ANN model shows very good linearity overall. Figure 8 represents
linear regressions of training, validation, test, and all dataset using artificial neural network
for tmsi = 180 s and maximum epoch = 100. They all have good linearity.

Figure 9 shows various error metrics such as R2, RMSE, and MAE in the model using
ANN for subsampling time steps of 1 s, 60 s, 180 s, 300 s, 600 s, 900 s, 1800 s, and 3600 s.
Considering the actual operation control mode in which the time interval is important,
a comparative analysis was performed accordingly. In addition to the commonly used
MSE, MAE, and coefficient of determination (R2), various error indicators in the literature
were calculated and trends were compared for reference [10]. Here, looking at the RMSE
results, it can be seen that it is desirable to keep the control time interval to 300 s or less
because the RMSE value maintains 0.3 or less when the measurement interval of indoor
temperature is 300 s or less. When the measurement time interval is longer than 900 s, the
RMSE increases rapidly and then decreases at 3600 s. Other performance indicators except
SSE, MBE, and NMBE show similar and fairly good trends in this study (See Table 2). A
multistep time interval tmsi higher than 900 s is not recommended because the R2 value
drops to less than 0.5. Note that it goes to negative unexpectedly at a tmsi of 3600 s. In
addition, the computing time is too long at the measurement interval of 1 s, so it is not
suitable to use them for control purposes.
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Figure 9. Performance index comparison for ANN architecture (test dataset, indoor temperature).

Figure 10 shows the targets and predictions of training and test datasets for each
sampling time interval when using the ANN model. In the time interval of 900 s or less,
they clearly agree well. And in the time intervals of 1800 s and 3600 s, they show quite
plausible behavior except for near the end drop of test outputs. The ANN model had a
short computational time compared to other models.

Figure 11 shows the forecasted future indoor temperature in red when the prediction
horizon is 40 in the model using ANN. Although the forecasts are subject to change, they
provide useful information from a system control point of view. That is, only some of the
40 data points in the prediction horizon can be used as control horizons. We see that indoor
temperature has repetitive dynamics with changes in outdoor temperature on weekdays
and that previous history has a great influence on future forecasts.

As the multi-step time interval increases, the deviation between the forecast and the
measurement accumulates in the next step, similarly to extrapolation [26]. This leads to
inevitable performance degradation as the prediction horizon increases. It is advisable to
use the results for short-term prediction of the indoor temperature as a guide to decide
the appropriate control horizons in the control system. When selecting control horizons
for actual operation control from the forecasts or future predictions, it is necessary to
comprehensively consider the results of Figures 9 and 10, and the behavior of Figure 11.
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Figure 12 shows the future predictions or forecasts for typical cases where the delays
or lags are 30 and 360, respectively, when the tmsi is 60 s. Two typical behaviors of the
forecasted indoor temperature are depicted in Figure 12. The red lines in Figure 12a,b
are represented by short-term predictions for delays of 30 and 360, respectively. Plausi-
ble behavior is exhibited by Figure 12a, while violent oscillations are demonstrated in
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Figure 12b. From this, it can be seen that the delays significantly impact the results. To
examine the effect of these delays on the future predictions more precisely, we obtained the
future predictions when the delays changed to 30, 60, 120, and 180 for the case where the
multi-step interval tmsi is 60 s and the prediction horizon is 360. The results are compared
and presented in Figure 13. To enhance the visibility of the figure, only 10% of the obtained
results are marked with symbols. According to the results, when the delays exceed 180, the
predicted indoor temperature exhibits large oscillations and becomes unstable. Further-
more, when the delays are below 120 and the prediction horizon number is less than 100,
the forecasted indoor temperatures are nearly similar. Namely, if the control horizons are
set below 100 for the neural network with an MLP configuration, we can obtain reliable
and stable short-term predictions. In short, if the delays are small, the resulting Hankel
matrix from time series data is tall and skinny, exhibiting stable characteristics (Figure 12a).
However, as the delays increase, the Hankel matrix becomes shallow and wide [9]. This in-
creases calculation time and accumulates errors as the prediction horizon increases, causing
instability and large oscillations in temperature calculations (Figure 12b). In other words,
when the delays are within a suitable range of input neurons, they exhibit good behavior.
For example, prediction and control horizons ranging from 1 to 100 are adopted as tuning
parameters when practically implementing model predictive control [24].
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To examine the effect of the multi-step time interval, we predicted the indoor tem-
perature for a duration of 21,600 s, specifically from 432,000 s to 453,600 s (i.e., 360 min),
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after conducting training, validation, and testing with the delays of 360. The dataset size
was adjusted according to the prediction horizons corresponding to the multi-step time
interval to make the prediction end time tend = 453,600 s. As can be seen from Figure 14a,
the reliability of the short-term predictions or forecasts decreases when the multi-step
time interval tmsi = 180 s or more, as large oscillations occur. To examine this in more
detail, we enlarged the initial part of the future predictions, shown in Figure 14b, where the
symbol marks represent each short-term prediction at each multi-step time interval. From
the perspective of short-term control, high reliability was obtained until t = 4.335 × 105 s
and at multi-step time intervals tmsi = 300 s or less, as the future predictions are almost
identical. Therefore, this gives useful information for the design and configuration of the
control system by providing the maximum range of the control horizons according to the
multi-step interval.
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From the calculated error metrics and the above discussion, it is evident that short-
term forecasts using artificial neural networks are highly reliable when tmsi is lower than
300 s, and delays are less than 100. Outside of this range, caution should be exercised for
system stability. These results provide useful information to verify the appropriate design
and operation in data-driven dynamic control systems or the integration of these with
model predictive control. Care must be taken when specifying the indoor air temperature,
which may vary for both thermal comfort and energy efficiency, as a control target.

3.3. Multivariate MLP Neural Network Analysis

Analyses of a multi-input single-output system (MISO system) were performed con-
sidering inputs such as indoor temperature, outdoor temperature, heat flow rate, indoor
and outdoor temperatures near the corner of the laboratory, exit air temperature of the fan
coil unit (FCU), and indirect illuminance due to solar radiation. The physical quantities
presented earlier (refer to Figure 3) were used as input data. Figure 15 shows the time
history of measurements and predictions for test data using a multivariate multilayer
perceptron neural network model when the multi-step time interval is 60 s. Figure 16
represents the linear regression curve for the multivariate multilayer perceptron model.
As before, 80% of the measurement dataset was used for training, 10% for validation, and
10% for testing. An MLP architecture was adopted with a dropout layer (dropout rate
of 0.5) to avoid overfitting [27]. In the multivariate model, the calculation time increased
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considerably compared to a univariate model, and the data dispersion became more severe.
Also, as shown in Table 3, the performance index of the multivariate model decreased and
worsened compared to the univariate model.
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Table 3. Comparison of performance evaluation of the MLP model for test data (tmsi = 60 s).

R2 RMSE MAE MAPE MSE CVRMSE SSE MBE NMBE MRE

MLP (univariate) 0.998 0.079 0.049 0.215 0.006 1.620 9.013 0.002 0.008 8.4 × 10−5

MLP (multivariate) 0.974 0.264 0.224 0.933 0.069 5.359 102.03 −0.197 −0.817 0.008

Our future research plans include studies on data-driven dynamic system control, as
well as the configuration of data-driven nonlinear dynamic systems in integration with a
model predictive controller. At present, we are developing an embedded thermodynamic
control system using microcontrollers and signal processing controllers, preparing Matlab
and Python programming, and proposing government-funded projects.

4. Conclusions

In this study, the ANN configuration was used to predict the indoor air temperature of
a test room with windows on an entire side. Time series data were obtained using sensors
and devices in the test room at intervals of 1 s.

Indoor temperature and heat flux features were visualized using wavelet transforma-
tion. To investigate the short-term prediction for indoor temperature, we constructed the
multilayer perceptron network configurations. They were trained, validated, and tested
with the measured datasets. Various error metrics were used and compared to evaluate
the performance of the neural network structures. It was shown that the predictions were
very successful because the error histogram has data with standard errors close to 0, and
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the test results have good linearity. The MLP structure has been shown to be useful for
the short-term prediction of indoor air temperature. From the comparative analysis per-
formed, the multistep time interval (tmsi) higher than 900 s is not recommended because
the R2 value drops to less than 0.5. Short-term forecasts provide useful information from
a system control point of view. As the multi-step time interval increases, performance
degrades. It is useful to use the results for short-term prediction as a guide to decide
the appropriate control horizons in the control system. Among other tuning parameters,
delays significantly impact the results. If the control horizons are set below 100 for the
MLP configuration investigated in this study, we can obtain reliable and stable short-term
predictions. This is because the resulting Hankel matrix from time series data is tall and
skinny, exhibiting stable characteristics. Additionally, highly reliable results were obtained
at multi-step time intervals (tmsi) of 300 s or less. This also provides useful information
for the control horizons in the design of the control system. An increase in the multi-step
time interval leads to inevitable performance degradation. Even if the performance of the
correlation coefficient progressively worsens as tmsi increases, when tmsi is 180 s or less,
the R2 value remains impressively high, exceeding 0.99. A shorter prediction horizon and
multiscale time step interval less than 180 s can be used in the control system, which will
seem to be reasonable for stability and computational costs. For the multivariate model, the
calculation time increased and the data dispersion became more severe. The performance
also worsened compared to the univariate model.
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