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Abstract: With the rapid growth in the proportion of renewable energy access and the structural
complexity of distributed energy systems, traditional microgrid (MG) scheduling methods that
rely on mathematical optimization models and expert experience are facing significant challenges.
Therefore, it is essential to present a novel scheduling technique with high intelligence and fast
decision-making capacity to realize MGs’ automatic operation and regulation. This paper proposes
an optimal scheduling decision-making method for MGs based on deep neural networks (DNN).
Firstly, a typical mathematical scheduling model used for MG operation is introduced, and the
limitations of current methods are analyzed. Then, a two-stage optimal scheduling framework
comprising day-ahead and intra-day stages is presented. The day-ahead part is solved by mixed
integer linear programming (MILP), and the intra-day part uses a convolutional neural network
(CNN)—bidirectional long short-term memory (Bi LSTM) for high-speed rolling decision making,
with the outputs adjusted by a power correction balance algorithm. Finally, the validity of the model
and algorithm of this paper are verified by arithmetic case analysis.

Keywords: microgrid; optimal dispatch; convolutional neural network; deep bidirectional long-short
memory neural network; artificial intelligence

1. Introduction

MGs, characterized by cleanliness, low-carbon emissions, and openness, have gar-
nered significant attention due to the rapid development of renewable energy in recent
years [1]. As a critical solution to improve the consumption of distributed power sources
and the reliability of power supply, MGs have become essential to reducing fossil energy
pollution and promoting sustainable development in China [2]. However, the intermittent,
volatile, and uncertain nature of renewable energy sources poses significant challenges
to the stable operation of MGs [3]. Additionally, the expansion of the MG system and
the increased number of its components also impose more demanding requirements on
the optimal scheduling method. The traditional scheduling method based on numerical
model optimization, scenario matching, and manual manning makes it difficult to meet
the demand. Hence, studying fast, accurate, and intelligent scheduling decision methods
holds immense practical value and significance [4].

Currently, the predominant method for solving MG optimal scheduling problems
is a numerical calculation method grounded in optimization theory. Common optimal
scheduling models encompass MILP [5], dynamic programming [6], distributed optimiza-
tion [7], etc. Likewise, common model-solving algorithms involve intelligent algorithms [8],
second-order cone relaxation methods [9], Lagrange relaxation methods, etc. However, as
the uncertainties of the source–load dual-side within MGs escalate, solving the optimal
scheduling problem under such uncertainties becomes a more realistic and challenging
research problem [10]. Some researchers construct uncertainty planning models. The
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main modeling and solution methods are stochastic planning [11], chance-constrained
planning [12], etc. Among these, robust optimization [13,14] methods have been proven
to be an effective method of solving MG uncertain optimization problems. They aim
at optimal operation under the worst-case scenario. However, their overly pessimistic
view of uncertain variables may lead to solution results that are too conservative to be
economical. The mathematical models of these methods are relatively complex and com-
putationally expensive. The other researchers used a multi-timescale optimal scheduling
strategy [15], which can be classified into day-ahead scheduling and intra-day stage ac-
cording to the timescale. Among these, the model predictive control (MPC) technique is a
widely employed modeling approach [16]. How to enhance intra-day real-time scheduling
computational efficiency is still a challenge.

In summary, the traditional optimization theory-based scheduling methods rely on
strict mathematical derivation, requiring researchers to participate. With the MG evolving
into a new system characterized by increased uncertainty and complexity, the traditional
optimization scheduling methods are gradually becoming inadequate to meet the demands
of MG operation [17]. Several critical problems of this method are as follows:

(1) The traditional mathematical optimization methods cannot model the components
of the MG in a fast and refined manner, but it is difficult to describe the physical
characteristics of the actual operation of the components using a simplified model [18].

(2) The traditional mathematical MG scheduling models are often nonlinear and noncon-
vex, which is a typical nondeterministic polynomial problem (NP-hard). The problem
is demanding on the solution algorithm, and it is not easy to find the optimal solution.

(3) The computational process of traditional mathematical optimization methods is com-
plex and inefficient, and it is difficult to adapt to the real-time solution of optimization
scheduling problems with uncertainty under complex and variable system operating
conditions [19].

(4) The traditional mathematical optimization methods ignore the significance of histor-
ical data and historical decision-making plans and fail to make use of the valuable
historical decision-making data information accumulated during the system’s opera-
tion.

Recently, the rapid development of computer technology has made neural networks
(NN) an important driver of the new technological revolution and industrial change [20].
A new intelligent decision-making method using NNs based on big data technology may
be a more effective way of thinking, which may help to break through the limitations of
mathematical optimization solution methods. Unlike traditional optimization methods,
the decision-making method based on NNs no longer depends on specific mathematical
models or algorithms; instead, it is trained using extensive real data [21]. This method
can greatly simplify the process and complexity of modeling and solving the optimal
scheduling problem, and cope with various theoretical problems and challenges that keep
emerging through its self-learning and self-evolution process. It can potentially facilitate
the transition from manual supervision to machine intelligence-based monitoring in the
domain of MG scheduling. Moreover, when the data make centralized training of models
bitter due to factors such as privacy and size, the idea of distributed frameworks [22,23]
can also be referred to for decentralized training of small models and then aggregated to
a big model. This allows great flexibility in the implementation of the method. Figure 1
shows the transition from the traditional optimization method to the NN-based method.
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Figure 1. Comparison illustration between the traditional optimization method and the NN-based
method.

Several scholars have attempted to utilize artificial intelligence (AI) techniques in
the field of scheduling decisions. The literature [24] utilized long and short-term memory
(LSTM) to establish the mapping from system load to unit output. However, the constructed
network structure is relatively simple, and the results are unconstrained. The literature [25]
uses a multi-layer perceptron (MLP) to learn and mimic the scheduling decision of a smart
grid, and an iterative algorithm is used to correct the output of the NNs so that it satisfies
the actual constraints. The literature [26] applies a feedforward neural network (FNN)
for the optimal scheduling of combined heat and power (CHP) systems, which enhances
computational efficiency by about 7000 times while permitting suboptimal cost. Although
previous studies have demonstrated that NNs are feasible and effective in optimal energy
scheduling, the current research still faces some issues:

(1) Only load data are used as training inputs without considering the influence of other
system state data on the scheduling decision results. This approach cannot fully
extract the feature information embedded in the valuable historical operation data.

(2) Only using a shallow or single network model to build the scheduling mapping
relationship, the accuracy of the output results is low.

(3) The decision results from the NNs-based scheduling method will inevitably violate
some actual constraints, and there is no reasonable and efficient solution to this issue.

To address the above issues, this paper proposes a two-stage optimal scheduling
method for MGs. The proposed method aims to enhance the effectiveness of the NNs-driven
scheduling method and the MG’s ability to handle uncertain fluctuations and address
the limitations of the traditional mathematical model-driven and manual participation
scheduling methods. In the day-ahead part (1 h timescale), which does not require high
timeliness, a MILP model is used to obtain the MG’s operating plan. In the day-ahead part
(15 min timescale), a DNN scheduling decision network is used for fast-rolling optimization.
The main contributions of this paper are as follows:

(1) An intra-day rolling optimization model based on DNNs and big data is proposed,
which is trained using the dataset clustered by the K-means algorithm to improve
generalizability and accuracy.

(2) A novel CNN-Bi LSTM scheduling decision network is proposed, digging deep feature
information in the system operation data by CNN and establishing the accurate
mapping between input and output by Bi LSTM.
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(3) A power balance correction algorithm is proposed to fine-tune the DNN outputs to
quickly satisfy all practical constraints.

The proposed method can effectively reduce the complexity of solving the optimal
scheduling problem and significantly improve computational efficiency (reducing the
solution time for intra-day rolling optimization to milliseconds), which also improves the
intelligence level of MGs. The rest of this paper is organized as follows: Section 2 presents
the basic mathematical optimization model for day-ahead MG scheduling. Section 3
presents the DNN-based intra-day rolling optimal scheduling method. Section 4 presents
simulation experiments and analyses. Section 5 presents the conclusions of this paper.

2. Microgrid Day-Ahead Optimal Scheduling Model
2.1. Overall Composition Structure of Microgrid

The specific composition structure of the MG studied in this paper is shown in Figure 2,
where the arrow indicates the direction of power flow.
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Figure 2. Structure of the MG.

This MG consists of photovoltaic panels (PVs), wind turbines (WTs), microturbine
(MT), upper grid (UG), storage battery (SB), and power load. The power bus is the carrier
of all device power interactions. The power distribution of the entire MG is set by the
scheduling center and sent to each controllable device.

2.2. Objective Function

The objective of the MG’s day-ahead optimal scheduling is to minimize the total daily
operating cost. The total operating cost of the system comprises the operating and start-up
costs of MT, as well as the charging/discharging costs of SB and the purchase/sale cost of
UG. The above can be expressed as:

Min
T

∑
t=1

N

∑
i=1

(CMT,i,t + UMT,i,t) +
T

∑
t=1

(CSB,t + CUG,t) (1)


CMT,i,t = aiP2

MT,i,t + biPMT,i,t + ciuon,i,t
UMT,i,t = CUiusu,i,t
CSB,t = CSSBPSB,t

CUG,t = PUG,tet

(2)

where CMT,i,t, CSB,t, and CUG,t are the operating cost of MT, SB, and UG at time t, respectively.
UMT,i,t is the start-up cost of ith MT at time t. Equation (2) is a detailed expression of the
cost of each device, where ai, bi, and ci are the cost factors of ith MT, and CUi is the start-up
cost of ith MT. CSSB and et are the cost factors of SB and the electricity price of UG at
time t. PMT,i,t, PSB,t, and PUG,t are the power of ith MT, SB, and UG at time t, respectively.
uon,i,t and usu,i,t are the binary variables for ith MT operating and starting states at time t,
respectively.
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The quadratic cost function of MT is linearly approximated by dividing it into
S-segmented linear functions using segmented linearization methods [27], which reduces
the complexity of solving the overall model. The linearization results are as follows:

C̃MT,i,t = ciuon,i,t + ∑S
s=1 asPMT,i,t,s (3)

as =
CMT,i,s+1 − CMT,i,s

PMT,i,s+1 − PMT,i,s
(4)

where C̃MT,i,t is the MT cost function after the linearization segments, S is the total number
of segments, as is the slope of each segment, PMT,i,s is the output of the ith MT in the sth
segment.

2.3. Constraints

MG’s day-ahead optimal scheduling constraints include power balance constraint,
controllable unit operation constraint, SB operation constraint, and UG operation constraint.

2.3.1. Power Balance Constraint

Equation (5) indicates that power production and consumption are balanced at all
moments in the MG.

N

∑
i=1

PMT,i,t + PSB,t + PUG,t + PWT,t+PPV,t = PLoad,t, ∀t (5)

where PWT,t, PPV,t, and PLoad,t are the power of WT, PV, and power load at time t, respec-
tively.

2.3.2. Controllable Unit Operating Constraints

Controllable unit (MT) operating constraints include output, ramp rate, and unit status
constraints. The above constraints are expressed as follows:

Pmin
MT,iuon,i,t ≤ PMT,i,t ≤ Pmax

MT,i, ∀i, t (6)

−Pdown
MT,i ≤ PMT,i,t − PMT,i,t−1 ≤ Pup

MT,i, ∀i, t (7)

usu,i,t − usd,i,t = uon,i,t − uon,i,t−1, ∀i, t (8)

usu,i,t + usd,i,t ≤ 1, ∀i, t (9)

where Pmin
MT,i and Pmax

MT,i are the minimum and maximum output power of ith MT. Pdown
MT,i and

Pup
MT,i are the up and down ramp rate limitations of ith MT. usd,i,t is the binary variables for

ith MT stop state at time t.

2.3.3. Storage Battery Operating Constraints

SB operating constraints include charging and discharging state constraints, output
power constraints, capacity constraints, and capacity cycle constraints. The above con-
straints are expressed as follows:

ucha,t + udis,t ≤ 1, ∀t (10)

0 ≤ Pdis
SB,t ≤ Pdis

maxudis,t, ∀t (11)
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Pchar
max uchar,t ≤ Pchar

SB,t ≤ 0, ∀t (12)

PSB,t = ηSB(Pdis
SB,tudis,t + Pchar

SB,t uchar,t), ∀t (13)

ESB,t = ESB,t−1 + PSB,t, ∀t (14)

Emin ≤ ESB,t ≤ Emax, ∀t (15)

E0 = Eend (16)

where ucha,t and udis,t are the charging and discharging binary variables at time t, respec-
tively. Pchar

SB,t , Pdis
SB,t, Pchar

max , and Pdis
max are the charging and discharging power at time t and its

limitation, respectively. ηSB is the power conversion efficiency. ESB,t is the capacity at time t
and Emin, Emax are the minimum and maximum capacity.

2.3.4. Power Contact Line Constraints

The constraints on UG are mainly reflected in the power transmission line which
connects it to the MG. The power transmission line constraints include output constraints
and purchase and sale power status constraints. The above constraints are expressed as
follows:

ubuy,t + usell,t ≤ 1, ∀t (17)

0 ≤ Pbuy
UG,t ≤ Pbuy

maxubuy,t, ∀t (18)

Psell
maxusell,t ≤ Psell

UG,t ≤ 0, ∀t (19)

PUG,t = Pbuy
UG,tubuy,t + Psell

UG,tusell,t, ∀t (20)

where the ubuy,t and usell,t are the power purchase and sale binary variables at time t,

respectively. Pbuy
UG,t, Psell

UG,t, Pbuy
max, and Psell

max are the power purchase, sale time t, and its
limitation, respectively.

So far, the MG’s day-ahead optimal scheduling model based on MILP is completely
constructed.

3. Deep Neural Network-Based Intra-Day Rolling Optimization Method

A data-driven DNN-based scheduling method is proposed in this paper to address
the shortcomings and difficulties of traditional methods in intra-day rolling optimization.
Instead of relying on specific mathematical models, it trains with large amounts of real
data and makes scheduling decisions by high-dimensional matrix multiplication [28].
This method can reduce the complexity of solving the optimal scheduling problem and
significantly improve computational efficiency.

3.1. Intra-Day MPC Rolling Optimization Forms

In this paper, the DNN scheduling decision network is used as an optimizer for MPC
to perform intra-day rolling optimization. MPC is an alternating process of continuously
rolling local optimization and continuously rolling control role implementation. By obtain-
ing ultra-short-term power forecast information in real-time during intra-day scheduling
and using the actual scheduling results and new forecast information as feedback, MPC
rolling optimization forms can greatly reduce the impact of MG uncertainties on optimal
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operating scheduling. The general steps of MPC rolling optimization can be expressed as
follows:

Step 1. Based on the current moment and the current system state, the system state in
the future period is obtained by a certain prediction model.

Step 2. Based on the system state in a future period, the optimization problem in that
period is solved to obtain the control sequence in that period.

Step 3. Only the action of the first moment of the control sequence is applied to the
system, and the above steps are repeated for the next moment.

3.2. Total Framework of the DNN-Based Intra-Day Scheduling Decision Method

The overall framework of the DNN-based intra-day scheduling method is shown in
Figure 3, which mainly includes: the training dataset construction stage, offline training
stage, and online decision stage.
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(1) Training dataset construction stage. To improve the accuracy and reduce the pressure
on the network’s generalizability, the numerous real operating data of MG collected
are clustered by the K-means algorithm [29], dividing into different training sets. The
net system load demand Pnet

Load, which is a 96-dimensional time series represented as
Pnet

Load = PLoad − PWind − PPV, is used as the clustering index.
(2) Offline training stage. A two-dimensional time series feature map containing the

system operation state is constructed as the input for the CNN-Bi LSTM network.
The optimal scheduling plan is the network’s output, training multiple scheduling
decision networks with different training datasets.

(3) Online decision stage. The system’s ultra-short-term prediction state is combined with
the day-ahead operation plan and fed into the well-trained CNN-Bi LSTM network.
The outputs of the network are fine-tuned by a power correction algorithm to get the
final scheduling decision.
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3.3. Introduction to Deep Neural Networks
3.3.1. Convolutional Neural Networks

The efficient feature extraction ability of the CNN makes it the most widely used
model in the field of deep learning. The CNN primarily comprises a convolutional layer
and a pooling layer. The convolutional layer performs effective nonlinear local feature
extraction using convolutional kernels, while the pooling layer compresses the extracted
features and generates more significant feature information to enhance generalization
capability [30]. The basic structure of the CNN is shown in Figure 4.

Energies 2023, 16, x FOR PEER REVIEW 8 of 17 
 

 

The efficient feature extraction ability of the CNN makes it the most widely used 

model in the field of deep learning. The CNN primarily comprises a convolutional layer 

and a pooling layer. The convolutional layer performs effective nonlinear local feature 

extraction using convolutional kernels, while the pooling layer compresses the extracted 

features and generates more significant feature information to enhance generalization ca-

pability [30]. The basic structure of the CNN is shown in Figure 4. 

 

Figure 4. The basic structure of the CNN. 

3.3.2. Bidirectional Long and Short-Term Memory Networks 

We start by introducing the LSTM network, which contains forgetting gates, input 

gates, and output gates, and the basic structure is shown in Figure 5. 

 

Figure 5. The basic structure of the LSTM. 

In Figure 5,   and tanh  represent Sigmoid and Tanh activation functions, respec-

tively. The calculation of the data within LSTM is as follows: 

1( [ , ] )t f t t f −= +f W h x b
 

(21) 

1( [ , ] )t i t t i −= +i W h x b
 

(22) 

1tanh( [ , ] )t c t t c−= +Z W h x b
 

(23) 

1t t t t t−=  + C f C i Z
 

(24) 

1( [ , ] )t o t t o −= +o W h x b
 

(25) 

tanh( )t t t= h o C
 

(26) 

where W   and b   denote the weight matrix and bias vector, respectively.    repre-

sents dot product. 1t−h  and th  denote the output of the last and current moments, re-

spectively. 1t−C  and tC  denote the memory state of the last and current moments, re-

spectively. tZ   is the Intermediate state of the network. ti   and to   denote that the 

Figure 4. The basic structure of the CNN.

3.3.2. Bidirectional Long and Short-Term Memory Networks

We start by introducing the LSTM network, which contains forgetting gates, input
gates, and output gates, and the basic structure is shown in Figure 5.
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In Figure 5, σ and tanh represent Sigmoid and Tanh activation functions, respectively.
The calculation of the data within LSTM is as follows:

ft = σ(W f [ht−1, xt] + b f ) (21)

it = σ(Wi[ht−1, xt] + bi) (22)

Zt = tanh(Wc[ht−1, xt] + bc) (23)

Ct = ft ⊗ Ct−1 + it ⊗ Zt (24)

ot = σ(Wo[ht−1, xt] + bo) (25)

ht = ot ⊗ tanh(Ct) (26)

where W� and b� denote the weight matrix and bias vector, respectively. ⊗ represents dot
product. ht−1 and ht denote the output of the last and current moments, respectively. Ct−1
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and Ct denote the memory state of the last and current moments, respectively. Zt is the
Intermediate state of the network. it and ot denote that the current states add degree and
output degrees, respectively. xt is the input of the current moment. σ and tanh represent
the sigmoid and tanh activation functions, respectively.

The LSTM structure gathers feature information only from the current input and past
time series at each time while disregarding feature information from future time series. In
this paper, bidirectional LSTM is used as the back-end mapping network of the scheduling
decision network to improve the accuracy of the decision results and the performance of
temporal feature extraction. The Bi LSTM is a variant structure of LSTM that includes both
forward LSTM and backward LSTM layers [31]. The Bi LSTM structure enables it to gather
information from both forward and backward directions, enabling the network to consider
past and future data. This enhances the model’s feature extraction ability without requiring
additional data. The structure of Bi LSTM is illustrated in Figure 6.
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3.4. The CNN-Bi LSTM Intra-Day Scheduling Decision Network

Trained by a large amount of real operation data, the CNN-Bi LSTM intra-day schedul-
ing decision network can learn the regularity between the system state and the scheduling
decision result. Once the parameters are fixed in the network, it can provide the optimal
scheduling plan extremely fast under any operating scenario.

3.4.1. Input and Output of the CNN-Bi LSTM

The CNN-Bi LSTM scheduling decision network imitates the idea of MPC for intra-day
rolling optimization, with the prediction domain set to 2 h and the control domain set to
15 min. To deeply mine the implicit value information in the system operating data, we set
the input X of this network in the form of a 2-D time series grayscale graph. The output Y
of the network is the optimal scheduling plan. The specific expression is as follows:

X = [PLoad(t, t + τ), PWind(t, t + τ), PPV(t, t + τ), Pahead
SB (t, t + τ), Pahead

UG (t, t + τ), Pahead
MT (t, t + τ)]′ (27)

Y = [P∗SB(t, t + τ), P∗UG(t, t + τ), P∗MT(t, t + τ)]′ (28)

X is a 9 ∗ (τ + 1) matrix consisting of the intra-day state vector of the system (power
load, WT, and PV) in the period t to t + τ and the day-ahead operating plan vector of
controllable devices (SB, UG, and MTs) in the corresponding time. The number 9 indicates
the number of input features. Y is a 1 ∗ 6(τ + 1) vector consisting of the controllable devices’
intra-day optimal operating plan in the period t to t + τ. The number 6 indicates the
number of controllable devices in output features. Pahead

� is the day-ahead operating plan,
and P∗� is the intra-day optimal operating plan. Since the MPC prediction domain is set to
2 h, the τ is set as 7 in this paper and all the above variables are real.
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3.4.2. Structure of the CNN-Bi LSTM

Since the mapping relationship between the system operating state and scheduling
decision is complex, this paper uses a multilayer CNN-Bi LSTM network for deep mining
of the data. This network is mainly constituted by a three-layer CNN and a three-layer Bi
LSTM, and linked by a Flatten layer. The CNN primarily extracts the power correlation
feature, while the Bi LSTM focuses on extracting the power time series feature. The batch
normalization (BN) layer can solve the problem of numerical instability in DNNs, making
the distribution of individual features in the same batch similar. In this paper, the BN layer
is inserted between each convolutional layer and pooling layer to normalize the features in
the network and accelerate training. The dropout layer is the layer used after each Bi LSTM
to enhance the generalization performance of the network. Finally, the data are adjusted to
a vector output in the specified size through a fully connected (Dense) layer. The specific
structure of the proposed CNN-Bi LSTM in this paper is shown in Figure 7.
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3.4.3. Settings of the CNN-Bi LSTM

To better extract and abstract the input feature, the number of convolutional kernels is
set to 64, 128, and 256, and the size of convolutional kernels is set to 7 × 7, 5 × 5, and 3 × 3.
The number of neurons of Bi LSTM is set to 256, 128, and 64, respectively, and the drop rate
of the dropout layer is set uniformly to 0.25.

Normalize the training data of the network to between 0 and 1 using the maximum–
minimum normalization method. The network is trained using the Adam optimization
algorithm [32] and the root mean square error (RMSE) is set as the loss function of the
network, which is defined as follows:

RMSE =

√√√√ M

∑
i=1

T

∑
t=1

(y∗i,t − yi,t)
2/T (29)

where y∗i,t and yi,t are the true and predicted scheduling plans for ith device at time t,
respectively. M is the number of controllable devices in MG.

3.5. The Power Balance Correction Algorithm

Like load forecasting, the DNN-based scheduling method is fundamentally a process
of nonlinear regression. Consequently, the output inevitably does not meet certain practical
constraints. To address this issue, we use a power balance correction algorithm (PBC) to
adjust the output, making it practical for use.

Inspired by the average consistency algorithm, we utilize the difference between total
power demand and total generation at time t as the consistency indicator. The outputs
from DNN are updated by iteration (Equations (30) and (31)). Any updated results that
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violate the operating constraints of the device require additional correction (Equation (32)).
This algorithm is denoted as follows:

δ
[n]
t = (Pnet

Load,t −∑K
i=1 P[n]

i,t )/K (30)

P[n+1]
i,t = P[n]

i,t + δ
[n]
t (31)

P[n+1]
i,t =



Pmax
i , P[n+1]

i,t > Pmax
i

Pmin
i , P[n+1]

i,t < Pmin
i

P[n+1]
i,t + Pup

i , P[n+1]
i,t − P[n+1]

i,t−1 > Pup
i

P[n+1]
i,t − Pdown

i , P[n+1]
i,t − P[n+1]

i,t−1 < Pdown
i

P[n+1]
i,t , otherwise

(32)

where n is the number of iterations. P[n]
i,t and K are the power of ith power generator at

time t and the total number of generators in MG, respectively.
So far, MG’s intra-day optimal scheduling model based on CNN-Bi LSTM-PBC is

completely constructed.

4. Simulation Analysis and Comparison
4.1. Introduction of Example Parameters and Test System

To verify the effectiveness of the proposed method, a typical grid-connected
MG system is used for simulation testing. This MG comprises one WT, PV, SB, UG power
line, and MT. The parameter settings are shown in Appendix A.

The wind, solar, and load data in this paper were taken from a power station within a
region of Guizhou for a total of 356 days. The scheduling decision data for network training
were constructed and solved using Yalmip with Cplex solver. The DNN was built, trained,
and evaluated based on the Matlab R2020a platform. Setting for 300 rounds of training with
variable learning rate training and an initial learning rate of 0.01. Simulation tests were
conducted under 11th Gen Intel(R) Core (TM) i5-11300H @ 3.10 GHz 3.11 GHz processor.

4.2. Effectiveness Analysis of the Proposed Method

The optimal number of K-means clusters was determined by the ‘elbow method’ to be
3. A randomly selected day in each data category is used as a test scenario.
The 3 types of scenarios are tested as Table 1. The operating cost and RMSE are used
as the effectiveness evaluation indicators of the proposed method in this paper. The smaller
these two indicators are, the better the scheduling plan is.

Table 1. Results of 3 types of DNN-based scheduling method.

Scene Type
Training
Sample

Size/Day
Training Time/s RMSE Full-Day

Decision Time/s

1 165 278.18 5.7683 0.3599
2 91 171.54 8.9152 0.3761
3 106 196.42 7.3725 0.3698

For illustrative purposes, scenario 1 is analyzed as an example scenario. The day-
ahead optimal operating cost of MG based on MILP is CNY 12,621. MG’s intra-day optimal
operating cost based on CNN-Bi LSTM-PBC is CNY 15,320, and the full-day MPC rolling
optimization solving time is 0.4636 s. The optimal scheduling plan can be seen in Figure 8.
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The shapes of the day-ahead scheduling curves and the intra-day scheduling curves
are roughly similar, indicating that the CNN-Bi LSTM-PBC can complete the output of rea-
sonable and effective scheduling decisions in a very short time. The DNN-based scheduling
decision method utilizes extensive training with historical decision data to establish a direct
mapping relationship between known inputs and decision outcomes. Once the sample
capacity and quality can be guaranteed, the method can fit any kind of scheduling decision
model with high applicability.

4.3. Comparative Analysis of Different Methods
4.3.1. Comparison with Traditional Methods

In the intra-day rolling optimization part, the traditional mathematical model-based
MPC, CNN-Bi SLTM, and CNN-Bi SLTM-PBC are compared. The results are shown in
Table 2.

Table 2. Effectiveness comparison of each intra-day method.

Method Calculation
Time/s

Operating
Cost/CNY RMSE Does it Violate

the Constraints?

Traditional MPC 125.4531 14,973 0 No
CNN-Bi LSTM 0.3599 15,779 5.7683 Yes

CNN-Bi
LSTM-PBC 0.4636 15,320 3.6411 No

The operating costs calculated by CNN-Bi LSTM and CNN-Bi LSMT-PBC are only
5.38% and 2.32% higher than the traditional MPC method, respectively, but the calculation
efficiency is improved by about 300 times. This indicates that the DNN-based scheduling
decision network will imitate the actual optimal scheduling operation plan and greatly
reduce the difficulty of solving the optimal scheduling problem through training and
high-dimensional nonlinear mapping.

4.3.2. Influence of the Training Dataset Capacity

Changing the number of samples in the training data for the training of the data-driven
scheduling decision model, the resulting model is tested using the same typical day test
samples. The results are shown in Table 3.
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Table 3. Test results of different dataset capacities.

Capacity/Day Training Time/s RMSE

30 79.71 16.5679
60 133.47 11.4329
90 184.55 8.9458

120 223.78 7.3893
150 251.72 6.0256

The increasing training time and decreasing RMSE indicate that the performance
and decision accuracy of the data-driven model increase with the increase in sample
capacity, i.e., the DNN is constantly evolving and self-correcting as the number of samples
accumulates. Figure 9 shows the comparison between the full-day running cost of the
modified data-driven model and the real full-day running cost. With the increase in sample
capacity, the operating cost of data-driven decision-making results is approaching the
optimal scheduling operating cost driven by the traditional MPC method.
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4.3.3. Influence of Data Clustering

Comparing the two scenarios of clustered and unclustered, with the other settings
being the same, the unclustered one randomly selects 160 non-repeated days from the
whole year’s data as the training samples. To illustrate the impact of clustering more
intuitively on the final scheduling decision’s accuracy, the DNN output is not corrected
using PBC. The power balance for both cases is shown in Figure 10.
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The output of the DNN-based scheduling decision network trained with unclustered
data deviates more from the real electrical load demand, i.e., it indicates that its decision
accuracy is low. This is because the generalization of the current deep learning model
cannot cope with such large scenario differences. If a DNN is used for training, it will
generate a unique compromise mapping model during the training process in the face of
very different historical sample data, which makes it difficult to guarantee decision-making
accuracy.

4.3.4. Influence of Different Backend Mapping DNN Models

Different backend mapping networks were trained and then tested for comparison on
the same samples, with the rest of the settings being the same. The results are shown in
Table 4.

Table 4. Test results of different DNNs.

Network Type Training Time/s RMSE

Single RNN 172.92 16.8767
Single LSTM 186.33 13.0241

Single Bi LSTM 213.45 10.4537
Double RNN 207.78 13.8254
Double LSTM 212.22 9.3126

Double Bi LSTM 231.89 7.8772
Triple RNN 247.55 10.6133
Triple LSTM 253.34 7.4122

Triple Bi LSTM 278.18 6.0256

Among them, the decision accuracy of the RNN always lags behind that of LSTM and
Bi LSTM, due to its simple structure, which leads to its inability to discard unimportant
information, and its tendency to suffer from the gradient explosion problem during the
training process. The decision accuracy of Bi LSTM is always higher than that of LSTM,
which is because Bi LSTM has both a forward LSTM and an inverse LSTM at the same time
node in the implicit layer, which has two more parameters and both before and after 2-time
nodes affect its output results, so it has more energy to analyze the information.

5. Discussion

This paper proposes a two-layer and DNN-based optimal scheduling decision-making
method for MG that addresses the limitations of traditional mathematical model-based
methods. Instead of studying the intrinsic mechanism of the optimization problem, the
method is based on the DNN network, which uses massive historical decision data training
to directly construct the mapping relationship between known inputs and decision results.
This approach breaks through traditional optimal scheduling solution thinking and pro-
vides a new way of MG optimal scheduling. The analysis of computational examples leads
to the following conclusions:

(1) Using the classified data to train different DNN models separately can effectively
improve the scheduling decision accuracy of CNN-Bi LSTM and prevent the models
from converging to a compromise solution with lower accuracy.

(2) The DNN-based scheduling method achieves the optimal scheduling decision by
mapping, thereby reducing the complexity and improving the efficiency of solving
the optimal scheduling problem. Moreover, as the training dataset capacity increases,
the decision accuracy of the method continues to improve.

(3) To address the issue of DNN method output results not meeting practical constraints,
the PBC model effectively rectifies the output results, which greatly enhances the
practical applicability of the DNN-based scheduling method.

In conclusion, as a novel and efficient solution algorithm, the method proposed
in this paper can provide a practical and reliable reference for MG scheduling centers
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to assist decision making. This will greatly improve the reliability of operations in the
uncertain environment of MG scheduling and the economics of scheduling decisions.
In future research, we will further explore the relationship between system operation
state and scheduling decisions and try to construct complex DNN models with ‘attention
mechanisms’ to improve the decision-making accuracy of data-driven methods. In addition,
solving the optimal scheduling problem for multiple interconnected MGs will also be
considered.
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Appendix A

Table A1. Technical and cost parameters of MT.

Parameters MT 1 MT 2 MT 3 MT 4

Capacity/kW 100 150 200 250
Cost factor a/(CNY·kWh−2) 0.00275 0.00202 0.0016 0.0013
Cost factor b/(CNY·kWh−1) 0.575 0.475 0.455 0.375

Cost factor c/CNY 50 75 100 125
Start-up cost/CNY 50 75 100 125

Ramping power/kWh−1 25 40 50 65
Minimum output/kW 10 15 20 25

Table A2. Technical and cost parameters of SB and UG.

Parameters SB Parameters UG

Capacity/kW 500 Maximum purchased
power/kW 300

Cost factor/CNY·kWh−1 0.06 Maximum sales power/kW −300
Maximum

charging/discharging
power/kW

100

Ramping power/kWh−1 50
Maximum state of charge/% 0.95
Minimum state of charge/% 0.05

Charging/discharging
efficiency 0.9

Initial state of charge/% 0.5
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Table A3. Time-of-use power price.

Time Period Type Time Period Powe Purchase Price Powe Sales Price

Peak 17:00–23:00 0.70 0.55
Mean 8:00–17:00 0.61 0.42
Valley 23:00–8:00 0.45 0.28
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