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Abstract: Due to the transition toward the Internet of Everything (IOE), the prediction of energy
consumed by household appliances has become a progressively more difficult topic to model. Even
with advancements in data analytics and machine learning, several challenges remain to be addressed.
Therefore, providing highly accurate and optimized models has become the primary research goal
of many studies. This paper analyzes appliance energy consumption through a variety of machine
learning-based strategies. Utilizing data recorded from a single-family home, input variables com-
prised internal temperatures and humidities, lighting consumption, and outdoor conditions including
wind speed, visibility, and pressure. Various models were trained and evaluated: (a) multiple linear
regression, (b) support vector regression, (c) random forest, (d) gradient boosting, (e) xgboost, and
(f) the extra trees regressor. Both feature engineering and hyperparameter tuning methodologies
were applied to not only extend existing features but also create new ones that provided improved
model performance across all metrics: root mean square error (RMSE), coefficient of determination
(R2), mean absolute error (MAE), and mean absolute percentage error (MAPE). The best model (extra
trees) was able to explain 99% of the variance in the training set and 66% in the testing set when
using all the predictors. The results were compared with those obtained using a similar methodology.
The objective of performing these actions was to show a unique perspective in simulating building
performance through data-driven models, identifying how to maximize predictive performance
through the use of machine learning-based strategies, as well as understanding the potential benefits
of utilizing different models.

Keywords: appliances; energy; prediction; machine learning; feature engineering

1. Introduction

In the energy industry, specific simulation tools are frequently used to study and
predict building energy consumption. Examples of these tools include DOE-2, Energy Plus,
ESP-r, and DeST. Although these tools can accurately predict building loads and energy
use, unlike machine learning models, they frequently require the physical and geometric
properties of the buildings being analyzed. Using machine learning can simplify the data
requirements needed to perform a specific analysis. Furthermore, the physical models can
vary depending on the software used for the analysis [1]. With the recent rise of artificial
intelligence and machine learning, more work is being performed to integrate machine
learning techniques into the field. This can be identified in numerous studies [2–6], giving
researchers the opportunity to utilize machine learning tools to study the effect of numerous
building parameters on energy-based outputs, making the procedure more efficient if a
database of similar structure is available.

For this specific case, focus is placed on “Data driven prediction models of energy use
of appliances in a low-energy house” by Candanedo, L.M.; Feldheim, V.; and Deramaix,
D. [2]. With the emphasis being model improvement, work is performed on applying
methodologies including feature engineering [7–10] that leverages data to create new
variables that are not found in the original dataset, with the goal of simplifying and
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speeding up data transformations while also improving model accuracy. Correlation
analyses [11–13] are utilized to identify how well parameters correlate with each other
in order to determine whether certain variables have to be dropped or adapted to form
stronger relationships within the dataset. Hyperparameter tuning [14–18] is utilized to test
different hyperparameter configurations when training models, providing the optimized
hyperparameter set that will maximize a model’s predictive accuracy. Six regression models
were applied and tested; these included (a) multiple linear regression (LM), (b) support
vector regression (SVR), (c) random forest (RF), (d) gradient boosting (GB), (e) xgboost
(XGB), and (f) extra trees (ET). The first four models, (a)–(d), were utilized in the original
analysis, and the goal was to use these same models again to prove the effectiveness of
the methodologies mentioned above and how they alone can significantly improve model
performance. Models (e)–(f), on the other hand, are more advanced machine learning
algorithms, with the idea of fully maximizing performance to achieve the best possible
results. Further details of these models are provided in Section 3.2.

To reiterate, the analysis deals with simulating aggregated appliance energy use utiliz-
ing machine learning algorithms. Therefore, we focused on machine learning applications
for energy efficiency, appliance energy use, building loads, and building energy consump-
tion, as well as general overviews on model optimization, in order to analyze how different
approaches and strategies can be applied to predicting appliance energy use, including
methods that can be used to improve performance.

“Accurate quantitative estimation of energy performance of residential buildings using
statistical machine learning tools” [3] developed a machine learning framework to precisely
quantify the energy efficiency of residential buildings, where the impact of eight input
factors—relative compactness, surface area, wall area, roof area, overall height, orientation,
glazing area, and glazing area distribution—on two key output variables, heating load (HL)
and cooling load (CL), was investigated. In the study, classical linear regression and random
forest were utilized to estimate HL and CL. Simulations were performed on 768 diverse
residential buildings and compared to results from Ecotect, a tool specifically used for
building and environment simulations. The results supported the practicality of using
machine learning tools to estimate building parameters as a precise and straightforward
approach.

“Gradient boosting machine for modeling the energy consumption of commercial
buildings” [5] focuses specifically on accurate savings estimations paired with advanced
metering infrastructure (AMI) data, in order to evaluate energy efficiency applications
including demand response, and heating, ventilation, and air conditioning (HVAC) op-
timization. Gradient boosting was applied to work on an energy consumption baseline
modeling method. To assess the performance, a large dataset of 410 commercial buildings
was included in the testing procedure. The results demonstrated that using GB improved
the machine learning metrics R-squared and RMSE, in more than 80 percent of the cases,
when compared to an industry-standard model that was created using piecewise linear
regression.

When reviewing the overall appearance of machine learning in energy efficiency,
it can be seen that various models such as polynomial regression [19], support vector
machines (SVM) [4,20], artificial neural networks (ANNs) [21,22], and decision trees [5,6]
have been utilized to predict specific variables within the energy efficiency field. Machine
learning tools have also been explicitly used in predicting appliance energy use in other
studies. Moldovan and Slowik [23] used multi-objective binary gray wolf optimization,
employing the algorithms random forest, extra trees, decision tree, and K-nearest neighbor
to predict the energy consumed by household appliances. Lentzas and Vrakas [24] applied a
decision table, random forest, naive Bayes, multilayer perceptron (MLP), and a deep neural
network (Deep NN) to the UK-DALE dataset, a well-known dataset for non-intrusive load
monitoring (NILM), in order to predict appliance energy use as a method for identifying
the occupancy of residents in households. Priyadarshini et al. [25] focused on monitoring
energy consumption in smart homes by deploying decision trees (DTs), random forest (RF),
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extreme gradient boosting (XGB), and K-nearest neighbor (KNN) and proposing a DT-RF-
XGB ensemble model that was compared to the baseline algorithms. Ma et al. [26] employed
hybrid deep learning models to enhance the energy efficiency of HVAC systems in smart
buildings. Their optimization focused on factors such as power loss, price management,
and reactive power. Examples of these models included long short-term memory (LSTM),
gated recurrent unit (GRU), and Drop-CRU. Wang et al. [27] used machine learning in the
context of energy forecasting to reduce the overconsumption of household power. Deep
learning with a metaheuristic-based algorithm was proposed to address the constraints and
consumption of HVAC units. Perwez et al. [28] integrated spatial and synthetic techniques
in the context of a novel hybrid model in order to investigate multiple building-orientated
elements, including building system stock dynamics and HVAC systems.

The rest of this paper includes four other sections. Section 2 provides an in-depth
description of the data and a look into the correlation studies and feature engineering
that were performed on the original dataset. Section 3 breaks down the results, including
the models that were used and why, training and testing procedures that were applied to
the models, and metrics that were utilized to understand the performance of each model.
Section 4 discusses the results in order to analyze how each model performed relative to the
others and the original analysis. Section 5 provides concluding thoughts and suggestions
for future work that could help contribute to this analysis and prior research performed in
this area.

2. Materials and Methods

Although the data were collected from the UC Irvine (UCI) Machine Learning Reposi-
tory, a brief description of how the data were recorded is provided as a means to include
both context and reasoning for utilizing certain methodologies.

As mentioned in the introduction, various features were monitored within a single-
family home. Aggregated appliance energy use included a variety of residential devices:
fridge/freezer, washing machine, dryer, internet router, induction cooktop, microwave,
oven, dishwasher, electrical blinds, TV, laptop, printer, alarm clock, lamps, and radio. The
corresponding information was recorded with an internet-connected energy monitoring
system. The indoor temperature and humidity conditions were monitored with a wireless
sensor network. The sensors, used to record temperature and humidity, were placed on all
floors in different rooms of the house, including the laundry room, kitchen, living room,
office, bedrooms, and bathrooms.

The overall goal was to predict aggregated appliance energy use, which in this case
was continuous numerical data, recorded in watt-hours (Wh) and jotted every 10 min.
Lighting consumption was incorporated because it proved to be a reliable predictor of
room occupancy when coupled with relative humidity measurements. All data modeling
and preprocessing were performed in Python, more specifically Google Colab [29]. The
time span of the dataset was 137 days (4.5 months). The packages utilized in this analysis
included NumPy [30], Matplotlib [31], Pandas [32], and Scikit-Learn [33]. For outdoor
variables, data were monitored using a nearby airport weather station. Features that were
monitored included temperature, pressure, humidity, wind speed, visibility, and dewpoint
temperature. This was done in order to evaluate the impact of outdoor conditions on
appliance energy use. Any data that were not collected in 10 min intervals were averaged
across 10 min periods in order for merging to be successful. Table 1 provides the complete
list of features for this dataset. Utilizing existing data, the original study also derived three
supplementary variables: the number of seconds from midnight for each day (NSM), the
categorization of the day as a weekend or workday, and the specific day of the week. As a
final note, since there were not any issues with the overall data in terms of shape, formatting,
significant outliers, null cells, or incorrect data types, additional data exploration beyond the
correlation analysis and feature engineering conducted in Section 3.1 was not undertaken.
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Table 1. Data variables and their corresponding units.

Variables Units

Appliance energy consumption Wh
Light energy consumption Wh
T1-T9, Indoor temperatures ◦C

RH1-RH9, Indoor humidities %
To, Temperature outside ◦C

Pressure mm Hg
RHo, Humidity outside %

Wind speed m/s
Visibility * km
Tdewpoint ◦C

Number of seconds from midnight (NSM) s
Week status (weekend or weekday) Categorical

Day of week Categorical

Date time stamp * year-month-day
hour:min:s

Month month
Day day

Hour h
Hour_sin, hour sine transformation -

Hour_cos, hour cosine transformation -
Season (autumn, winter, spring, or summer) Categorical

* Any variable marked was either dropped from the analysis or not directly included.

3. Results
3.1. Data Preprocessing

Two major data preprocessing techniques were utilized in order to improve overall
model performance. These included correlation analysis and feature engineering. This
was preferred over traditional approaches like principal component analysis (PCA) [34] or
singular value decomposition (SVD) [35] due to the desire to study not only feature relation-
ships, but also how features correlated with the target variable (appliances). Furthermore,
by keeping the data as physical variables, the results can be more easily compared to other
methodologies such as building models from DOE-2 or Energy Plus, versus transforming
the data into a set of uncorrelated principal components. Correlation analysis was used
to determine the relationship between multiple variables. By identifying the correlation
between variables, it becomes possible to understand how they influence each other and
how they might interact in the analysis. This can be useful in a number of ways, such as
identifying and removing variables that show a lack of correlation with other features, as
well as discovering unique relationships that are not necessarily intuitive on the surface
when initially reviewing data. Feature engineering, on the other hand, was used to create
new features from the existing ones. This helps to provide more relevant and useful infor-
mation. In some cases, certain features can be transformed and normalized to a particular
range, allowing for a possible reduction in data discontinuity. The impact of both methods
for this analysis will be discussed further in the following subsections.

3.1.1. Correlation Analysis

The correlation analysis was executed using Spearman′s Rank [36], a coefficient that
spans the range from−1 to +1. A coefficient of +1 signifies a perfect positive correlation,−1
denotes a perfect negative correlation, and 0 signifies a complete absence of any relationship.
The equation is provided below, where di is the difference between the ranks of each
observation and n is the number of observations. The ranking is achieved by giving the
ranking of ‘1’ to the largest value in a variable, ‘2’ to the second largest, and so on.

ρ = 1−
6∑n

i=1 d2
i

n(n2 − 1)
(1)
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As shown in Figure 1a, notable variables included lighting consumption and T2 at
0.3. Lighting and appliance energy use are both major sources of energy consumption,
not only in households but in commercial buildings as well. Since T2 is the living room
temperature, a living room is the most used room in a household; therefore, the temperature
in a highly occupied room can heavily influence how people use appliances. For the
remaining indoor temperatures, the correlations are all relatively high and positive. For
Figure 1b, the correlations between appliance energy use and T4, T5, and T6 are 0.21, 0.19,
and 0.24, respectively. For Figure 1c, T7, T8, and T9 have correlations of 0.18, 0.24, and
0.17 with appliance energy use. A positive correlation of 0.22 is seen between appliances
and outdoor temperature. Wind speed also exhibited a positive correlation of 0.11 with
appliances. Visibility was the only variable that showed little to no correlation with
appliances (−0.0031); therefore, it was removed from the dataset.
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Figure 1. (a) Correlation plot between appliance energy use, lighting, T1, T2, T3, RH1, RH2, and RH3
using Spearman’s Rank. T1 and RH1 correspond to the kitchen; T2 and RH2 correspond to the living
room; T3 and RH3 correspond to the laundry room. (b) Correlation plot between appliance energy
use, T4, T5, T6, RH4, RH5, and RH6 using Spearman’s Rank. T4 and RH4 correspond to the office;
T5 and RH5 correspond to the bathroom; T6 and RH6 correspond to the outdoor conditions directly
outside the house. (c) Correlation plot between appliance energy use, T7, T8, T9, RH7, RH8, and
RH9 using Spearman’s Rank. T7 and RH7 correspond to the ironing room; T8 and RH8 correspond
to the guest room; T9 and RH9 correspond to the master bedroom. (d) Correlation plot between
appliance energy use and the outdoor variables that were monitored at the nearby airport weather
station: visibility, temperature, pressure, humidity, wind speed, and dewpoint temperature. Variable
names and their corresponding descriptions were pulled from the original paper [2].

3.1.2. Feature Engineering

As mentioned in the data section, the original paper generated three extra variables
from the raw data: the number of seconds from midnight for each day (NSM), the catego-
rization of the day as a weekend or workday, and the specific day of the week. In reviewing
this, there was an opportunity to introduce a few additional variables using the date time
stamp provided in the raw data. Since the time stamp was not integrated into the modeling,
additional information can be extracted. Hour, month, and day features were created from
the time stamp.
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Using the monthly variable, seasonal categorical data were created (autumn, winter,
spring, or summer) based on the corresponding month. Before modeling, the seasonal
data were converted into numeric form using label encoding [37]. For this case, the data
were converted into a number sequence: {0,1,2,3}, where 0 represents autumn, 1 represents
winter, 2 represents spring, and 3 represents summer.

When reviewing the cyclical features (hour, month, and day), there was an opportunity
for encoding using sine/cosine transformations [38]. These are performed to normalize the
range and reduce the discontinuity in the data. In order to perform these transformations
successfully, the feature has to be consistent, complete, and a repeated cycle. Therefore,
both the month and day features were ruled out. This is due to the fact that there was only
4.5 months’ worth of data, meaning the month cycle was not complete. For the day feature,
since the number of days varies depending on the month, this lack of consistency means
that the plot will not always reach the peaks and troughs of the curve, since the maximum
days in a specific month change. We employed both sine and cosine. Solely utilizing sine
would present a challenge, as it could result in two distinct timestamps having the same
sine encoding value within a single cycle, owing to the symmetrical nature of the graph
around turning points. To address this issue, we also incorporated cosine encoding, which
represents a phase offset from the sine encoding and results in unique values within a
cycle when considered in two dimensions. The equations for these encoding methods are
detailed as follows:

xsin = sin
(

2πx
max(x)

)
(2)

xcos = cos
(

2πx
max(x)

)
(3)

Using Equations (2) and (3), sine/cosine transformations were created from the hourly
data. This provides more precision since there is now more useful information per observa-
tion. Additionally, the transformations result in the range being normalized from the initial
range of 0 to 24 to the current range: −1 to +1. This also makes a difference since each hour
is now similar in weight, so no single hour can steer model performance in one direction
simply due to its magnitude.

3.2. Modeling

As mentioned in the introduction, six models were trained and evaluated: (a) multiple
linear regression (LM), (b) support vector regression (SVR) [39], (c) random forest (RF) [40],
(d) gradient boosting (GB) [41], (e) xgboost (XGB) [42], and (f) the extra trees model
(ET) [43]. Support vector regression uses support vectors to map the input space into a
higher-dimensional feature space, in which linear regression is executed. The objective of
SVR is to identify a hyperplane that optimizes the separation between predicted and actual
values. In this case, the best-fit line is the hyperplane that has the maximum number of
points. Random forest is an ensemble learning algorithm, where multiple decision trees
are constructed using a random subset of features. The best split is then chosen from the
subset based on the information gained. The process of splitting continues recursively until
an ending condition has been reached (e.g., reaching max depth). Each decision tree uses
a unique subset of data and variables, making the process less prone to overfitting. The
final prediction is made by averaging the predictions of all decision trees. Extra trees are
very similar to random forest conceptually, the only difference is that the split is chosen
randomly, without considering the quality of the split. The idea is to speed up the training
process and make the trees more diverse in an effort to improve model generalization
capabilities. Gradient boosting works by building a sequence of decision trees, where each
subsequent tree is trained to correct the errors made by the previous tree. The algorithm
tries to minimize a loss function, such as mean squared error (MSE), by iteratively adding
decision trees to the ensemble. The process is repeated for a specified number of iterations
or until the loss function is minimized to a satisfactory level. Xgboost is similar to gradient
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boosting but offers several regularization techniques, including L1/L2 regularization, tree
pruning, and early stopping. In this case, L1 represents lasso regression and L2 represents
ridge regression. One other key difference is that xgboost offers parallel tree boosting. The
following subsections provide details on the training/testing procedure; how models were
tuned, including their corresponding hyperparameter configurations; a brief overview of
the metrics utilized; and the final results.

3.2.1. Training/Testing Procedure

All regression models were trained with 10-fold cross-validation [44]. In this technique,
the data are divided into 10 subsets. The model is then trained and evaluated 10 times,
using a different subset as the validation set each time. The average for each is then
taken and used as the final result. This allows for a more accurate estimate of the model’s
performance, as it ensures that the evaluation is based on a larger and more diverse set of
data instead of an iteration that is only based on a single randomized split.

The models were also tuned using random search [45], a form of hyperparameter
tuning where the goal is to randomly sample a set of hyperparameters from a predefined
distribution and evaluate a model’s performance with each set of randomly chosen con-
figurations. Using the original paper as a guideline, SVR required two tuning parameters,
gamma and cost. Gamma controls the shape of the decision boundary, while cost deter-
mines the trade-off between achieving a low training error and a low testing error. The
optimal values for these were 0.4 and 12, respectively. For random forest and extra trees, the
models require finding the optimum number of trees and the number of randomly selected
predictors. Using random search, both random forest and extra trees had 500 estimators
(number of trees) and 10 max features as their optimum values. For gradient boosting, the
original paper still held the optimal configuration which was 10,900 estimators and a max
tree depth of 5. For xgboost, random search was again utilized with the optimal values
being 400 estimators and a max tree depth of 9.

3.2.2. Model Performance

In order to compare performance between models, a variety of metrics were utilized:
root mean square error (RMSE), coefficient of determination (R2), mean absolute error
(MAE), and mean absolute percentage error (MAPE). The corresponding equations for
these are provided as follows:

RMSE =

√
∑n

i=1
(
Yi − Ŷi )2

n
(4)

R2 = 1− ∑n
i=1 (Yi − Ŷi )

2

∑n
i=1 (Yi −Yi )2 (5)

MAE =
∑n

i=1
∣∣Yi − Ŷi

∣∣
n

(6)

MAPE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣

Yi
(7)

where Yi is the actual measurement, Ŷi is the predicted value, Yi is the mean, and n is the
number of measurements.

4. Discussion

As shown in Tables 2 and 3, LM, SVR, GB, and RF performed better across all metrics
than the corresponding LM, SVR, GB, and RF in the original paper. As a clarification
note, lower RMSE, MAE, and MAPE values indicate a better model fit, due to the fact
that these metrics find the difference between the predicted and actual measurements.
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Meanwhile, R2 measures the goodness of a model fit; therefore, a higher R2 indicates a
better result. Since XGB and ET were not utilized in the original paper, they were compared
to the best individual result across each metric: RMSE= 66.65, R2 = 0.57, MAE = 31.36, and
MAPE = 29.76. Reviewing Table 3, you can see that both models performed better than all
corresponding metrics except for the XGB MAPE which was slightly higher by 0.08%. The
best-performing model though was ET, which had the lowest RMSE, MAE, and MAPE and
the highest R2 across all models including the original analysis. ET performed significantly
better on average due to its extra level of randomness compared to traditional decision trees.
In addition to using random subsets of data for training and random subsets of features for
node splitting, ET selects the splitting threshold for each feature randomly. This increased
randomization helps reduce overfitting and promotes diversity among individual trees in
the ensemble. While models can have a bias towards the data they are trained on, ET tends
to have a significantly lower bias. This is because the additional randomization reduces
the likelihood of capturing noise in the data during tree construction. Finally, if timing
and resources are a concern, the randomness of ET provides faster run times during the
training and tuning process due to lower computational costs.

Table 2. Model performance. Testing set.

Model RMSE R2 MAE MAPE

LM 91.52 0.2 51.61 58.89
SVR 68.31 0.55 30.61 28.66
GB 64.77 0.6 31.29 31.51
RF 62.96 0.62 29.09 28.19

XGB 63.86 0.61 30.24 29.78
ET 59.61 0.66 26.62 25.37

Table 3. Model performance relative to original paper using % difference. Only testing set considered
for this case.

Model RMSE R2 MAE MAPE

LM −1.78 25.43 −0.69 −1.74
SVR −3.44 6.58 −2.38 −3.71
GB −2.82 5.12 −11.16 −17.70
RF −8.07 15.16 −8.68 −10.18

XGB * −4.18 7.02 −3.56 0.08
ET * −10.56 15.94 −15.10 −14.77

Average −5.14 12.54 −6.93 −8.00
* XGB and ET were not utilized in the original paper, therefore they were compared to the best individual result
across each metric: RMSE = 66.65, R2 = 0.57, MAE = 31.36, and MAPE = 29.76. All other models were compared
against the identical models used in the original paper [2].

5. Conclusions

Overall, the goal was achieved in not only simulating appliance energy use, but also
optimizing the model performance through machine learning-based strategies. Adding six
new features: hour, month, day, season, hour_sine, and hour_cosine; tuning the models
using random search; applying 10-fold cross-validation; and checking correlation analytics
using Spearman’s Rank helped to significantly improve model performance across all ma-
chine learning metrics. This shows that by simply adding diversity to the preexisting data,
you can yield noticeable differences in model generalization capabilities. As stated in the
results section, the extra trees regressor was the best-performing model, with RMSE = 59.61,
R2 =0.66, MAE = 26.62, and MAPE = 25.37.

Future work could include identifying the range for each input variable that effectively
lowers appliance energy usage through the models developed in this article. An example of
this is identifying how indoor temperatures influence appliance energy usage and how us-
age changes relative to indoor temperature; by doing this, you can identify the ideal indoor
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temperature range, which can impact how residential homes are built, their corresponding
orientation, and which appliances that are not only efficient but also have a relatively low
heat emittance should be considered for a home. Other possible paths to look into would be
to obtain information from multiple residential homes versus just analyzing a single home.
This would provide additional variables such as building geometry, orientation, glazing
area, and insulation (R-value) that can be paired with other input data to predict appliance
energy use. Extending the time period of the data would also be helpful since there was
only 4.5 months’ worth of data; having multiple years of information would provide the
opportunity to look into energy use patterns across different seasons, providing additional
opportunities to establish unique relationships. Another interesting item to investigate
would be the performance differences between white-box and black-box models. Machine
learning is one strategy for observing, analyzing, and establishing unique relationships;
therefore, looking into system dynamics, technological variables, econometrics, and phys-
ical building models such as DOE and Energy Plus would have the potential to reveal
benefits that cannot be seen using a single methodology. Overall, this would allow for a
greater understanding of what can be done to lower building energy consumption and
improve overall efficiency.
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