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Abstract: In the backdrop of the ongoing reforms within the electricity market and the escalating
integration of renewable energy sources, power service providers encounter substantial trading
risks stemming from the inherent uncertainties surrounding market prices and load demands. This
paper endeavors to address these challenges by proposing a credibility theory-based information gap
decision theory (CTbIGDT) to improve robustness of electricity trading under uncertainties. To begin,
we establish credibility theory as a foundational risk assessment methodology for uncertain price and
load, incorporating both necessity and randomness measures. Subsequently, we advance the concept
by developing the CTbIGDT optimization model, grounded in the consideration of expected costs,
with the primary aim of fortifying the robustness of electricity trading practices. The ensuing model
is then transformed into an equivalent form and solved using established standard optimization
techniques. To validate the efficacy and robustness of our proposed methodology, a case study is
conducted utilizing a modified IEEE 33-node distribution network system. The results of this study
serve to underscore the viability and potency of the CTbIGDT model in enhancing the effectiveness
of electricity trading strategies in an uncertain environment.

Keywords: electricity service providers; credibility; information gap decision theory; robustness;
uncertainties management

1. Introduction

In light of the global imperative to achieve “carbon neutrality,” particularly in China,
and acknowledging the pivotal role of electricity as a primary secondary energy source,
the low-carbon operation of electricity has become a critical concern [1]. While renewable
energy sources offer the promise of clean and abundant power, challenges persist, notably
encompassing the issues of substantial market volatility and significant deviations in predic-
tive accuracy [2]. The modern power industry, propelled by deregulation and the evolution
of electricity market dynamics, has engendered a competitive landscape for global power
entities. This transformation not only augments the integration of renewable energy into
consumption patterns but also propels enhancements in system efficiency and the quality
of power supply [3]. Within the backdrop of an increasingly permeable renewable energy
market, the task of ensuring the secure and economically viable operation of the electric-
ity market, replete with myriad energy transactions, becomes notably intricate [4]. This
complexity is starkly manifested in heightened uncertainty in electricity price fluctuations,
directly impacting market transactions [5]. Serving as the intermediary between end users
and power generation enterprises, electricity service providers (ESP) assume a pivotal role
within the electricity market [6]. Presently, the pivotal concern for ESP, when contemplating
electricity procurement from the trading market, centers on judiciously apportioning the
purchase volume in response to market dynamics. This endeavor seeks to curtail the risks
posed by fluctuations in price and load, thereby amplifying operational revenues [7].
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Now, many scholars have carried out extensive research on the market operation envi-
ronment of ESP. In [8], researchers harnessed the conditional value-at-risk methodology
to quantitatively assess the price fluctuation risks encountered by ESP, culminating in the
formulation of an electricity purchase strategy optimization model. Building upon this
foundation, Reference [9] delved into the interplay between monthly power deviation
assessments and time-of-use electricity pricing, offering insights into the determination
of ESP’s optimal power purchase ratios across distinct market scenarios. Further expand-
ing the horizon, [10] explored the influence of controllable loads and electricity mutual
insurance strategies, culminating in the development of an ESP pricing model tailored to
mitigate the divergence in electricity assessments. While significant contributions have
been made, challenges persist in the electricity market trading process, notably stemming
from the uncertainties surrounding end-user load demand and the volatility of spot market
prices. Consequently, the development of optimal trading strategies for ESP that considers
multiple uncertainties remains an area with ongoing imperfections. This research endeav-
ors to bridge this crucial gap by conducting a thorough analysis and formulating optimal
trading strategies within this context of dual uncertainty.

The pervasive presence of uncertainty within energy systems exerts a profound in-
fluence on optimal decision-making, contingent upon problem structure and data accu-
racy. The energy system encompasses diverse input parameters that harbor uncertainties,
thereby posing operational challenges to system operators and ESP. Furthermore, this
uncertainty introduces novel complexities to the decision-making processes of pertinent
ESP, thereby shaping their planning endeavors [11]. A notable contribution, documented
in [12], introduces the scenario analysis method to grapple with electricity price uncertainty,
culminating in an energy scheduling model tailored to enhance risk aversion for smart
grid retailers. Notably, the accuracy of the scenario-based approach is intricately tied to the
number of scenarios employed, with increased accuracy stemming from a greater number,
albeit at the cost of computational efficiency. Recognizing these nuances, [13] advocates for
a robust optimization approach to tackle uncertainty and conduct risk analysis of market
prices. Further enriching the discourse, [14] delineates a transaction optimization model for
retailers, reliant on scenarios to delineate the stochastic variables inherent in the electricity
market. The conditional value at risk (CVaR) emerges as a salient risk assessment index
for electricity purchasing and selling, underpinned by the twin tenets of robust optimiza-
tion and CVaR. However, conventional approaches often overlook the inherent intricacies
related to decision makers’ risk preferences. While these methodologies have showcased
effectiveness in evaluating uncertainty risk and reducing operational costs for ESP, they
are inherently dependent on the availability of precise and abundant data. This reliance
presents limitations, particularly in scenarios characterized by restricted information, as
observed in China’s electricity market [15]. This study comprehensively investigates these
methodologies within the context of China’s electricity market, aiming to clarify both their
suitability and potential constraints.

The Information Gap Decision Theory (IGDT), pioneered by Ben Haim, offers a ro-
bust framework for quantifying uncertainty within contexts characterized by unknown
probability distributions and fluctuation ranges. Particularly relevant in scenarios where
data are sparse, IGDT maximizes parameter perturbations to assess decision outcomes
surpassing expected targets. This theory’s applicability thrives in contexts of limited in-
formation and heightened uncertainty, orchestrating a nuanced integration of decision
makers’ risk attitudes to derive strategies that encompass risk avoidance and risk seeking,
thereby broadening their decision landscape [16]. Leveraging the tenets of IGDT, Ref. [17]
formulates a decision-making model catering to power retailers, facilitating electricity
procurement and sales across diverse retail contract modalities, whilst navigating the
volatility of market-clearing prices. Furthering the discourse, Ref. [18] devises a bidding
strategy model for microgrid operators, cognizant of the fluidity of upstream power grid
prices. The far-reaching utility of IGDT extends to encompass multifarious aspects of power
systems, encompassing the realms of renewable energy generation, spot market pricing,
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and load dynamics [19]. The integration of IGDT empowers system operators and decision
makers with an enhanced grasp of uncertainties, underpinning effective quantification and
enabling the formulation of informed risk management strategies. However, prior IGDT
optimization-based work on uncertain electricity price mainly focuses on the random char-
acteristic of price, while the fuzzy characteristic is not considered in addressing the human
incomplete knowledge caused by the environment, weather, and operational conditions.
Therefore, this paper not only expounds upon the conceptual credibility theory into IGDT
to describe the random and fuzzy characteristics of electricity price but also explores its
pervasive application across diverse domains within electricity trading under multiple
uncertainties, accentuating its role in optimizing decision-making processes amidst an
uncertain and evolving landscape.

The electricity market landscape is marked by substantial price fluctuations and a
notable degree of uncertainty pertaining to both electricity prices and user loads. This
may result in high and unnecessary costs for ESP. Consequently, devising apt bidding
and scheduling strategies emerges as a formidable challenge for participants within the
electricity market. In response to this intricate milieu, this study endeavors to mitigate the
multifaceted impact of uncertainties inherent in power market transactions. To this end, we
adopt the IGDT framework to model the uncertainty associated with spot market electricity
prices and power loads and develop a credibility theory-based IGDT (CTbIGDT) to improve
robustness of electricity trading under uncertainties. Our approach is underscored by
an earnest commitment to accommodating the risk preference characteristics intrinsic to
decision makers. By navigating the terrain of multi-uncertainty, we formulate an innovative
power market trading strategy. This strategy is meticulously crafted to harmonize diverse
uncertainties while ensuring that operating costs are controlled within the expected range.
The overarching objective is to amplify the robustness of ESP within the realm of power
trading. This research contributes a comprehensive and adaptable framework that not only
embraces the realities of uncertainty within the electricity market but also empowers ESPs to
make informed and strategic decisions in the pursuit of optimized power trading outcomes.

2. The Optimization Model of ESP with Multiple Market Transactions

In the pursuit of mitigating the adverse impact of uncertainty, ESP navigates an
intricate landscape of electricity market transactions to procure power through a versatile
array of approaches. This paper introduces a comprehensive spectrum of electricity market
trading methods, encompassing the spot market, option market, and bilateral contract
market. To fortify the operational framework, we integrate energy storage units (ESUs) and
self-generated power generation equipment, such as gas turbines (GTs), into the system
architecture. The ESUs effectively accumulate surplus electrical energy, while synchronized
GT output facilitates peak shaving during periods characterized by elevated electricity
prices, thereby ameliorating electricity procurement costs. This amalgamation of strategies
empowers ESPs with the flexibility to adeptly tailor power purchase approaches to the
unique exigencies of distinct scenarios.

Figure 1 graphically illustrates the trading structure of the ESP market, underpinning
the multifaceted nature of the adopted strategies. Through this synthesized approach, ESPs
stand poised to engender heightened resilience and optimization in power procurement
dynamics. The detailed optimization model of ESP with spot market, option market,
and bilateral contract market is presented below. It should be mentioned that while our
approach indeed utilizes call option contracts as part of a conservative trading strategy, it is
important to recognize that this strategy is tailored to address the complexities of spot price
uncertainty in the specific environment considered in this study. We acknowledge that in a
power system featuring variable renewable energy sources, the assumption of continuously
increasing energy prices may not always hold true. However, the use of call options offers
a tool for risk management in this dynamic environment, allowing market participants to
make informed decisions based on their individual risk tolerance, market expectations, and
the need to balance potential costs and benefits. The selection of diverse trading methods
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offers traders greater flexibility in crafting their trading strategies, enabling them to mitigate
the effects of electricity price uncertainties to a certain extent.
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2.1. Objective Function

The objective of the model is to minimize the operating cost of an ESP, taking into
consideration various cost components. These components include the cost of purchasing
electricity from the power market, the operating cost of GTs, and the operating cost of ESUs.
The expression for the operating cost function is as follows:

CESP = Cm + CGT + CESU (1)

where CESP denotes the system operation cost of ESP; Cm represents the cost of electricity
purchase in the electricity market; CGT is the output cost of GT; and CESU is the operating
cost of ESUs. The explicit mathematical expressions representing each of these costs are
provided as follows:

(1) Transaction cost of ESP under multiple markets

In this paper, T periods are considered. T1 and T2 are the sets of off-peak and peak
hours of power demand, respectively, satisfying T = T1 + T2. Market transaction costs are
the aggregate of transactions at the spot market, option contracts and bilateral contracts.
While it is true that buyers of call option contracts may face a disadvantage if the prices
fall instead of rise, resulting in the actual price being significantly below the fixed price
previously contracted, it is crucial to note that the implementation of these options is
typically a strategic decision aimed at mitigating the potential price risk in situations where
prices are anticipated to rise. The use of call options involves a trade-off between the
potential costs and benefits, and it is essential for market participants to make informed
decisions based on their risk tolerance and market expectations. The rationale behind
applying the call option exclusively during the peak hours, despite it representing a
constant and fixed trading volume, lies in its optimal ability to mitigate price risk within
the spot market during periods of heightened electricity consumption [20,21]. Therefore,
it is assumed that call option contracts are utilized exclusively during the peak period of
electricity consumption, and the trading volume does not change over time. The specific
representation of the cost of each transaction mode is given by the following formula:

Cm = Cs + Ck + Coc
Cs = ∑

t∈T
[λs

t ps
t ]

Ck = ∑
t∈T

∑
k∈K

[
λb

k pb
t,k

]
Coc = ∑

t∈T2

[min{λck, λs
t}poc

t + λ0 poc
t ]

(2)
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where t ∈ T denotes a collection of periods; k ∈ K designates a set of optional bilateral
contracts; CS represents the spot market cost of electricity; CK indicates the transaction
cost of a bilateral contract; COC corresponds to the option transaction cost; λs

t characterizes
the spot market price at time t; ps

t denotes the spot market trading volume at time t; λb
k

corresponds to the electricity price attributed to the kth bilateral contract; pb
t,k represents

the trading volume of the kth bilateral contract at time t; and λck and λ0 are the exercise
price and option price of the call option, respectively. If λck > λs

t , ESP executes the option
contract to purchase electricity at a fixed price; if λck < λs

t , ESP does not execute option
contracts, and the acquisition of electricity is undertaken through transactions at the spot
market price.

(2) Gas turbine output cost

CGT = ∑
t∈T

∑
n∈N

[
aGT(PGT

t,n )
2
+ bGT(PGT

t,n ) + cGT

]
(3)

where n ∈ N denotes the node set of the power network; PGT
t,n represents the GT output of

node n at time t; and aGT, bGT, and cGT are the cost coefficients of the GT output.

(3) Operating cost of ESUs

CESU = ∑
t∈T

[dESU(Pei
t + Peo

t )] (4)

where Pei
t , Peo

t are, respectively, the charging and discharging power of the ESU at time t,
and dESU denotes the operating cost coefficient of the ESU.

2.2. Constraint Condition

The parameters governing the secure operation of the ESP encompass an amalga-
mation of constraints emanating from multiple facets, including the electricity market
trading, power flow dynamics within the electrical network, and the inherent limitations
of the energy storage system. The formulations detailing these constraints are articulated
as follows.

(1) Electricity market transaction constraints

ps
t,min ≤ ps

t ≤ ps
t,max

poc
t,min ≤ poc

t ≤ poc
t,max

pb,min
k sk ≤ pb

t,k ≤ pb,max
k sk

psm
t + ∑

k∈K
pbc

t,k = Pgrid
t , ∀t ∈ T1

ps
t + ∑

k∈K
pb

t,k + poc
t = Pgrid

t , ∀t ∈ T2

(5)

where sk is the 0–1 variable, which is used to determine whether to choose k contract at time
t; ps

t,min, poc
t,min, pb,min

k denote the minimum trading volume of the spot market, the option

contract, and the kth bilateral contract in the tth period, respectively; ps
t,max, poc

t,max, pb,max
k

represent the maximum trading volume of the spot market, the option contract, and the kth
bilateral contract in the t period, respectively; and Pgrid

t is the total amount of electricity
purchased from the electricity market in period t.

(2) Power flow constraints of the electrical network

Preserving the operational integrity and stability of the power network constitutes an
imperative objective. To this end, the scheduling of power market transactions necessitates
strict adherence to the power flow security constraints inherent within the distribution
network. In practical terms, this mandates a comprehensive consideration and fulfillment
of the power flow limitations characteristic of the distribution network during the course of
power trading and scheduling endeavors. The fundamental rationale behind this approach
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is to ensure that the transmission of electrical energy within the distribution network
remains well within the capacity limits of the network’s transmission lines.

By accommodating these constraints, the aim is to avert the occurrence of any detri-
mental power flow phenomena, such as overloading, voltage deviations, or any other
adverse ramifications stemming from power flow imbalances. Such meticulous adherence
contributes decisively to upholding the operational safety and stability of the overarching
power system. 

Pgrid
t,n + PGT

t,n + f p
t,i(l) = ∑

l∈L
f p
t,o(l) + Dp

t,n

Qgrid
t,n + QGT

t,n + f q
t,i(l) = ∑

l∈L
f q
t,o(l) + Dq

t,n(
Rl f p

t,l + Xl f q
t,l

)
/U0 = Ut,i(l) −Ut,o(l)

(6)

where l ∈ L denotes the set of power lines; I denotes injection, and o represents release;
Pgrid

t,n and Qgrid
t,n are, respectively, the active and reactive power of n nodes injected into the

power grid at time t; QGT
t,n represents the reactive power output of GT to n nodes at time

t; f p
t,i(l) and f q

t,i(l) are the active and reactive power of the node n injected by the power

line l at time t, respectively; f p
t,r(l) and f q

t,r(l) are the active and reactive power flowing from
node n to line l at time t, respectively; the active and reactive loads of node n at time t are
designated as Dp

t,b and Dq
t,b, respectively; Rl and Xl are the resistance and reactance of power

line l, respectively. The reference voltage of the slack bus is signified by U0. Additionally,
Ut,i(l) and Ut,o(l) correspond to the initial and terminal voltages associated with power line
l, respectively.

(3) Energy storage constraints
Et+1 = Et + pei

t ηESU
+ − peo

t /ηESU
−

0 ≤ Et ≤ Emax
t

Si(t) + So(t) ≤ 1
(7)

where Et denotes the electricity stored in ESUs at time t; ηESU
+ , ηESU

− are, respectively, the
charging and discharging efficiency of the ESU; Emax

t represents the maximum capacity of
the ESU; and S0(t), S1(t) correspond to the working state of the energy storage device.

In summation, when both spot price and load demand are predicted values, the ESP
trading model under the deterministic environment is{

minCESP
s.t. (5)–(7)

(8)

In this deterministic model, the objective function is to minimize the total cost CESP of
ESP, and Equations (5)–(7) represent power market transaction constraints, power network
flow constraints, and energy storage constraints, respectively.

3. CTbIGDT Model for ESP under Uncertain Environment

Subjected to the various influences of a myriad of factors, the operational landscape of
power market transactions is inherently rife with a plethora of uncertainties. A prominent
illustration of this uncertainty stems from the involvement of intermittent renewable energy
sources with variable predictability, culminating in pronounced undulations in electricity
prices within the market. Furthermore, the unpredictability inherent in user-side load
variations exerts a substantial sway over the deliberations guiding the ESP’s engagement
in electricity market transactions [22].

It is noteworthy that the ESP trading model, as expounded in the preceding section,
regrettably overlooks the risks engendered by this intricate nexus of uncertainties [23].
Consequently, a pivotal imperative arises to construct an ESP transactional decision model
within the purview of this section, one that adeptly accommodates the ramifications of
electricity market transactional risk and the intricate fabric of multiple uncertainties. This
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endeavor is underpinned by the theoretical framework of credibility theory and IGDT,
ushering forth a comprehensive and robust model calibrated to navigate the intricate
terrains of uncertainty-laden contexts.

3.1. Credibility Theory

The theory of credibility measures based on measure theory address a limitation
in possibility measures by introducing self-duality [24]. This advancement furnishes a
novel tool for investigating fuzzy decision problems, circumventing the potential pitfalls in
decision-making arising from conventional membership degree calculations.

Credibility measures can be represented using the least upper bound of variables in
a fuzzy event set. For any given set A ∈ <, the credibility measure of a fuzzy variable is
defined as follows [25]:

Cr{ξ ∈ A} = 1
2

(
sup
x∈A

µ(x) + 1− sup
x∈Ac

µ(x)

)
(9)

In this context, sup f (x) and 1− sup f (x) respectively denote the possibility measure
and necessity measure of set A. The complement of set A is represented by Ac and
represents the membership function of the fuzzy variable A, and sup denotes the upper
bound. Notably, the coefficient 1/2 in the equation ensures the establishment of self-duality.
Furthermore, for any non-empty set Θ, Equation (9) follows four axioms. The four axioms
and a brief introduction are given by Appendix A Axiom A1. The detailed proof process
can be found in Reference [25].

3.2. Credibility Theory-Based Information Gap Decision Theory

In light of the intricate web of uncertainties encompassing electricity prices and user
loads, the ESP can adeptly embrace a risk-averse strategy in orchestrating its electricity
market trading blueprint. In this paper, we establish credibility theory as a foundational
risk assessment methodology for uncertain price and load, incorporating both necessity
and randomness measures. Subsequently, we advance the concept by developing the
CTbIGDT optimization model, grounded in the consideration of expected costs, with
the primary aim of fortifying the robustness of electricity trading practices. Through the
manipulation of diverse anticipated cost targets, CTbIGDT emerges as a potent instrument,
capably quantifying distinct risk inclinations. This methodology effectively engenders
power market trading strategies that are uniquely aligned with the diverse risk preferences
exhibited by ESPs.

Distinguished from alternative methods of uncertainty modeling, CTbIGDT demon-
strates a distinctive attribute: it circumvents the need for an extensive corpus of data to
enact uncertainty modeling. Rather than demanding an exorbitant volume of data, CT-
bIGDT harnesses existing information on uncertainty parameters to optimize within the
permissible bounds of uncertainty, all while adhering to predefined objectives. By doing
so, CTbIGDT furnishes operators with insights into both potential favorable and adverse
outcomes that may transpire due to uncertainty. These insights enable operators to make
judicious and reasoned choices, grounded in safety or calculated risk. Unlike stochas-
tic programming and chance-constrained methodologies, CTbIGDT-driven approaches
sidestep the necessity of comprehending the probability distribution function of uncertain
parameters. Notably, CTbIGDT distinguishes itself from the realm of fuzzy uncertainty
modeling by obviating the requirement to ascertain or assign membership functions to
uncertain parameters.

At the crux of CTbIGDT lies the exploration of plausible ramifications attributable
to uncertain parameters while upholding preset objectives. In this context, “information”
pertains to the gamut of uncertain factors that impact the objective function, while the
term “gap” serves to demarcate the differential expanse between what is known and what
remains undisclosed. Notably, this approach eschews the need for an exhaustive compre-
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hension of intricate probability distributions tied to uncertain parameters, operating rather
within the confines of upper and lower bounds. In essence, the application of CTbIGDT
furnishes ESPs with a robust and adaptable methodology that navigates the intricate land-
scape of uncertainty, underpinning the decision-making process and facilitating optimal
outcomes while respecting predetermined parameters.

CTbIGDT stands as a judicious decision-making approach tailored to address intricate
uncertainties. Within this framework, two discernible strategies come to the fore: the Risk
Averse Strategy (RAS) and the Risk Seeker Strategy (RSS). RAS embarks on the construction
of a robust function by accentuating the amplification of uncertainty’s influence on the
resultant solutions. On the contrary, RSS endeavors to extract the utmost potential gains
from uncertain risks, thereby constructing an opportunity function of maximal returns.
Considering the focal objective of this paper—to mitigate the sway of uncertainty emanating
from electricity prices and load demand on ESP operational outcomes—RAS is judiciously
adopted to architect a CTbIGDT-based robust optimization model [26]. The overarching
design of the CTbIGDT robust model assumes the form as elucidated below:

max Cr(w)

s.t.



maxF(s, w) ≤ FC
FC = (1 + β)F0
G(s, w) = 0
K(s, w) ≤ 0
U(Cr(w), wp) =

{
Cr(w) :

∣∣∣w−wp
wp

∣∣∣ ≤ Cr(w)
}

(10)

where Cr(w) symbolizes the parameter of uncertainty, referred to as the “uncertainty
radius.” This parameter serves as an indicator of the oscillation scope inherent inthe un-
certain variable under consideration. F denotes the objective function, while s represents
the decision variable. The variable w embodies the actual value attributed to the uncertain
parameter, whereas wp signifies the anticipated value of said uncertain parameter. The
term encapsulates the optimal solution yielded by the deterministic model, designated as
F0. Furthermore, FC assumes the role of the maximum anticipated value deemed acceptable
by the decision-making entity. β is the deviation factor, indicating the degree of devia-
tion between the expected robust optimization target value and the deterministic model.
G(s, w) = 0 indicates equality constraints, including power balance constraints shown
by (5), energy storage constraints at adjacent moments given by (6), and energy balance
constraints in market transactions illustrated by (7). Conversely, K(s, w) ≤ 0 represents in-
equality constraints, consisting of the upper and lower limits of energy transaction, energy
storage charging and discharging, node voltage, and GT outputs. Importantly, U(Cr(w), w̃)
represents the amplitude of fluctuations attributed to the uncertain variables, contributing
a pivotal layer to the formulation’s nuanced framework.

3.3. CTbIGDT Model for ESP under Price and Load Uncertainty

In order to assess the likelihood of uncertain events, Zadeh introduced the concept
of possibility measures in [27] and necessity measures in [28]. While both measures have
been demonstrated to satisfy the properties of normality, non-negativity, and monotonicity,
they are not dual, meaning that the sum of possibilities or necessities for an uncertain event
and its complement does not equal one, as discussed in [29]. To address this limitation, the
authors in [29] introduced the use of credibility measures to capture the uncertainty arising
from the linguistic vagueness of possible values associated with uncertain variables. To this
end, we extend this theory by developing a credibility theory-based IGDT framework to
enhance the robustness of electricity trading under conditions of uncertainty, particularly
with respect to uncertain spot prices and load demands. Drawing upon the preceding
discourse, this study designates the electricity price and load demand within the electricity
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market as pivotal uncertain variables. The scope of oscillation inherent to these variables
can be succinctly articulated as follows:

U(Cr(λs
t ), λ

s,p
t ) =

{
Cr(λs

t ) :

∣∣∣∣∣λs
t − λ

s,p
t

λ
s,p
t

∣∣∣∣∣ ≤ Cr(λs
t )

}
(11)

U(Cr(Dt), Dp
t ) =

{
Cr(Dt) :

∣∣∣∣∣Dt − Dp
t

Dp
t

∣∣∣∣∣ ≤ Cr(Dt)

}
(12)

where λ
s,p
t and Dp

t are, respectively, the predicted values of spot market electricity price
and load. Cr(λs

t) and Cr(Dt) denote the credibility measures associated with electricity
price and load calculated by Equation (9) to study the risk brought by uncertain price and
load, respectively.

As a result, the CTbIGDT model for optimizing ESP decisions within an uncertain
context is derived as presented below:

max[Cr(λs
t), Cr(Dt)]

s.t.


maxCESP ≤ (1 + β)C0

λs
t ∈ U

(
Cr(λs

t), λ
s,p
t

)
Dt ∈ U

(
Cr(Dt), Dp

t

)
s.t.(5) ∼ (7)

(13)

where C0 denotes the objective function value derived from Equation (8) within a deter-
ministic environment and symbolizes the factor of robust deviation.

Considering the intricate nature of the model described above, which operates within
the framework of a bi-level multi-objective optimization, solving it directly presents a
formidable challenge. To address this complexity, we initiate the optimization process
by transforming the objective function into maxmin([Cr(λs

t), Cr(Dt)]) using robust opti-
mization principles. Additionally, it is important to highlight that in typical scenarios,
the simultaneous presence of peak spot prices and increased electrical load demand in
the electricity market results in the highest aggregate operating costs for ESP. Therefore,
the term maxCESP ≤ (1 + β)C0 within the robust model can be equivalently expressed as
CESP ≤ (1 + β)C0.

In summation, the robust optimization framework governing ESP trading within an
uncertain context can be succinctly expressed as follows:

maxmin([Cr(λs
t ), Cr(Dt)])

s.t.


CESP ≤ (1 + β)C0
λs

t = (1 + Cr(λs
t ))λ

s,p
t

Dt = (1 + Cr(Dt))Dp
t

s.t.(5) ∼ (7)

(14)

4. Case Study

This paper undertakes a comprehensive numerical investigation within the context
of a modified IEEE 33-node distribution network system. The distinct topology of the
network is visually depicted in Figure 2. Notably, two GTs are interconnected with nodes 5
and 10, respectively, serving as sources of power for end users. The ESU is integrated into
the system at node 2. This paper assumes the presence of ten bilateral contracts available
for selection. Contracts 1–5 are applicable during off-peak periods, while contracts 6–10
are suitable for selection during peak periods. The strike price and option price of call
options are 52.1$/MWh and 3.2$/MWh, respectively. Moreover, for a comprehensive view
of the detailed data, please refer to the specifics outlined in Reference [30]. Comprehensive
information regarding bilateral contracts and specifications for GT units can be found
in Appendix A Tables A1 and A2, respectively. Furthermore, Figure 3 delineates the
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anticipated spot price trends and electric load projections. In this paper, a mathematical
model is formulated using the MATLAB platform, and we utilize the SCIP solver within
the YALMIP toolbox to solve the optimization problem.
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4.1. Analysis of ESP Electriticy Trading Strategy under Different Markets

Initially, we assume that the deterministic environment mirrors the actual electricity
price, and the predicted load serves as the baseline. The uncertain environment is repre-
sented when the robust deviation factor β is 0.1. The costs under both the deterministic and
uncertain environments have been organized systematically in Table 1 for reference within
the narrative. From the table, we can see that compared with the deterministic environment
cost, the main increasing cost in an uncertain environment happens in electricity trading,
which increases by 10%. Under the proposed optimization framework, ESP enhances
the robustness of system operations by accepting certain costs considering the uncertain
electricity price.

Table 1. Cost comparison under different environments.

Deterministic Environment Uncertainty Environment

CESP $1804.3 $1984.8.
Cm $1273.5 $1429.6
CGT $530.40 $554.80
CESU $0.4636 $0.4053
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In the deterministic environment, the corresponding trading strategies for electricity
purchases in different electricity markets are intuitively represented in Figure 4. As gleaned
from Figure 4, a discernible pattern emerges wherein the electricity market activities of ESP
display distinct preferences across different time periods. During off-peak intervals, the
prevailing modus operandi of ESP’s electricity market interactions predominantly centers
on spot market involvement coupled with bilateral contract engagements. In contrast,
as peak hours ensue, the primary focus shifts to a blend of spot market participation
and option contract negotiations. Notably, during specific time slots, namely at 11:00
and 12:00, the conspicuous escalation in spot prices instigates a strategic response from
ESP. Driven by the objective of curbing electricity procurement expenses, ESP adeptly
adjusts its transactional approach by tempering the volume of spot market transactions
while concurrently augmenting the volume of transactions executed through the more
economically advantageous bilateral contracts.
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In the broader spectrum, the comprehensive breakdown of transactions reveals that
electricity procurement from the spot market totals 39.13 MWh. Simultaneously, the vol-
ume of bilateral contract transactions amounts to 12.54 MWh, whereas option contracts
contribute substantially, amounting to 15.47 MWh. This strategic utilization profile, dis-
cernible from the insights gleaned from Figure 4, underscores the dynamic and astute
decision-making employed by ESP in navigating the intricate landscape of electricity mar-
ket dynamics. The nuanced blend of spot market, bilateral contracts, and option contracts
attests to ESP’s strategic acumen in optimizing cost efficiencies aligned with real-time
market fluctuations.

The strategic blueprint governing ESP’s electricity market transactions within an
uncertain milieu is illustrated in Figure 5. For further insight into the specifics of distinct
bilateral contract procurements within both certain and uncertain environments, readers
are directed to Appendix A Table A3.

According to Figure 5, distinct patterns emerge in ESP’s electricity market transactions
across varying time periods. During off-peak intervals, the predominant mode of trans-
action centers around both the spot market and the bilateral contract arena. In contrast,
as peak hours ensue, a shift occurs wherein electricity market dealings pivot towards a
combination of option contracts and bilateral contracts. A conspicuous observation emerges
when comparing ESP’s electricity market purchasing strategy in a certain environment with
that within an uncertain environment. Evidently, ESP displays an inclination to elevate the
trading volume of option contracts and bilateral contracts in the face of uncertainty. This
strategic shift can be attributed to ESP’s deliberate efforts in mitigating the ramifications
of multiple uncertainties. By opting for comparatively more stable bilateral contracts and
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option contracts, ESP effectively mitigates exposure to uncertain spot market dynamics,
thus leading to a reduction in transaction volume within this realm.
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In broader terms, the delineation of transactions reveals a procurement of 21.42 MWh
from the spot market, while the bilateral contract transactions contribute a volume of 15.52
MWh. Significantly, the option contract transactions emerge as a prominent component,
amounting to 34 MWh. This strategic recalibration of transactional volumes, evident from
Figure 5, underscores ESP’s proactive approach in confronting uncertainty, strategically
leveraging bilateral contracts and option contracts to curtail exposure to volatile spot
market conditions.

4.2. ESP Trading Strategy Analysis under Uncertainties

The trading strategies adopted by ESP within deterministic and uncertain environ-
ments are visually depicted in Figure 6.

The insights gleaned from Figure 6a reveal ESP’s strategic maneuvers within the
off-peak period, whereby a strategic decision is made to accumulate surplus electricity
within the ESU. A distinct contrast emerges during peak hours, particularly within the
11:00–12:00 timeframe, where the pronounced escalation in spot prices compels ESP to
significantly curtail its spot market electricity procurement. Driven by the imperative of
cost minimization, ESP strategically opts to truncate electricity purchases from the market
while concurrently amplifying GT output and tapping into the stored energy reserves
within the ESU, especially during off-peak intervals.

Turning attention to Figure 6b, a conspicuous departure is discernible in comparison
to Figure 6a. Here, ESP’s modus operandi maintains a more pronounced emphasis on
electricity market transactions during peak periods. When contextualized with Figure 5,
this strategic shift can be attributed to ESP’s heightened engagement in bilateral contracts
and option contracts. The rationale underpinning this shift is grounded in the fixed pricing
nature of bilateral contracts and option contracts, serving as a strategic hedge against the
volatility inherent in spot prices. In navigating the uncertainty-laden environment, ESP
adeptly leverages these contracts to secure load demand while meticulously managing op-
erational risks arising from multifaceted uncertainties. This nuanced adaptation, elucidated
through Figure 6a,b, underscores ESP’s dynamic responsiveness to the prevailing market
dynamics and its strategic acumen in mitigating risks within an intricate and uncertain
energy landscape.
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4.3. The Influence of Robust Deviation Factor and Uncertainty on ESP Trading Strategy

Under different robust deviation factors, the operating cost of ESP and the correspond-
ing change of uncertainty radius are shown in Figure 7.

Figure 7 unveils a discernible trend wherein the escalation of the deviation factor cor-
responds to an augmentation in the uncertainty radius, consequently driving an increase
in ESP’s operational cost. This shift can be attributed to decision makers harboring a pes-
simistic outlook, apprehending the adverse repercussions of uncertainty in spot electricity
prices and load dynamics on cost optimization. Remarkably, the application of CTbIGDT
ensures that the system’s scheduling cost remains below the anticipated value even in the
face of fluctuating uncertainties. This, in turn, guarantees the secure and stable operation
of the system. Hence, in real-world operation, ESP must adeptly strike a balance between
safety and economy, devising a power market transaction scheduling strategy tailored to
the prevailing circumstances to optimally fulfill operational requisites.

To validate the efficacy of the ESP optimization model grounded in IGDT in bolstering
the robustness of ESP’s power market transactions, this study embarks upon the following
scenarios. Scenario 1: Only addressing the uncertainty of spot price. Scenario 2: Only
considering the uncertainty of electrical load. Scenario 3: Simultaneously accounting for
the uncertainty of spot electricity price and electrical load.
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Figure 7. The operating cost and uncertainty radius of ESP under different robust deviation factors.

Across these diverse scenarios, Table 2 meticulously delineates the altering cost and
uncertainty radius for distinct facets of ESP, contingent on the robust deviation factor. The
strategic scheduling strategies for scenarios 1 and 2, where the robust deviation factor
is set at 0.1, are visually portrayed in Figure 8a,b, respectively. The scheduling strategy
of Scenario 3 is portrayed in Figure 6b above, and to avoid repetition, further analysis
pertaining to this scenario has been omitted.

Table 2. The influence of robust deviation factor on cost in different scenarios.

Scenario 1 Scenario 2 Scenario 3

β = 0.01 β = 0.05 β = 0.1 β = 0.01 β = 0.05 β = 0.1 β = 0.01 β = 0.05 β = 0.1

CESP $1822.4 $1894.6 $1984.8 $1822.4 $1894.6 $1984.8 $1822.4 $1894.6 $1984.8
Cm $1277.8 $1364.9 $1454.4 $1287.2 $1348.2 $1392.1 $1278.5 $1345.6 $1429.6
CGT $544.08 $529.33 $530.13 $534.74 $545398 $592.29 $543.39 $548.50 $554.80
CESU $0.5014 $0.4607 $0.2685 $0.4560 $0.4180 $0.4019 $0.4853 $0.4425 $0.4053
Cr(w) 0.0193 0.1048 0.2329 0.0074 0.0.364 0.0586 0.0053 0.0267 0.0538

A comprehensive analysis of Table 1 underscores a recurring pattern: within the same
scenario, an escalation in the robust deviation factor invariably precipitates an expansion
of the uncertainty radius. This compelling observation serves as a testament to the capacity
of CTbIGDT to not only mitigate risks but also enhance its resistance to uncertainties. In
essence, this amplifies the system’s robustness, exemplifying the potency of CTbIGDT
in bolstering resilience. Turning attention to Figure 8, a nuanced panorama comes into
focus, revealing distinct deviation radius magnitudes engendered by diverse uncertain
factors under identical deviation factors. Additionally, these variances in uncertain factors
concurrently yield disparate power trading strategies.

Scenario 1 exclusively contemplates the uncertainty associated with electricity prices.
Under this circumstance, ESP strategically opts to pare down electricity market transac-
tions, thereby curtailing costs prior to satisfying load demand. In contrast, Scenario 2 solely
addresses the uncertainty linked to load demand. Here, ESP opts to amplify electricity
market transactions, ensuring alignment with load demand imperatives. Furthermore,
during off-peak intervals, ESP judiciously stockpiles energy within the ESU to act as a
safeguard against the potential impact of uncertain load demand during peak periods.
In summation, ESP must meticulously harmonize its risk aversion proclivity with the
enhancement of transactional robustness, all while steadfastly upholding economic con-



Energies 2023, 16, 7543 15 of 18

siderations. This orchestration ensures a judicious equilibrium, custom-tailored to ESP’s
unique operational context.

In a context where generation availability is uncertain and price fluctuations can
be volatile, it is essential to emphasize that adopting a conservative approach does not
always guarantee lower costs, as is often the case in financial trading. Our optimization
suggestion extends beyond the realms of academic exercise. It is specifically designed to
navigate the intricate landscape of uncertainty, delivering tangible benefits not only to
the system’s stability but also to the economic considerations of market participants. By
embracing a balanced approach that carefully considers risk and return, our methodology
serves as a practical tool to assist both system operators and market participants in making
well-informed decisions that can yield both cost-efficiency and system reliability.
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5. Conclusions

Aligned with the multifaceted uncertainties arising from spot electricity prices and
user load demand, which pose significant challenges to power service providers during
operational activities in power trading, this study introduces an ESP power trading op-
timization framework rooted in CTbIGDT. Through empirical illustration, the findings
accentuate a discernible trend: a rise in the robust deviation factor corresponds to an eleva-
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tion in the anticipated cost, paralleled by an expanded uncertainty radius. Consequently,
with a heightened focus on mitigating the negative impact of multiple uncertain risks, ESP
enhances the robustness of system operations by accepting certain costs. Notably, when
confronted with these uncertain risks, ESP opts to amplify the trading volume associated
with bilateral contracts and option contracts within its market trading strategy while con-
currently reducing involvement in the spot market. This strategic adjustment effectively
enhances the resilience of system optimization operations.

The ESP optimization model, forged on the foundations of CTbIGDT, scrupulously
embraces the risk inclination of decision makers. This comprehensive approach culminates
in the derivation of transactional and systemic scheduling strategies adeptly calibrated
to attain predefined cost targets. This pivotal step invariably enhances ESP’s robustness
within the realm of power trading. By amalgamating these nuanced elements, the model
effectively equips power service providers with innovative tools and conceptual paradigms,
thereby furnishing valuable insights to guide risk-informed decision-making within the
intricate domain of power trading participation. This pioneering approach provides a new
approach and pragmatic solution for power service providers facing complex risk-related
dilemmas, reducing the high cost risks that uncertainty factors may bring while navigating
the multi-faceted environment of power transactions.
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Appendix A

Axiom A1:

Axioms 1 : Cr{Θ} = 1
Axioms 2 : Cr{A1} 6 Cr{A2}, A1 ⊆ A2 ⊆ Θ
Axioms 3 : Cr{A}+ Cr{Ac} = 1, A ⊆ Θ
Axioms 4 : Cr{∪i Ai} = supiCr{Ai}, supiCr{Ai} < 0.5

Axiom 1 says that the trustworthiness measure of the entire nonempty set Θ is equal
to 1; Axiom 2 states that if A1 ⊆ A2 ⊆ Θ, then their trustworthiness measure satis-
fies Cr{A1} 6 Cr{A2}. Axiom 3 indicates that the trustworthiness measure of set A
and the trustworthiness measure of its complement Ac add to 1. Axiom 4 says that if
supiCr{Ai} < 0.5, then Cr{∪i Ai} = supiCr{Ai} is satisfied.

Table A1. GT unit parameters.

GT PGT
t,n (MW) QGT

t,n (MVar) aGT ($/MW2) bGT ($/MW) cGT ($)

GT1 [0, 1.5] [0, 0.5] 0.12 20.0 0
GT2 [0, 2.0] [0, 1.0] 0.09 15.0 0
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Table A2. Bilateral contract parameters.

Contract
Number Time (h) Minimum

Value (MW)
Maximum

Value (MW)
Contract Price

($/MWh)

1 peak absence 0.06 0.15 17
2 peak absence 0.08 0.2 16.5
3 peak absence 0.1 0.25 15
4 peak absence 0.1 0.3 14
5 peak absence 0.12 0.4 13
6 peak period 0.06 0.15 25
7 peak period 0.08 0.2 24.5
8 peak period 0.1 0.25 23.5
9 peak period 0.1 0.3 23
10 peak period 0.12 0.4 22

Table A3. Comparison of bilateral contract transaction volume in different environments.

Contract Number 1 2 3 4 5 6 7 8 9 10

Deterministic environment 0 0 1.15 MW 1.50 MW 2.80 MW 0 0 0 0 4.56 MW
Uncertain environment 0.78MW 1.04 MW 1.75 MW 2.10 MW 2.80 MW 0 0 0 0 5.96 MW
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