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Abstract: The high resistance connection fault of the stator is a common fault in doubly fed induction
generators, which causes a three-phase imbalance in the stator circuit. Since the stator winding is
directly connected to the power grid, interference from the asymmetric power grid must be eliminated
in order to achieve the accurate diagnosis of stator resistance imbalance faults. Therefore, a new
diagnosis method based on filter shunt capacitor banks is proposed in this paper. By introducing
shunt capacitor banks, an artificial neutral point is constructed to replace the neutral point of the
power grid. Then, the neutral point voltage of the stator winding relative to the artificial neutral
point is selected as a fault characteristic signal. In this paper, the change in three-phase stator
currents after a high-resistance connection fault is analyzed in detail, and by comparing the fault
characteristic signal with three-phase stator currents, the fault phase location and fault severity of
high-resistance connection can be accurately obtained. Finally, simulations are carried out via the
field-circuit coupling method to validate the effectiveness of the proposed method.

Keywords: doubly fed induction generator; fault diagnosis; high-resistance connection; neutral point
voltage; shunt capacitor banks

1. Introduction
1.1. Motivations

At present, due to the use of partial capacity power converters, the doubly fed induc-
tion generator (DFIG) is still one of the most widely used wind-driven generators. With the
rapid development of wind power, its installed capacity continues to increase. However,
wind turbines typically operate in harsh environments, which may cause unexpected faults
in the generator. High-resistance connection (HRC) is one of the common electrical faults
of the generator [1,2]. Figure 1 shows the HRC fault mechanism of DFIG [3]. HRC faults
lead to a decrease in the performance of the generator, such as imbalanced electrical signals
in the stator windings, overheating, increased torque pulsation, and a reduction in the
effective electromagnetic torque [4,5]. Severe cases evolve into open circuit faults and even
lead to damage to the entire wind turbine. Therefore, it is necessary to detect and repair
HRC faults as early as possible to avoid further evidence of the fault.

1.2. Related Works

Currently, many achievements have been made in the detection of HRC faults in
induction motors internationally [6–9]. Based on analyzing and processing the external
magnetic field during motor startup, ref. [6] characteristic signals can be obtained indicating
HRC faults in the rotor winding. However, this method needs to be carried out during
startup, so it can only achieve offline detection. The study in [7] calculates the maximum
energy density of high-order fault harmonic signals under the startup transient as training
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samples and uses feedforward neural networks for rotor fault degree classification. This
method is only suitable for judging the degree of a fault during startup and requires
strong signal processing and computational capabilities. Study [8] proposes a method that
can diagnose stator winding HRC faults in wound induction motors by comprehensively
analyzing the steady-state and transient currents of the rotor winding. This method not
only requires the collection of stable operating currents but also the collection of transient
starting currents. The study in [9] calculates the bi-coherence of the stray flux signal during
startup for fuzzy c-means machine learning to realize the rotor winding fault diagnosis.

Figure 1. HRC fault mechanism of DFIG.

In recent years, the literature on the HRC fault detection of permanent magnet syn-
chronous motors (PMSM) has been constantly emerging. In [10–12], zero sequence voltage
is obtained by attaching a resistor network to detect the HRC faults; meanwhile, the fault
phase and degree can be determined. In [13], to realize the HRC fault diagnosis of the
PMSM with the direct torque control, two pairs of bias magnetic links with different pole
numbers are superimposed, and the resistance deviation is obtained by solving a binary
linear equation system. In [14], voltage distortion is estimated to detect the HRC fault using
a reference model. Similarly, a high-order sliding mode controller is proposed in [15] to
achieve HRC fault–tolerant control and fault severity estimation. In [16,17], two deep learn-
ing algorithms, Deep Neural Networks, and deep Q-network, are used for the intelligent
diagnosis of winding faults in PMSMs.

Unlike induction motors and PMSM, DFIG has dual electrical ports, where the rotor
winding is connected to the grid through a power converter, while stator winding is directly
connected to the grid. The electrical environment of the stator winding is completely
different from other machines, and existing methods are not applicable. Meanwhile, since
the stator winding is directly connected to the power grid; the imbalance of the grid disturbs
the diagnosis. Studies [18–21] proposed some methods to detect the rotor HRC fault in
DFIGs; however, there is limited research on the HRC diagnosis of the stator winding.

1.3. Contributions

Based on the relevant literature, the HRC fault diagnosis methods can be roughly clas-
sified into the following three categories: model analysis-based methods [4,14,15,21], signal
processing-based methods [5,6,8,10–13,18,20], and knowledge-based methods [7,9,16,17,19].
Among them, the model analysis method delves into the fault model and mechanism of
machines, but, in practical application, it relies on accurate mathematical models. However,
the parameters of wind turbines may change at different operating points, which can easily
lead to significant errors in parameter or state estimation results, leading to misdiagnosis
and low reliability. The signal processing-based method is currently the most widely used
in the field of fault diagnosis for wind turbines, which, to some extent, avoids the problem
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of mathematical models of diagnostic objects. However, it also needs to address noise
and complexity issues to improve the efficiency of signal processing. Knowledge-based
methods have emerged with the rapid development of computer technology and artificial
intelligence technology. It does not require the establishment of an accurate mathematical
model for the diagnostic object, but only provides various data on the motor’s operating
status. However, the realization of knowledge-based methods needs the acquisition of prior
knowledge and data, and the diagnostic performance directly depends on the amount of
fault sample data. In addition, the significant impact of the operating status on motor fault
characteristics, to some extent, increases the difficulty of intelligent motor fault diagnosis.

In this paper, based on the shunt capacitor banks and established artificial neutral
points, a new HRC diagnosis method for the stator winding of DFIG is proposed. The
proposed method is a combination of a model analysis-based method and data processing-
based method. The proposal of this method is based on the analysis of the DFIG fault
model, but the analysis of the model is only to seek a fault characteristic quantity that is not
affected by the model accuracy, generator parameters, and generator operating conditions.
Meanwhile, only one fundamental signal needs to be extracted in the proposed method as
a data processing method is simple and efficient. And both single-phase and multiphase
faults can be accurately located and evaluated simultaneously. This means it has great
practical application potential.

1.4. Paper Organization

The organizational structure of this paper is arranged as follows: In Section 2, the
model of DIFG with HRC is established. In Section 3, the potential drift of the stator
winding neutral point using HRC is analyzed, and the HRC diagnosis method based on
the artificial neutral point is proposed. In Section 4, simulations are conducted to verify the
proposed diagnostic method. In Section 5, the simulation results were discussed. Finally,
conclusions and the conclusion and outlook for future work are drawn in Section 6.

2. DFIG Model with HRC

The HRC in the stator winding of DFIG can be simulated by connecting an additional
resistor in series to the faulty phase of the stator winding. It is assumed that the HRC
occurs in phase A, as shown in Figure 2.

Figure 2. Equivalent model of DFIG stator winding with the HRC in phase A.

In Figure 2, uas, ubs, and ucs are the terminal voltages of stator three-phase winding,
respectively; u0 is the neutral point voltage of the stator winding; ias, ibs, and ics are the
currents of the stator three-phase winding, respectively; Rs is the phase resistance of the
stator winding; ∆Ra is the additional resistance in phase A due to the HRC. According to
the operating conditions in Figure 2, ignoring the harmonics, the voltage and flux equations
of the DFIG with HRC in stator phase A are derived as follows:[

us
ur

]
=

[
Rs 0
0 Rr

][
is
ir

]
+

d
dt

([
ψs
ψr

])
+

[
us0
0

]
(1)
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[
ψs
ψr

]
=

[
Lss Msr
MT

sr Lrr

][
is
ir

]
(2)

where [us] and [ur] are the voltage matrices of the stator winding and rotor winding,
respectively; [us0] = [u0 u0 u0]T; [is] and [ir] are the current matrices of the stator winding
and rotor winding, respectively; [Rs] and [Rr] are the resistance matrices of the stator
winding and rotor winding, respectively; [ψs] and [ψr] are the flux matrices of the stator
winding and rotor winding, respectively; [Lss] and [Lrr] are the inductance matrices of the
stator winding and rotor winding, respectively; and [Msr] is the mutual inductance matrix
of the stator and rotor windings. Additionally, their expressions are as follows:

[us] = [uas ubs ucs]
T (3)

[ur] = [uar ubr ucr]
T (4)

[is] = [ias ibs ics]
T (5)

[ir] = [iar ibr icr]
T (6)

[Rs] =

Rs + ∆Ra 0 0
0 Rs 0
0 0 Rs

 (7)

[Rr] =

Rr 0 0
0 Rr 0
0 0 Rr

 (8)

[Lss] =

 Ls Ms Ms
Ms Ls Ms
Ms Ms Ls

 (9)

[Lrr] =

 Lr Mr Mr
Mr Lr Mr
Mr Mr Lr

 (10)

[Msr] = Lsr

 cos θr cos(θr +
2
3 π) cos(θr − 2

3 π)
cos(θr − 2

3 π) cos θr cos(θr +
2
3 π)

cos(θr +
2
3 π) cos(θr − 2

3 π) cos θr

 (11)

where uar, ubr, and ucr are the terminal voltages of the rotor three-phase winding, respec-
tively; iar, ibr, and icr are the currents of the rotor three-phase winding, respectively; Rr is
the phase resistance of the rotor winding; Ls and Ms are the self-inductance and mutual
inductance of the stator winding, respectively, and Ms = −1/2 Ls; Lr and Mr are the self-
inductance and mutual inductance of the rotor winding, respectively, and Mr =−1/2 Lr; Lsr
is the maximum mutual inductance of the stator and rotor windings; and θr is the electrical
angle difference of the A-phase winding axis of the stator and rotor, which can be obtained
via the following:

θr = pωrt + θ0 (12)

where θ0 is the initial electrical angle difference of the A-phase winding axis of the stator
and rotor; ωr is the electrical angular velocity of the rotor; and p is the pole-pair number of
the DFIG.
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3. Diagnostic Method
3.1. Potential Drift of Stator Winding Neutral Point

From the above mathematical model, it can be seen that the HRC of the stator winding
did not change the voltage equation of the rotor winding. According to (1) and (7), the
HRC leads to three-phase asymmetry in the stator winding, which is directly connected to
the power grid, causing the potential drift of the stator winding neutral point. Then, the
stator voltage equation can be expressed as follows:uas

ubs
ucs

 =

Rs + ∆Ra 0 0
0 Rs 0
0 0 Rs

ias
ibs
ics

+
d
dt

 Ls Ms Ms
Ms Ls Ms
Ms Ms Ls

ias
ibs
ics

+

eas
ebs
ecs

+

u0
u0
u0

 (13)

where eas, ebs, and ecs are the stator back-EMFs of the DFIG, which are induced by the
three-phase currents of the rotor. It produces the following:eas

ebs
ecs

 =
d
dt

Lsr

 cos θr cos(θr +
2
3 π) cos(θr − 2

3 π)
cos(θr − 2

3 π) cos θr cos(θr +
2
3 π)

cos(θr +
2
3 π) cos(θr − 2

3 π) cos θr

iar
ibr
icr

 (14)

Since the rotor winding of the DFIG is driven by the inverter, the rotor currents can
be controlled as three-phase symmetrical sinusoidal currents, which can be expressed
as follows: iar

ibr
icr

 = Ir

 cos ωct
cos(ωct− 2

3 π)
cos(ωct + 2

3 π)

 (15)

where Ir is the amplitude of rotor current; ωc is the angular frequency of rotor currents.
According to the operating principle of the DFIG, it can express the following:

ωs = pωr + ωc (16)

where ωs is the angular frequency of stator currents. Substituting (12), (15), and (16) into
(14) obtains the following:eas

ebs
ecs

 =
3
2

Lsr Ir

 cos(ωst + θ0)
cos(ωst + θ0 − 2

3 π)
cos(ωst + θ0 +

2
3 π)

 (17)

Based on Kirchhoff’s current law, it produces the following:

ias + ibs + ics = 0 (18)

According to (13), (17), and (18), the potential drift of the stator winding neutral point
can be expressed as

u0 =
1
3
(uas + ubs + ucs)−

1
3

∆Raias (19)

3.2. HRC Diagnosis under Balanced Grid

Since the stator winding of the DFIG is connected to the power grid directly, uas, ubs,
and ucs are also the three-phase voltages of the power grid, as shown in Figure 3. In a
three-phase balanced grid, it can be expressed as:

uas + ubs + ucs = 0 (20)
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Figure 3. Connection diagram of DFIG stator winding.

When substituting (20) into (19), we can obtain

u0 = − 1
3 ∆Raias = − 1

3 ∆Ra Ias cos(ωst + θa)

= 1
3 ∆Ra Ias cos(ωst + θa + π)

= U0 cos(ωst + α)

(21)

where Ias and θa are the current amplitude and initial phase of stator A-phase winding,
respectively. U0 and α are the voltage amplitude and initial phase of the stator winding
neutral point, and {

U0 = 1
3 ∆Ra Ias

α = θa + π
(22)

From (22), it can be seen that the amplitude and initial phase angle of the neutral point
potential u0 are directly related to the amplitude and initial phase angle of the stator fault
phase current ias as well as additional resistance ∆Ra.

Similarly, if the HRC occurs in phase B or phase C, it can be obtained as follows:{
U0 = 1

3 ∆Rb Ibs
α = θb + π

or
{

U0 = 1
3 ∆Rc Ics

α = θc + π
(23)

More generally, when HRC occurs simultaneously in two-phase windings, such as
phase A and phase B, it produces the following:

u0 = −∆Raias − ∆Rbibs
= − 1

3 ∆Ra Ias cos(ωst + θa)− 1
3 ∆Rb Ibs cos(ωst + θb)

= A cos(ωst + θa + π) + B cos(ωst + θb + π)
= U0 cos(ωst + α)

(24)

where 
U0 =

√
A2 + B2 + 2AB cos(θa − θb)

A = 1
3 ∆Ra Ias

B = 1
3 ∆Rb Ibs

α = arccos( A cos(θa+π)+B cos(θb+π)
U0

)

(25)

3.3. Artificial Neutral Point

The above analysis is based on the three-phase balance of the power grid. When the
three-phase imbalance occurs in the power grid, (20) is valid, and then (21)~(25) are no
longer applicable. In this case, only (19) could be applied to calculate the neutral point
potential u0. As can be seen from (19), u0 includes the following two parts: a three-phase
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imbalance in the power grid and a three-phase imbalance in the stator winding. And then,
it is no longer possible to use u0 to determine whether or where HRC occurs. In order to
eliminate the impact of the power grid imbalance, an artificial neutral point is constructed
to replace the neutral point of the power grid in this paper.

Considering that, in wind power generation systems, three-phase symmetrical ca-
pacitor banks are usually connected in parallel to achieve filtering and reactive power
compensation functions, their neutral point is easily obtained. Then, the neutral point of
the shunt capacitor bank O′ is introduced to replace the neutral point of the power grid
O, as shown in Figure 3. The voltage between the two neutral points of the power grid
and capacitor bank is uo ′ . Then, the current equation of the shunt capacitor bank can be
expressed as follows: iac

ibc
icc

 = C
d
dt

uas
ubs
ucs

−
u′ 0

u′ 0
u′ 0

 (26)

where C is the capacitance value in the parallel capacitor bank.
Based on Kirchhoff’s current law, it can be expressed as

iac + ibc + icc = 0 (27)

Substituting (27) into (26), the following is produced:

uo′ =
1
3
(uas + ubs + ucs) + K (28)

where K is a constant. In order to ensure that (26) remains true, K must be an invariant
constant. And since the initial value of K is 0, it must be 0. Then, the voltage uo′ is as follows:

uo′ =
1
3
(uas + ubs + ucs) (29)

Then, according to (29), the neutral point of the parallel capacitor bank can also be
used to detect three-phase unbalanced faults in the grid.

According to (19) and (29), it is expressed as

u′ 0 = u0 − uo′ = −
1
3

∆Raias (30)

where u′0 is the voltage between the two neutral points of the stator winding and shunt
capacitor bank. If u′0 is used instead of u0 in (21) and (24), (21)~(25) are always correct
regardless of whether the three phases of the power grid are balanced or not.

3.4. Fault Location and Degree Estimation

According to the above analysis, the HRC faults can be identified by detecting u′0,
which is expressed as follows:

u′0 = U0 cos(ωst + α)

U0 =
√

X2 + Y2 + 2XY cos(θx − θy)

X = 1
3 ∆Rx Ixs

Y = 1
3 ∆Ry Iys

α = arccos(X cos(θx+π)+Y cos(θy+π)
U0

)

(31)

where x = a, y = b; or x = b, y = c; or x = c, y = a.
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Then, when the HRC fault occurs in one phase winding of the stator, u′0 can be
expressed as follows: 

u′0 = U0 cos(ωst + α)

U0 = X = 1
3 ∆Rx Ixs

α = θx + π

(32)

where x = a, b, or c. It can be seen that an HRC fault in one-phase stator winding can be
considered as a special case of the HRC fault in two-phase stator windings. The fault degree
and the faulty phase can be conveniently estimated using U0 and α, respectively. If the
HRC occurs in all three phase windings of the stator, since the HRC causes an asymmetric
fault, the min(∆Ra, ∆Rb, ∆Rc) is considered as part of the normal resistance value of the
stator windings, and U0 and α can be calculated as follows:

U0 =
√

X2 + Y2 + 2XY cos(θx − θy)

X = 1
3 (∆Rx − ∆Rmin)Ixs

Y = 1
3 (∆Ry − ∆Rmin)Iys

∆Rmin = min(∆Ra, ∆Rb, ∆Rc)

α = arccos(X cos(θx+π)+Y cos(θy+π)
U0

)

(33)

It can be seen that HRC faults in the three-phase stator winding can be transformed
into HRC faults in the two-phase stator winding. Therefore, for the convenience of analysis,
whether the fault occurs in a single-phase, two-phase, or three-phase stator winding, it is
always assumed that the HRC fault occurs in the two-phase stator winding. Meanwhile, U0
and α are selected as fault characteristics, which can be obtained by gathering the voltage
signal between the neutral point N and O′. According to (31)~(33), since the fault phase
information cannot be obtained only through α, it is necessary to compare it with the
phase of the three-phase stator current and determine the fault location through the phase
relationship between u′0 and the three-phase stator current. Therefore, θαa, θαb, and θαc are
used to replace α as fault characteristics and can directly locate faults based on their values.
They can be obtained using the following:{

θαx = |α− θx − π| |α− θx − π| ≤ π
θαx = 2π − |α− θx − π| |α− θx − π| > π

(34)

where x = a, b, or c. Then, by collecting the amplitude and phase of the three-phase stator
current, combining (31)~(34), the fault location and degree can be calculated.

In order to achieve rapid fault localization, the range of feature values for different
fault phases needs to be analyzed. For the sake of analysis, it is still assumed that phase
A is the faulty phase, then according to (32) and (34), θαa = 0, θαb = θa − θb, and θαc = θc
− θa. In the healthy generator system, the three-phase currents are symmetrical, and the
phase difference between them is 2π/3. However, in the case of HRC, the three-phase
currents are no longer symmetrical, and the phase relationship of 2π/3 between them is
no longer satisfied. Figure 4 shows the phasor diagram of the DFIG stator winding with
HRC in phase A, where the red font and line segments represent the phasor that changes
after the HRC occurs, while the black represents the phasor before the HRC occurs. In
Figure 4, similar to the non-salient pole synchronous generator, the synchronous reactance
Xs is defined, and expressed as follows:

Xs =
3
2

ωsLs (35)
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Figure 4. Phasor diagram of DFIG stator winding with HRC in phase A.

As shown in Figure 4, due to grid clamping, the voltage U̇as, U̇bs and U̇cs does not
change after the HRC fault. According to (17), the EMFs Ėas, Ėbs and Ėcs do not change using
the HRC. Then, three phase voltages Ėas−U̇as, Ėbs−U̇bs and Ėcs−U̇cs are still symmetrical
after HRC occurs. With them as a reference, it is convenient to calculate the change in the
phase and amplitude of three-phase currents after the HRC fault. According to Figure 4, it
can be expressed as follows:

∆θa = arctan Xs
Rs
− arctan Xs

Rs+
4
3 ∆Ra

I′as =

√
R2

s+X2
s√

(Rs+
4
3 ∆Ra)

2
+X2

s

Im

∆θb = 2π
3 − arcsin 3

√
3Rs+4

√
3∆Ra+3Xs√

(6Rs+9∆Ra)
2+(6X−

√
3∆Ra)

2
− arctan Xs

Rs+
4
3 ∆Ra

∆Ra ≤
√

3Xs−Rs
2

∆θb = arcsin 3
√

3Rs+4
√

3∆Ra+3Xs√
(6Rs+9∆Ra)

2+(6X−
√

3∆Ra)
2
− arctan Xs

Rs+
4
3 ∆Ra

− π
3 ∆Ra >

√
3Xs−Rs

2

I′bs =

√
(6Rs+9∆Ra)

2+(6X−
√

3∆Ra)
2

2
√

(3Rs+4∆Ra)
2+9X2

s
Im

(36a)



∆θc =
π
3 + arcsin −3

√
3Rs−4

√
3∆Ra+3Xs√

(6Rs+9∆Ra)
2+(6X+

√
3∆Ra)

2
− arctan Xs

Rs+
4
3 ∆Ra

∆Ra ≤
√

3Xs−3Rs
4

∆θc =
π
3 − arcsin −3

√
3Rs−4

√
3∆Ra+3Xs√

(6Rs+9∆Ra)
2+(6X+

√
3∆Ra)

2
− arctan Xs

Rs+
4
3 ∆Ra

∆Ra >
√

3Xs−3Rs
4

I′cs =

√
(6Rs+9∆Ra)

2+(6X+
√

3∆Ra)
2

2
√

(3Rs+4∆Ra)
2+9X2

s
Im

(36b)

where ∆θa, ∆θb, and ∆θc are the phase offset of the three-phase stator currents when the
HRC fault occurs in phase A. I′as, I′bs, and I′cs are the amplitude of the three-phase stator
currents of the DFIG with HRC in phase A. Im is the amplitude of the stator currents of the
healthy DFIG.

Clearly, with the deepening of the HRC fault, the phase difference between the three-
phase fault current and healthy current constantly changes. When HRC occurs in phase
A, as the HRC fault deepens, according to (36), ∆θa changes from 0 to arctanXs/Rs, ∆θb
changes from 0 to −11π/180, and ∆θc changes from 0 to 11π/180. Meanwhile, ∆θc does
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not monotonically increase with the increase in the fault severity. As shown in Figure 4,
when the degree of fault is very small, ∆θc might be slightly less than 0, and the specific
value is determined by the parameters of the DFIG.

According to (36), it can be seen that both the amplitude and phase of the three-phase
currents are no longer symmetrical when HRC occurs. The phase fault characteristics can
be calculated as follows:

θαa = 0
θαb = θa − θb = arcsin 3

√
3Rs+4

√
3∆Ra+3Xs√

(6Rs+9∆Ra)
2+(6X−

√
3∆Ra)

2
+ arctan Xs

Rs
∆Ra ≤

√
3Xs−Rs

2

θαb = θa − θb = π − arcsin 3
√

3Rs+4
√

3∆Ra+3Xs√
(6Rs+9∆Ra)

2+(6X−
√

3∆Ra)
2
+ arctan Xs

Rs
∆Ra >

√
3Xs−Rs

2

θαc = θc − θa = π + arcsin −3
√

3Rs−4
√

3∆Ra+3Xs√
(6Rs+9∆Ra)

2+(6X+
√

3∆Ra)
2
− arctan Xs

Rs
∆Ra ≤

√
3Xs−3Rs

4

θαc = θc − θa = π − arcsin −3
√

3Rs−4
√

3∆Ra+3Xs√
(6Rs+9∆Ra)

2+(6X+
√

3∆Ra)
2
− arctan Xs

Rs
∆Ra >

√
3Xs−3Rs

4

(37)

It can be seen that when HRC occurs in phase A, while only the phase feature quantity
θαa has a constant value of 0, and θαb and θαc both change with different degrees of fault.
According to (37), θαb is in the range of 2π/3 ≤ θαb ≤ π and θαc is in the range of π-
arctanXs/Rs ≤ θαc ≤ 229π/180-arctanXs/Rs. Generally, synchronous reactance Xs is much
greater than winding resistance Rs, and the range of θαc can be from π/2 to 139π/180.
Similarly, the same applies when the HRC occurs in one of the other phases, and θαa, θαb,
and θαc only need to be replaced as θαx, θαy, and θαz, respectively, where x is the HRC fault
phase, and x, y, z can be a, b, c, or b, c, a or c, a, b. Then, the faulty phase can be identified
by calculating the phase fault characteristics θαa, θαb, and θαc since only the fault phase
feature quantity θαx is a constant value of 0. It is a very simple and effective method for a
one-phase HRC fault. When HRC occurs in two phases, such as phases A and B, there is no
longer a constant characteristic quantity, and this method cannot be directly applied. In
this situation, it is necessary to reanalyze its phase change and discover reliable patterns
that can be used to locate the faulty phase.

Figure 5 shows the phasor diagram of DFIG stator winding with HRC in phases A
and B. In Figure 5, a feature triangle is constructed both in two fault phases to help identify
the pattern of phase feature quantities. It can be seen that, affected by the lagging fault
phase, the current of the leading phase A leads by −U̇′0 a certain angle θαa. Similarly, the
current of the lagging phase B lags behind −U̇′0 a certain angle θαb. At least one out of
θαa and θαb is an acute angle, and one of them is the smallest of θαa, θαb and θαc, which
depends on the degree of fault in both phases. −U̇′0 is located between the leading and
lagging phase currents. Then, one fault phase can be determined by finding the minimum
phase characteristic quantity. By combining the phase relationship between the current of
this phase and −U̇′0, either leading or lagging, another faulty phase can be identified. For

example, when calculating, θαb is the smallest of the three feature quantities and
.
I
′
bs leads

by −U̇′0; then, the two fault phases are phases B and C. Otherwise, the two fault phases
are phases A and B. If there are two equal minimum feature quantities, the corresponding
two phases are the fault phase, as shown in Figure 5. In this situation, the phase difference

between
.
I
′
as and

.
I
′
bs is 2π/3, and θαa = θαb = π/3. Affected by the lagging fault phase,

.
I
′
as

is larger than
.
I
′
bs, and ∆Ra < ∆Rb.
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Figure 5. Phasor diagram of DFIG stator winding with HRC in phase A and B.

θαx is the magnitude of the phase difference between −U̇′0 and
.
I
′
xs. Through the

above analysis, in order to accurately locate the faulty phase, not only the magnitude of the
phase difference needs to be calculated, but also its sign needs to be determined. For the
convenience of application, (34) has been modified as follows:

θαx = |θx − α + π|, Sαx = θx−α+π
|θx−α+π| θx − α− π ∈ [−2π,−π]

θαx = |θx − α− π|, Sαx = θx−α−π
|θx−α−π| θx − α− π ∈ [−π, π]

θαx = |θx − α− 3π|, Sαx = θx−α−3π
|θx−α−3π| θx − α− π ∈ [π, 2π]

α ∈ [−π, π]
θx ∈ [0, 2π]
Sαx = 1, if θαx = 0

(38)

where x = a, b, or c, α is the extracted initial phase of U̇′0 and θαx is the extracted initial
phase of

.
Ixs. When the HRC occurs in one phase, the additional resistance ∆Rx can be

obtained using (32) as follows:

∆Rx =
3U0

Ixs
(39)

When the HRC occurs in two phases, the additional resistance ∆Rx and ∆Ry can be
obtained using the feature triangle as follows: ∆Rx =

3U0 sin θαy
Ixs sin(π−θαx−θαy)

∆Ry = 3U0 sin θαx
Iys sin(π−θαx−θαy)

(40)

Then, the flowchart of the HRC diagnosis process is provided in Figure 6. The online
HRC fault diagnosis process is as follows:
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Figure 6. Flow chart of HRC diagnosis process.

Step 1: HRC fault detection. The fundamental components of u′0 and ixs are extracted
online. Then, once the amplitude U0 is larger than 0, the HRC fault can be detected.

Step 2: Fault phase location. After detecting the occurrence of HRC, HRC fault
characteristics θαx and Sαx are calculated based on (38). Then, according to the minimum of
θαx and combined with the sign of Sαx, the fault phase can be located.

Step 3: Fault severity estimation. After locating the fault phase, the additional resis-
tance ∆Rx can be calculated based on (39) or (40).
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4. Simulations

In order to verify the effectiveness of the proposed method and ensure the reliability
of the simulation results, the complex electromagnetic environment of the DFIG should
be simulated realistically. Then, considering the impact of complex electromagnetic fields
on fault diagnosis, a finite element (FE) model of DFIG can be established alongside the
external circuit model based on the field-circuit coupling method, as shown in Figure 7.
The main parameters of the FE model are shown in Table 1.

Figure 7. Field-circuit coupling model of DFIG. (a) FE simulation model; (b) External circuit.

Table 1. FE Model parameters of DFIG.

Item Value Item Value

Rated power [kW] 1500 Rated speed [rpm] 1750
Stator outer diameter [mm] 860 Stack length [mm] 780
Stator inner diameter [mm] 615 Pole-pair number 2

Thickness of stator yoke [mm] 93.5 Number of stator slot 72
Tooth width of stator [mm] 14 Number of rotor slot 96
Rotor outer diameter [mm] 611.4 Number of stator winding layers 2
Rotor inner diameter [mm] 200 Number of rotor winding layers 2

Thickness of rotor yoke [mm] 122.5 Stator coil pitch 16
Tooth width of rotor [mm] 9.3 Rotor coil pitch 20

Figure 8 shows the waveform and harmonic components of the voltage u′0 in the
healthy DFIG. It can be seen that, in the healthy DFIG, the main component of u′0 is the
third harmonic component, and the fundamental component is very small and almost non-
existent. As shown in Figure 7b, an additional resistor ∆R = 0.2 Ω is connected in series with
A-phase winding, and the resistance of A-phase winding in a healthy state is 0.2 Ω. Then,
the simulation results are shown in Figure 9. Compared with Figure 8, the fundamental
component appears in the voltage u′0, where U0 = 4.79255 V and α = −20.7939◦, as shown
in Figure 9a. From Figure 9b, it can be seen that θa = 159.358◦ and Ias =73.1161 A before
θαa = |θa − α − π| = 0 is obtained. According to the proposed diagnosis method, the HRC
fault is in A-phase winding, and according to (39), the additional resistance ∆Ra can be
calculated as ∆Ra = 3U0/Ias = 0.19664 Ω. So, the proposed diagnosis method is effective for
HRC in the one-phase stator winding of the DFIG.
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Figure 8. u′0 of the healthy DFIG.

Figure 9. Cont.
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Figure 9. u′0 and stator currents of the DFIG with HRC in phase A. (a) u′0; (b) Stator currents.

Figure 10 shows the simulation results when HRC occurs in phase A and phase B,
where ∆Ra = ∆Rb = 0.2 Ω. From Figure 10, it is shown that U0 = 4.80292 V, α = −81.817◦,
Ias = 71.8809 A, Ibs = 74.1309 A, Ics = 73.2912 A, θa = 159.812◦, θb = 40.0469◦, and θc = −81.5924◦.
According to (38), θαa = |θa − α − π| = 61.629◦, Sαa = 1, θαb = |θb − α − π| = 58.1361◦,
Sαb = −1, θαc = |θc − α − π| = 179.7754◦, and Sαc = −1. Then, θmin = θαb, and Sαb < 0.
According to Figure 6, the HRC fault is in phases A and B. According to (40), it is shown that
∆Ra = 0.19612 Ω and ∆Rb = 0.19702 Ω. It can be seen that the error of the proposed diagnosis
method is only 1.49%, which is a high accuracy.

Figure 11 shows the simulation results when HRC occurs in phase A and phase B,
and the degree of fault between phase A and phase B is different, where ∆Ra = 0.2 Ω,
∆Rb = 0.5 Ω. From Figure 11, it is shown that U0 = 10.7089 V, α = −114.52◦, Ias = 69.9473 A,
Ibs = 73.3283 A, Ics = 74.6458 A, θa = 160.449◦, θb = 43.1946◦, and θc = −80.3946◦. It can be
seen that U0 in Figure 11 is greater than that in Figure 10 since the fault degree in Figure 11
is greater than that in Figure 10. According to (38), θαa = |θa − α − π| = 94.969◦, Sαa = 1,
θαb = |θb − α − π| = 22.2854◦, Sαb = −1, θαc = |θc − α − π| = 145.8746◦, Sαc = −1. Then,
θmin = θαb and Sαb < 0. According to Figure 6, the HRC fault is in phases A and B. According
to (40), it has ∆Ra = 0.1959 Ω and ∆Rb = 0.5147 Ω. It can be seen that the HRC in phases A
and B can be accurately diagnosed.
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Figure 10. u′0 and stator currents of the DFIG with HRC in phase A and B. (∆Ra = ∆Rb = 0.2 Ω)
(a) u′0; (b) Stator currents.
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Figure 11. u′0 and stator currents of the DFIG with HRC in phase A and B. (∆Ra = 0.2 Ω, ∆Rb = 0.5 Ω)
(a) u′0; (b) Stator currents.
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Figure 12 shows the simulation results when HRC occurs in phase A and phase C,
and the degree of fault between phase A and phase C is different, where ∆Ra = 0.2 Ω,
∆Rc = 0.5 Ω. From Figure 12, it is shown that U0 = 9.96105 V, α = 77.967◦, Ias = 75.3756 A,
Ibs = 71.5241 A, Ics = 71.1704 A, θa = 161.3◦, θb = 39.1857◦, and θc = −77.043◦. According to
(38), θαa = |θa − α − π| = 96.667◦, Sαa =−1, θαb = |θb – α + π| = 141.2187◦, Sαb = 1, θαc = |θc
− α − π| = 24.99◦, Sαc = 1. Then, θmin = θαc and Sαb > 0. According to Figure 6, the HRC
fault is in phases A and C. According to (40), it has ∆Ra = 0.1968 Ω and ∆Rb = 0.4875 Ω.
The HRC in phases A and B can also be accurately diagnosed. So, the proposed diagnosis
method is effective for HRC in two-phase stator windings of the DFIG.

Figure 12. u′0 and stator currents of the DFIG with HRC in phase A and C. (∆Ra = 0.2 Ω, ∆Rc = 0.5 Ω)
(a) u′0; (b) Stator currents.
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5. Discussion of Results

Based on the above simulation analysis, it can be seen that the method proposed
in this article cannot only achieve an accurate fault degree evaluation and fault location
of single-phase faults but can also accurately locate the fault phase of two-phase faults,
and accurately evaluate the fault degree of each phase. The methods in [10,11] can only
achieve accurate fault diagnosis for single-phase faults, and, for two-phase faults, only
an approximate fault degree could be estimated, where the fault degree judged by this
method was the same for two-phase faults, and it could not evaluate the faults of each
phase separately. Meanwhile, from the processing flow, it can be seen that the proposed
method was relatively simple compared to other signal processing-based methods [12,13].
Moreover, its diagnostic process does not rely on precise DFIG models like [4,14], but it has
a stronger anti-interference ability. And compared to knowledge-based methods [16,17], it
does not need to rely on a large number of samples, it is not affected by the training model,
and can achieve high-precision fault diagnosis at a small cost.

The above analysis is based on a simulation, and there may be some differences
between the experimental results and simulation results. Firstly, the inherent asymmetry of
the generator itself can cause the average value of the sliding window to be greater than
zero under normal circumstances. Therefore, in practical situations, appropriate thresholds
should be selected to avoid the misdiagnosis caused by inherent asymmetry. Secondly, in
practice, there may be measurement interferences in voltage sensors and current sensors,
which leads to certain burrs in the actual phase information and affects the accuracy of
fault assessment, but it does not have a significant impact on fault location.

6. Conclusions and Future Work

This paper proposes a new method for the online diagnosis of DFIGs stator winding
HRC faults using artificial neutral points constructed using parallel capacitor banks. Based
on the analysis of the mathematical model of DFIG with HRC in stator winding, the fault
feature quantities are defined, and the HRC fault is diagnosed based on the fault feature
quantities. Finally, the simulations are conducted to verify the effectiveness and correctness
of the theoretical analysis. The research content of this paper is summarized as follows:

(1) The interference and false alarms caused by power grid imbalance can be elimi-
nated through the method of constructing an artificial neutral point, as proposed in
this paper.

(2) The proposed method can accurately locate the faulty phase and evaluate the degree
of the fault in the case of single-phase faults, with an evaluation accuracy of over 98%.

(3) In the case of faults occurring in two phases, regardless of whether the faults are the
same or not, the proposed method can accurately locate the faulty phase and evaluate
the degree of fault in each phase, with an evaluation accuracy of over 97%.

The proposed method is based on the assumption of an excellent control performance.
The next step, the impact of different control methods and control performance, needs to
be analytically researched. Meanwhile, considering the feasibility of the application of this
method in rotor winding fault diagnosis, a classification method for diagnosing HRC faults
in stator and rotor windings should be studied.
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