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Abstract: Hydrogen production modules (HPMs) play a crucial role in harnessing abundant photo-
voltaic power by producing and supplying hydrogen to factories, resulting in significant operational
cost reductions and efficient utilization of the photovoltaic panel output. However, the output of
photovoltaic power is stochastic, which will affect the revenue of investing in an HPM. This paper
presents a comprehensive analysis of HPMs, starting with the modeling of their operational process
and investigating their influence on distribution system operations. Building upon these discus-
sions, a deterministic optimization model is established to address the corresponding challenges.
Furthermore, a two-stage stochastic planning model is proposed to determine optimal locations
and sizes of HPMs in distribution systems, accounting for uncertainties. The objective of the two-
stage stochastic planning model is to minimize the distribution system’s operational costs plus the
investment costs of the HPM subject to power flow constraints. To tackle the stochastic nature of
photovoltaic power, a data-driven algorithm is introduced to cluster historical data into representative
scenarios, effectively reducing the planning model’s scale. To ensure an efficient solution, a Benders’
decomposition-based algorithm is proposed, which is an iterative method with a fast convergence
speed. The proposed model and algorithms are validated using a widely utilized IEEE 33-bus system
through numerical experiments, demonstrating the optimality of the HPM plan generated by the
algorithm. The proposed model and algorithms offer an effective approach for decision-makers
in managing uncertainties and optimizing HPM deployment, paving the way for sustainable and
efficient energy solutions in distribution systems. Sensitivity analysis verifies the optimality of the
HPM’s siting and sizing obtained by the proposed algorithm, which also reveals immense economic
and environmental benefits.

Keywords: hydrogen production; two-stage stochastic programming; optimal planning; data-driven
algorithm; Benders’ decomposition

1. Introduction

Power-to-hydrogen (P2H) is increasingly recognized as an effective solution to ad-
dress the challenges of renewable energy consumption in both theoretical research and
engineering demonstrations [1,2]. By converting electrical energy into chemical energy
stored in hydrogen through hydrogen production modules (HPMs), P2H enables a signifi-
cant increase in the utilization rate of renewable energy in power systems. Moreover, the
produced hydrogen finds diverse applications in transportation [3,4], heating [5], chemical
industry [6], and other fields. However, the impact of HPMs on distribution systems
containing a high proportion of renewables, especially their impacts on sizing and siting
problems, is still limited.

The integration of HPMs into power systems offers notable advantages in two key
aspects. Firstly, HPMs present distinct application benefits compared to energy-based stor-
age technologies like battery energy storage. Functioning as power-oriented components
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capable of accommodating ultra-large capacities [7–9], HPMs enhance the operational
efficiency of distribution systems. Furthermore, the versatile usability of the produced
hydrogen across various industries expands its potential applications [6,10]. Secondly,
HPMs can serve as controllable loads within the power grid, capitalizing on their energy
conversion volume and rapid response capabilities [11,12]. Active participation of HPMs in
peak regulation [13] and frequency regulation [14,15] services contributes to the improved
flexibility of power system operations. In summary, HPMs play a crucial role in power
systems, enhancing operational efficiency, enabling diverse industrial applications for
hydrogen, and serving as controllable loads that enhance the grid’s flexibility.

The optimization of site selection and capacity determination for HPM modules has
gained our attention, considering the substantial benefits of their integration into power dis-
tribution systems. The siting and sizing of HPMs pose significant challenges within power
distribution systems. The siting problem necessitates comprehensive consideration of
multiple factors, including power network topology, transmission line capacities, and land
constraints [16–18]. Likewise, sizing HPMs requires accurate estimation of future demands,
considering factors such as load variations, renewable energy integration [19–21], and the
increasing trend of hydrogen demands. Additionally, uncertainties, such as the volatility of
renewable energy and market demand, further complicate sizing decisions [22,23].

Although numerous studies have been conducted on the integration and operation of
HPMs in power distribution systems, limited attention has been given to the site selection
and capacity determination of HPMs. Some studies have explored the cooperation between
renewables and HPMs [24–26], while others have proposed optimal energy management
strategies, utilizing HPMs to support renewable energy consumption [27,28]. Some studies
also considered the integration of electrolyzers and fuel cells and introduced them into the
system operations [29–32].

When dealing with the uncertainty, there are mainly three methodologies, stochastic
optimization [33–35], robust optimization [36–38], and distributionally robust optimiza-
tion [39–41]. Robust optimization methods build uncertainty sets to guarantee the feasibility
of the worst-case scenario, whose solution is regarded as too conservative. Distributionally
robust optimization methods develop ambiguity sets to make sure that the scenario with
the worst-case distribution can be maintained. Both types of methods are too conservative
and may lose much information from historical data when formulating uncertainty or am-
biguity sets. Meanwhile, both of them may face the curse of dimensionality since auxiliary
binary variables are commonly introduced into the mathematical model. On the contrary,
stochastic models can directly utilize historical data, and their mathematical structures are
quite simplified. Therefore, in this paper, a stochastic optimization model is selected.

Another problem is how to effectively solve the stochastic siting and sizing problem
of HPM. There will be large-scale historical data, which extremely increases the scale
of the optimization problem. Bender’s decomposition has been widely applied in the
existing literature [42–44]. It can decompose the optimization problem into subproblems,
which have much smaller scales and can be solved in parallel. Compared to robust-based
methods [36–41], Bender’s decomposition can achieve faster computation speed. In this
paper, a data-driven K-means algorithm is utilized to reduce the scale of scenarios, which
further accelerates the solving speed.

Recognizing the research gap regarding site selection and capacity determination, our
study aims to address these issues. The contributions of our research are twofold:

• An optimal location and capacity model for hydrogen production modules (HPMs) is
formulated using a two-stage stochastic programming approach. The model explicitly
considers uncertainties related to renewable energy availability and load fluctuations,
while also incorporating operation and investment costs during the planning phase.

• To efficiently solve the siting and sizing problem, a Bender’s decomposition-based
algorithm is devised. Additionally, a data-driven stochastic programming scene reduc-
tion method is developed to address the challenge of low efficiency associated with
the presence of integer variables in the two-stage stochastic programming problem.
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These proposed methods enhance the effectiveness and computational efficiency of
the optimization process.

In the following, Section 2 establishes a detailed two-stage stochastic planning model
for the hydrogen production module in distribution systems with large-scale renewable
power. Section 3 proposes an algorithm based on the Benders’ decomposition to solve the
proposed two-stage stochastic planning model, while Section 4 proposes a data-driven
clustering method to generate typical scenarios from massive historical data. Section 5
discusses the numerical experiments. Section 6 concludes the work.

2. Sizing and Siting of Hydrogen Production Modules

In this paper, we assume that there is one HPM to be invested in. We will decide the
capacity and the location of the HPM to minimize the operational cost of the distribution
system plus the investment cost of the HPM. In this section, we develop the two-stage
stochastic planning optimization model of the HPM. In stage 1, we decide the capacity and
the location of the HPM. In stage 2, after the HPM has been built, the daily operations of
the distribution system are simulated at a set of typical scenarios. The objective is to choose
the optimal capacity and location of the HPM to minimize the sum of the investment cost
of the HPM and the operational cost of the distribution system. The two-stage stochastic
planning problem of the HPM will be formulated in this section, while the generation of
typical scenarios will be developed in the next section.

Denote by S = {1, 2, . . . , S}, the set of typical scenarios, indexed by s. Each scenario s
differs from the maximal power profile of photovoltaic (PV) panels and the load profile.
Denote by T = {1, 2, . . . , T}, the set of time intervals in a day, indexed by t. In the targeted
distribution system, there are 1+ N buses indexed byN = {0, 1, 2, . . . , N}. Let E ⊆ N ×N
denote the set of distribution lines.

2.1. Hydrogen Production Module Model

The long time-scale investment in the HPM simultaneously considers its capacity and
location. The capacity of HPM means its rated power PHPM. The operational constraints of
the HPM include the power limitation

ηminPHPM ≤ PHPM
s,t ≤ PHPM, s ∈ S , t ∈ T (1)

and the ramping limitation

−ηrampPHPM ≤ PHPM
s,t − PHPM

s,t−1 ≤ ηrampPHPM, s ∈ S , t = 2, 3, . . . , T (2)

where PHPM
s,t is the power consumption of the HPM in scenario s at time interval t,

ηminPHPM is the minimal power consumption of the HPM, and ηrampPHPM is the maximal
ramping power.

It is revealed that the rated power PHPM determines the flexibility of HPM. The annual
investment cost of HPM discounted each year is given by

CINV = ηADFπHPMPHPM. (3)

where πHPM is the unit investment price of the HPM, and ηADF is the annuity depreciation
factor defined as

ηADF =
ηDR(1 + ηDR)YEP

(1 + ηDR)
YEP
− 1

(4)

In (4), the factor ηDR is the discount rate and YEP is the expected life span of HPM in years.
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The location of the HPM in the distribution system is another significant decision. Use
the binary variable ui to describe the siting process

PHPM
i,s,t = uiPHPM

s,t , i ∈ N , s ∈ S , t ∈ T (5)

where ui is a binary variable and PHPM
i,s,t is an auxiliary variable. The binary variable ui = 1

if the HPM is sited at bus i, and ui = 0 if not. Since there is only one HPM, the binary
variable ui should be restricted to

∑
i∈N

ui = 1, (6)

ui ∈ {0, 1}, i ∈ N (7)

Note that the constraint (5) is intractable since there is a bilinear term uiPHPM
s,t . By the

big-M method, the constraint can be replaced with

i ∈ N , s ∈ S , t ∈ T :

−Mui ≤ PHPM
i,s,t ≤ Mui (8a)

M(ui − 1) ≤ PHPM
i,s,t − PHPM

s,t ≤ M(1− ui) (8b)

where M > 0 is a sufficiently large constant.
When the HPM is equipped, it can produce hydrogen using electricity. The hydrogen

production rate is given by

ns,t = ηHPRPHPM
s,t (9)

where ηHPR is the hydrogen production rate by unit power. The produced hydrogen can
be sold to chemical plants. The revenue for each typical scenario s is defined as

RHT
s = πHTP ∑

t∈T
ns,t (10)

where πHTP is the hydrogen trading price.

2.2. Distributed Generator Model

There are two types of distributed generator modules integrated into the distribution
system: fuel generator and PV panel. In this work, we take the PV as an example to describe
the uncertainties induced by renewables. Of course, our model is scalable and can also be
applied to other renewable energy sources.

Fuel generators are fully controllable. The set of buses with a fuel generator is denoted
by G ⊆ N . For the fuel generator at bus i ∈ G, its operational constraints include the
minimal/maximal generation output limitation

PG
i ≤ PG

i,s,t ≤ PG
i , i ∈ G, s ∈ S , t ∈ T (11)

and the ramping limitation

−RG
i ≤ PG

i,s,t − PG
i,s,t−1 ≤ RG

i , i ∈ G, s ∈ S , t = 2, 3, . . . , T (12)

where PG
i,s,t is the power output of the fuel generator at bus i in scenario s at time interval t,

PG
i and PG

i are the minimal and maximal power output of the fuel generator at bus i, and
RG

i is the maximal ramping power of the fuel generator at bus i.
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The generation cost of a fuel generator is a quadratic function as

CG
i,s = ∑

t∈T
ai(PG

i,s,t)
2 + biPG

i,s,t + ci, i ∈ G, s ∈ S (13)

where ai > 0, bi, and ci are constant.
PV panels can only be cut down from their maximal power output. The set of buses

with a PV panel is denoted by V ⊆ N . In scenario s, the maximal power output of the PV
panel i ∈ V at time interval t is PPV

i,s,t. The operational constraint of the PV panels is

0 ≤ PPV
i,s,t ≤ PPV

i,s,t, i ∈ V , s ∈ S , t ∈ T (14)

where PPV
i,s,t is the real power output of the PV panel at bus i in scenario s at time interval t.

The cost of a PV panel is the penalty for the curtailment of PV power

CPV
i,s = di(PPV

i,s,t − PPV
i,s,t), i ∈ V , s ∈ S (15)

where di is a positive constant.

2.3. Power Flow Model

From [45], the distribution flow (DistFlow) model is given for each line (i, j) ∈ E ,
s ∈ S , t ∈ T as

Pij,s,t = PD
j,s,t − Pj,s,t + rij Iij,t + ∑

(j,k)∈E
Pjk,s,t (16a)

Qij,s,t = QD
j,s,t + xij Iij,s,t + ∑

(j,k)∈E
Qjk,s,t (16b)

Ui,s,t −Uj,s,t = 2(rijPij,s,t + xijQij,s,t)− (r2
ij + x2

ij)Iij,s,t (16c)

Iij,s,tUi,s,t = P2
ij,s,t + Q2

ij,s,t (16d)

where Pij,s,t, Qij,s,t, and Iij,t are the active power, the reactive power, and the squared
magnitude of the current from bus i to bus j in scenario s at time interval t; rij and xij

are the resistance and reactance of distribution line (i, j); PD
j,s,t, QD

j,s,t, Pj,s,t, and Uj,s,t are the
uncontrollable active load, the uncontrollable reactive load, the controllable active power
injected, and the squared magnitude of the voltage at bus j in scenario s at time interval t.

Note that the constraint (16d) is non-convex. By [46], the net loss is much smaller than
the line power and, hence, can be ignored. This simplification derives the linear distribution
flow (LinDistFlow) model

Pij,s,t = PD
j,s,t − Pj,s,t + ∑

(j,k)∈E
Pjk,s,t (17a)

Qij,s,t = QD
j,s,t + ∑

(j,k)∈E
Qjk,s,t (17b)

Ui,s,t −Uj,s,t = 2rijPij,s,t + 2xijQij,s,t (17c)

In the LinDistFlow model (17), the controllable active power injected Pj,s,t is defined
for each bus j ∈ N as

Pj,s,t = 1(j∈G)P
G
j,s,t + 1(j∈V)P

PV
j,s,t − PHPM

i,s,t (18)

where 1(·) is the indicator function. 1(j∈G) is one if j ∈ G and zero if j /∈ G. The definition of
1(j∈V) is similar.
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Bus 0 is connected to the transmission system, whose voltage is regarded as a fixed
value. It means

U0,s,t = UREF, s ∈ S , t ∈ T (19)

where UREF = 1p.u. is the voltage reference.
The voltages of other buses, except bus 0, should be maintained in a certain range,

which is

U ≤ Ui,s,t ≤ U, i = 1, 2, . . . , N, s ∈ S , t ∈ T (20)

where U and U are the minimal and maximal bus voltages.
The distribution system purchases electricity from the transmission system through

bus 0. The electricity purchasing cost is formulated as

CEP
s = πEP ∑

t∈T
∑

(0,j)∈E
P0j,s,t (21)

where πEP > 0 is the unit electricity purchasing price. If the electricity purchasing
cost is negative, it means that the distribution system sells surplus electricity to the
transmission system.

2.4. Overall

Given the probability distribution of a typical scenario ps, the total annual operational
cost of the distribution system is

COPER = 365 ∑
s∈S

ps

(
CEP

s − RHT
s + ∑

i∈G
CG

i,s + ∑
i∈V

CPV
i,s

)
(22)

where ps is the probability distribution of scenario s.
Then, the two-stage stochastic HPM planning problem is formulated as

min CINV + COPER

s.t. (1), (2), (6)–(9), (11), (12), (14), (17)–(20)
(23)

When the number of typical scenarios increases, the above problem can be computationally
expensive. In the following section, the benders’ decomposition is utilized to efficiently
solve the problem.

3. Benders’ Decomposition-Based Solution Algorithm

In this section, we will propose a benders’ decomposition algorithm to deal with the
two-stage stochastic HPM planning model (23). The proposed Benders’ decomposition-
based solution algorithm is an iterative method. The problem (23) is divided into two
types of problems, which are called the master problem and the subproblems, for typical
scenarios. The master problem makes the decision of the HPM’s capacity and location, while
the subproblems simulate the operation of a distribution system in typical scenarios. The
proposed algorithm successively solves the master problem and subproblems. Optimal cuts
are built by solving subproblems and then added to the constraint of the master problem.

In the original problem (23), the decision variables without the subscript s belong
to stage 1, while those with the subscript s belong to stage 2. Specifically, define the
stage-1 decision vector as x :=

{
PHPM, ui

}
and the stage-2 decision vector in scenario s as

ys :=
{

PHPM
s,t , PHPM

i,s,t , ns,t, PG
i,s,t, PPV

i,s,t, Pij,s,t, Qij,s,t, Ui,s,t, Pi,s,t

}
.



Energies 2023, 16, 7636 7 of 15

Then, we have the compact form of the problem (23) as

min
x,{ys}

bTx + ∑
s∈S

cT
s ys (24a)

s.t. x ∈ X (24b)

Asx + Bsys ≤ ds, ∀s ∈ S (24c)

where X represents the feasible region of stage-1 decision vector x, As and Bs are constant
matrices, and b, cs, and ds are constant vectors.

Then, we formulate the subproblem and master problem during each iteration k of the
benders’ decomposition algorithm, respectively.

3.1. Formulation of Subproblem

Suppose that the capacity and location decision vector x∗k in stage 1 in iteration k is
given by solving the master problem. The subproblem in scenario s for the stage-2 operation
is formulated as

min
ys

cT
s ys (25a)

s.t. Asx∗k + Bsys ≤ ds : λs (25b)

where λs ≥ 0 is the Lagrangian multiplier corresponding to the constraint (25b).
Instead of directly solving the primal problem (25), we focus on its dual problem

max
λs

(Asx∗k − ds)
Tλs (26a)

s.t. λs ≥ 0 (26b)

BT
s λs + cs = 0 (26c)

After the subproblems in all scenarios are solved, we can formulate an upper bound
(UB) for the optimal value of the original problem (24) as

bTx∗k + ∑
s∈S

(Asx∗k − ds)
Tλ∗s,k. (27)

By solving the dual problem (26), we obtain the optimal solution denoted by λ∗s,k.
Using the optimal Lagrangian multiplier λ∗s,k, we can formulate an optimal cut for the
master problem as

(Asx− ds)
Tλ∗s,k ≤ θs (28)

where θs is an auxiliary variable.

3.2. Formulation of Master Problem

Suppose that the optimal cuts in all typical scenarios until iteration k are given by
solving the subproblems. The master problem for stage-1 planning is formulated as

min
x,{θs}

bTx + ∑
s∈S

θs (29a)

s.t. x ∈ X (29b)

(Asx− ds)
Tλ∗s,κ ≤ θs, ∀s ∈ S , κ = 1, 2, . . . , k (29c)

By solving the master problem (29), we can obtain a new planning strategy xk+1. Note
that the optimal value of problem (29) gives a lower bound (LB) for the optimal value of
the original problem (24).
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Compared to the original problem (24), the master problem only considers several
optimal cuts instead of complicated constraints (24c). Thus, the computational complexity
is significantly reduced.

3.3. Overall Algorithm

Based on the above formulations, we obtain the algorithm based on Benders’ decom-
position, called Algorithm 1, to solve the two-stage stochastic HPM planning problem.

Algorithm 1 Benders’ decomposition for HPM planning
Input: Iterative index k = 1, error tolerance ε > 0, upper bound UB = −∞, and lower

bound LB = +∞.
Output: Optimal HPM planning strategy x∗.
S1 (Master problem): Solve the master problem (29). Denote by x∗k and F∗k the optimal

solution and optimal value of the master problem. Then update the HPM planning
strategy as x∗k and the lower bound as LB← max

{
LB, F∗k

}
.

S2 (Subproblem): For each scenario s ∈ S , solve its subproblem (26). Denote by λ∗s,k
the optimal Lagrangian multiplier of the subproblem for scenario s. Formulate an
optimal cut

(Asx− ds)
Tλ∗s,k ≤ θs

and add it to the constraints of the master problem. After the subproblems of all scenarios
are solved, update the upper bound as

UB← min

{
UB, bTx∗k + ∑

s∈S
(Asx∗k − ds)

Tλ∗s,k

}
.

S3 (Judgment): If (UB− LB)/|UB| ≤ ε, terminate the iteration. The latest HPM planning
strategy is output as the optimal one, i.e., x∗ ← x∗k . Otherwise, set k ← k + 1 and go
to S1.

The convergence of the benders’ decomposition algorithm has been proved in [42]. The
master problem belongs to mixed-integer linear programming (MILP), while the subprob-
lems are linear programming (LP) problems. Both can be solved by commercial solvers.

4. Data-Driven Scenario Reduction

In the two-stage stochastic HPM planning model (23), the typical scenarios and their
probability distributions have been not determined. In this section, we propose a data-
driven scenario reduction method to generate S typical scenarios from massive historical
data. It is based on the K-means clustering method, a classic machine-learning approach.

In the proposed stochastic model (23), scenarios differ from the maximal power output
profile of PV panel PPV

i,s,t and the load profile PD
i,s,t, QD

i,s,t. Note that the dimension of the
aggregate vector is too large. We first reduce its dimension.

Assume that given scenario s, all loads have the same shape of the profile, i.e., there
exist P̃D

s,t, ∀t ∈ T and P̂D
i , Q̂D

i , ∀i ∈ N such that

PD
i,s,t = P̂D

i P̃D
s,t, ∀i ∈ N , s ∈ S , t ∈ T (30a)

QD
i,s,t = Q̂D

i P̃D
s,t, ∀i ∈ N , s ∈ S , t ∈ T (30b)

and

0 ≤ P̃D
s,t ≤ 1, ∀s ∈ S , t ∈ T (31a)

max
s∈S

max
t∈T

P̃D
s,t = 1 (31b)
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The sequence P̃D
s,t, t ∈ T is called the normalized load profile in scenario s. In the same

way, we can define the normalized maximal power output profile of PV panel P̃PV
s,t , t ∈ T

in scenario s. Let ws =
{

P̃D
s,t, P̃PV

s,t , t ∈ T
}

denote the data vector in scenario s.
In practice, there are a large number of historical data denoted by vc, c = 1, 2, . . . , C.

The number of historical data C is much larger than that of the typical scenario S, i.e.,
C � S. We need to generate ws from vc. The main point of the K-means clustering method
is to partition historical data into S clusters denoted by Cs, s = 1, 2, . . . , S. The centroid of
each cluster is recognized as a typical scenario, i.e.,

ws =
1

Cs
∑

c∈Cs

vc (32)

where Cs is the cardinality of set Cs.
Based on the K-means clustering method, we obtain the algorithm of partitioning

historical data and generating typical scenarios named Algorithm 2. Ref. [47] proves the
convergence of the K-means clustering method.

Algorithm 2 K-means clustering for scenario reduction
Input: Massive historical data vc, c = 1, 2, . . . , C, randomized initial typical scenarios

ws, s = 1, 2, . . . , S, and empty clusters Cs = ∅, s = 1, 2, . . . , S.
Output: Typical scenarios ws and their probability distributions ps for s = 1, 2, . . . , S.
S1 (Partition): Clear the clusters Cs, ∀s ∈ S and then assign every historical data vc,

c = 1, 2, . . . , C to the cluster with the nearest typical scenario, i.e.,

s∗c = arg min
s∈S
‖vc −ws‖2

Cs∗c ← Cs∗c ∪ {c}

S2 (Update): Recalculate the typical scenarios by

ws =
1

Cs
∑

c∈Cs

vc, ∀s ∈ S

and their probability distributions

ps =
Cs

C
, ∀s ∈ S .

S3 (Judgment): If the partitions no longer change, terminate the iteration and output the
latest typical scenarios and their probability distributions. Otherwise, go to S1.

5. Case Study
5.1. Setup

The numerical experiments were carried out in a modified IEEE 33-bus distribution
system integrated with five fuel generators and three PV panels [48]. The topology of the
distribution system is shown in Figure 1. Given the whole year’s historical data, applying
Algorithm 2 can generate eight typical scenarios of the maximal power output profiles
of the PV panel and the load profiles, which can be seen in Figures 2 and 3. The utilized
K-means algorithm 2 is widely used for scenario reduction in the existing literature, e.g.,
Refs. [49–51]. For each day in the whole year’s historical data, there is a maximum power
output profile of the PV panel, where “maximum” means the PV output is not curtailed.
The eight scenarios are selected by the K-means method because they are typical rather
than maximal. In other words, the 365-day data are classified into eight types and each
type can generate a typical scenario. In the K-means algorithm, the initial typical scenarios
are randomly selected from the historical data. In the Benders’ decomposition algorithm,
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the error tolerance is set to ε = 10−6. The discount rate ηDR is 4.9%. The expected life span
of HPM YEP is 10 years. The unit investment price of the HPM πHPM is 350 USD/kW.

The hydrogen trading price πHTP is 6 USD/kg. The hydrogen production rate ηHPR

is 0.02 kg/kW.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

22 23 24

18 19 20 21

25 26 27 28 29 30 31 32

Bus with Fuel Generator

Bus with PV Panel

Figure 1. The topology of the IEEE 33-bus distribution system.

Figure 2. The normalized load profiles in typical scenarios.

Figure 3. The normalized photovoltaic panel output profiles in typical scenarios.



Energies 2023, 16, 7636 11 of 15

5.2. Main Results

By applying the Benders’ decomposition algorithm, we obtain an optimal HPM plan
with a capacity of 545.53 kW and the location at bus 17. The detailed annual cost of the
distribution system is shown in Table 1. Despite the annual investment cost of HPM,
0.25 × 105 $, the distribution system can benefit from selling Hydrogen to factories, USD
2.68× 105. Table 1 also displays the detailed annual cost sheet of the distribution system
if no HPM is installed. The relative reduction of the overall cost is 3.60%, which is a
remarkably high improvement. The main difference between the costs with an HPM or
not is that the redundant PV power is used to produce hydrogen instead of selling it to the
transmission system. The burden of the power grid is significantly released.

Table 1. The annual balance sheet with/without Hydrogen production modules.

Condition CEP † CG † CPV † CINV † RHT † Overall Cost † Reduction

w/ HPM −0.23 9.74 0.18 0.25 2.68 7.25
3.60%w/o HPM −2.39 9.60 0.31 0 0 7.52

† The unit of cost/revenue is USD 105. CEP: electricity purchasing cost, where a negative value means selling
electricity to the transmission system; CG : operational cost of fuel generators; CPV : penalty cost of PV curtailment;
CINV : investment cost of HPM; RHT : revenue of Hydrogen trading.

Bus voltage is significantly concerned with the distribution system operator due to
the high proportion of renewable energy. When PV outputs are sufficiently large, the bus
voltage will reach the upper bound. The PV outputs have to be curtailed, which causes
severe waste. In Figure 4, the red curve shows the voltage at bus 17 in typical scenario 7. It
shows that from 10:00 to 18:00, the bus voltage reaches the upper bound, 1.05 p.u., which
indicates the curtailment of PV output. After installing the HPM, as shown in the blue
curve in Figure 4, the voltage congestion is greatly released. The surplus PV power is
utilized to generate hydrogen, which effectively lightens the burden of distribution system
operation and decreases the operational cost by selling hydrogen.

Figure 4. The voltage of bus 17 in scenario 7 with or without the Hydrogen production module.

The convergence of the Benders’ decomposition algorithm is verified in Figure 5. As
the number of optimal cuts grows, the restriction on the master problem becomes tighter.
The lower bound obtained by the master problem increases, while the HPM investment
plan becomes more and more rational. Meanwhile, the subproblems check the effect of the
HPM investment plan and point out the direction of optimality by optimal cuts. When the
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upper and lower bounds are equal, the latest HPM investment plan is recognized as the
optimal one. Then, the Benders’ decomposition algorithm terminates.

Figure 5. The lower and upper bounds of the overall cost during Benders’ decomposition.

5.3. Sensitivity Analysis

Then, we verify the optimality of the HPM plan generated by the Benders’ decomposi-
tion. Firstly, fix the HPM capacity of 545.53 kW and change the bus where it is connected.
Figure 6 shows the curve of overall cost with different HPM locations. It is apparent that
bus 17 has the minimal cost. Near-optimal locations are the buses near bus 17, which can
be attributed to a relatively small electrical distance to PV panels. Then, the HPM can
efficiently use abundant PV power.

Next, we will discuss the reason why the optimal location is bus 17. Figure 4 shows
that the main challenge of the distribution system operation is the excessively high bus
voltage due to the large-scale PVs. The HPM consumes surplus PV power to generate
hydrogen and, meanwhile, restrains the rise of bus voltage. The location of the HPM will
affect the distribution power flow and influence the bus voltage. From the topology of the
IEEE 33-bus system in Figure 1, bus 17 is the farthest bus from bus 0. Ref. [52] shows that
bus 17 has the largest mutual voltage-to-power injection sensitivity factor. Locating at bus
17 most effectively regulates the bus voltage.

Figure 6. Curve of overall cost with different Hydrogen production module locations.

In addition, we fix the HPM location at bus 17 and change its capacity from 0 to
1000 kW. Figure 7 shows the curve of overall cost with different HPM capacities. It verifies
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that the optimal HPM capacity is 545.53 kW. If the HPM capacity is too small, it is unable
to consume sufficiently abundant PV power. When the HPM capacity is too large, there is
no abundant PV power to consume, while the investment cost of HPM is kind of wasted.
Moreover, a comparison between Figures 6 and 7 shows that the effect of location on the
distribution system’s overall cost is much larger than that of capacity. It is inspired to
carefully select the location of HPM.

Figure 7. Curve of overall cost with different Hydrogen production module capacities.

6. Conclusions

In this paper, we propose a two-stage stochastic planning model for a hydrogen pro-
duction module in distribution systems. Both the capacity and the location of the hydrogen
production module are considered in the proposed model. The hydrogen production
module can produce hydrogen and sell it to factories using abundant photovoltaic power.
By investing in the hydrogen production module, the overall operational cost of the dis-
tribution system is significantly reduced and the power output of photovoltaic panels is
efficiently utilized. Since the photovoltaic power is stochastic, we propose a data-driven
algorithm to cluster massive historical data into several typical scenarios. It can remarkably
reduce the scale of the proposed two-stage stochastic planning model. Additionally, a
Benders’ decomposition-based algorithm is proposed to efficiently solve the two-stage
stochastic planning model, which is an iterative method with fast convergence speed.
Numerical experiments verify the optimality of the hydrogen production module plan
generated by the Benders’ decomposition algorithm. After installing the HPM, the overall
cost of the distribution system is reduced by 3.60%, which also reveals immense economic
and environmental benefits. This work may inspire more studies on power system plan-
ning problems considering both the capacity and location of power equipment. At present,
the proposed algorithm can only deal with linear problems. A significant improvement
on the algorithm may enhance the behavior of the algorithm on non-linear problems for
future research.
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